
Gauche Users’ Reference
version 0.9.6

Shiro Kawai (shiro@acm.org)

Copyright c© 2001-2017 Shiro Kawai (shiro@acm.org)

i

Table of Contents

1 Introduction . 1
1.1 Overview of Gauche . 1
1.2 Notations . 2

1.2.1 Entry format . 2
1.2.2 Names and namespaces . 4

2 Concepts . 5
2.1 Standard conformance . 5
2.2 Multibyte strings . 10
2.3 Multibyte scripts . 11
2.4 Case-sensitivity . 11
2.5 Integrated Object System . 12
2.6 Module system . 13
2.7 Compilation . 14

3 Programming in Gauche . 15
3.1 Invoking Gosh . 15
3.2 Interactive development . 19

3.2.1 Working in REPL . 19
3.3 Writing Scheme scripts . 24
3.4 Debugging . 26
3.5 Using platform-dependent features . 27
3.6 Profiling and tuning . 29

3.6.1 Using profiler . 29
3.6.2 Performance tips . 30

3.7 Writing Gauche modules . 31
3.8 Using extension packages . 32
3.9 Building standalone executables . 33

4 Core syntax . 36
4.1 Lexical structure . 36

4.1.1 Sharp syntax . 37
4.1.2 Hash-bang token . 39

4.2 Literals . 39
4.3 Making Procedures . 40
4.4 Assignments . 45
4.5 Conditionals . 47
4.6 Binding constructs . 50
4.7 Sequencing . 53
4.8 Iteration . 54
4.9 Quasiquotation . 57
4.10 Definitions . 59
4.11 Inclusions . 63
4.12 Feature conditional . 64
4.13 Modules . 67

4.13.1 Module semantics . 67
4.13.2 Modules and libraries . 69

ii

4.13.3 Defining and selecting modules . 69
4.13.4 Using modules . 70
4.13.5 Module inheritance . 72
4.13.6 Module introspection . 72
4.13.7 Predefined modules . 74

5 Macros . 76
5.1 Why hygienic? . 76
5.2 Hygienic macros . 79

5.2.1 Syntax-rules macro transformer . 80
5.2.2 Explicit-renaming macro transformer . 82

5.3 Traditional macros . 85
5.4 Macro expansion . 86
5.5 Macro utilities . 86

6 Core library . 88
6.1 Types and classes . 88
6.2 Equality and comparison . 89

6.2.1 Equality . 89
6.2.2 Comparison . 91
6.2.3 Hashing . 92
6.2.4 Basic comparators . 95

6.2.4.1 Comparator class and constructors . 95
6.2.4.2 Comparator predicates and accessors . 96
6.2.4.3 Predefined comparators . 98
6.2.4.4 Combining comparators . 100

6.3 Numbers . 100
6.3.1 Number classes . 101
6.3.2 Numerical predicates . 101
6.3.3 Numerical comparison . 103
6.3.4 Arithmetics . 103
6.3.5 Numerical conversions . 110
6.3.6 Basic bitwise operations . 112
6.3.7 Endianness . 114

6.4 Booleans . 115
6.5 Undefined values . 115
6.6 Pairs and Lists . 116

6.6.1 Pair and null class . 116
6.6.2 List predicates . 116
6.6.3 List constructors . 117
6.6.4 List accessors and modifiers . 118
6.6.5 Walking over lists . 121
6.6.6 Other list procedures . 125
6.6.7 Association lists . 126

6.7 Symbols . 127
6.8 Keywords . 129

6.8.1 Keyword and symbol integration . 131
6.9 Identifiers . 132
6.10 Characters . 133
6.11 Character Set . 137
6.12 Strings . 139

6.12.1 String syntax . 140
6.12.2 String Predicates . 141

iii

6.12.3 String Constructors . 141
6.12.4 String interpolation . 142
6.12.5 String Accessors & Modifiers . 143
6.12.6 String Comparison . 144
6.12.7 String utilities . 145
6.12.8 Incomplete strings . 148

6.13 Regular expressions . 149
6.13.1 Regular expression syntax . 149
6.13.2 Using regular expressions . 152
6.13.3 Inspecting and assembling regular expressions . 158

6.14 Vectors . 160
6.15 Hashtables . 163
6.16 Treemaps . 168
6.17 Weak pointers . 172
6.18 Procedures and continuations . 173

6.18.1 Procedure class and applicability . 173
6.18.2 Universal accessor . 175
6.18.3 Combinators . 176
6.18.4 Optional argument parsing . 178
6.18.5 Procedure arity . 180
6.18.6 Applicable objects . 180
6.18.7 Continuations . 181
6.18.8 Multiple values . 183
6.18.9 Folding generated values . 183

6.19 Lazy evaluation . 184
6.19.1 Delay, force and lazy . 185
6.19.2 Lazy sequences . 185

6.20 Exceptions . 190
6.20.1 Exception handling overview . 190
6.20.2 Signaling exceptions . 193
6.20.3 Handling exceptions . 194
6.20.4 Conditions . 198

6.21 Eval and repl . 202
6.22 Input and Output . 203

6.22.1 Ports . 203
6.22.2 Port and threads . 203
6.22.3 Common port operations . 204
6.22.4 File ports . 207
6.22.5 String ports . 210
6.22.6 Coding-aware ports . 212
6.22.7 Input . 212

6.22.7.1 Reading data . 212
6.22.7.2 Reader lexical mode . 214
6.22.7.3 Read-time constructor . 215
6.22.7.4 Input utility functions . 216

6.22.8 Output . 217
6.22.8.1 Layers of output routines . 217
6.22.8.2 Output controls . 218
6.22.8.3 Object output . 219
6.22.8.4 Formatting output . 221
6.22.8.5 Low-level output . 224

6.23 Loading Programs . 225
6.23.1 Loading Scheme file . 225
6.23.2 Load dynamic library . 227

iv

6.23.3 Require and provide . 227
6.23.4 Autoload . 228
6.23.5 Operations on libraries . 229

6.24 Sorting and merging . 230
6.25 System interface . 232

6.25.1 Program termination . 232
6.25.2 Command-line arguments . 233
6.25.3 Environment Inquiry . 234
6.25.4 Filesystems . 236

6.25.4.1 Directories . 236
6.25.4.2 Directory manipulation . 238
6.25.4.3 Pathnames . 239
6.25.4.4 File stats . 240
6.25.4.5 Other file operations . 243

6.25.5 Unix groups and users . 243
6.25.6 Locale . 245
6.25.7 Signal . 245

6.25.7.1 Signals and signal sets . 246
6.25.7.2 Sending signals . 247
6.25.7.3 Handling signals . 247
6.25.7.4 Masking and waiting signals . 250
6.25.7.5 Signals and threads . 251

6.25.8 System inquiry . 251
6.25.9 Time . 254
6.25.10 Process management . 256
6.25.11 I/O multiplexing . 259
6.25.12 Garbage Collection . 260
6.25.13 Miscellaneous system calls . 261

6.26 Development helper API . 262
6.26.1 Debugging aid . 262
6.26.2 Profiler API . 263

7 Object system . 265
7.1 Introduction to the object system . 265
7.2 Class . 272

7.2.1 Defining class . 272
7.2.2 Inheritance . 274
7.2.3 Class object . 276
7.2.4 Slot definition object . 277
7.2.5 Class redefinition . 278
7.2.6 Class definition examples . 279

7.3 Instance . 281
7.3.1 Creating instance . 281
7.3.2 Accessing instance . 282
7.3.3 Changing classes . 283

7.4 Generic function and method . 285
7.5 Metaobject protocol . 287

7.5.1 Class instantiation . 287
7.5.2 Customizing slot access . 289
7.5.3 Method instantiation . 293
7.5.4 Customizing method application . 293

v

8 Library modules - Overview . 294
8.1 Finding libraries you need . 294

8.1.1 Library directory - data containers . 295
8.1.2 Library directory - string and character . 296
8.1.3 Library directory - data exchange . 296
8.1.4 Library directory - files . 297
8.1.5 Library directory - processes and threads . 297
8.1.6 Library directory - networking . 297
8.1.7 Library directory - input and output . 297
8.1.8 Library directory - time . 298
8.1.9 Library directory - bits and bytes . 298

8.2 Naming convention of libraries . 298
8.3 Obsolete and superseded modules . 299

9 Library modules - Gauche extensions . 301
9.1 gauche.array - Arrays . 301
9.2 gauche.base - Importing gauche built-ins . 308
9.3 gauche.cgen - Generating C code . 308

9.3.1 Generating C source files . 309
9.3.2 Generating Scheme literals . 313
9.3.3 Conversions between Scheme and C . 314
9.3.4 CiSE - C in S expression . 316

9.3.4.1 CiSE overview . 317
9.3.4.2 CiSE syntax . 317
9.3.4.3 CiSE procedures . 317

9.4 gauche.charconv - Character Code Conversion . 318
9.4.1 Supported character encoding schemes . 318
9.4.2 Autodetecting the encoding scheme . 320
9.4.3 Conversion ports . 320

9.5 gauche.collection - Collection framework . 322
9.5.1 Mapping over collection . 323
9.5.2 Selection and searching in collection . 325
9.5.3 Miscellaneous operations on collection . 327
9.5.4 Fundamental iterator creators . 328
9.5.5 Implementing collections . 330

9.6 gauche.config - Configuration parameters . 330
9.7 gauche.configure - Generating build files . 331

9.7.1 Structure of configure script and build files . 331
9.7.2 Configure API . 332

9.8 gauche.dictionary - Dictionary framework . 338
9.8.1 Generic functions for dictionaries . 338
9.8.2 Generic dictionaries . 341

9.9 gauche.fcntl - Low-level file operations . 342
9.10 gauche.generator - Generators . 344

9.10.1 Generator constructors . 344
9.10.2 Generator operations . 348
9.10.3 Generator consumers . 353

9.11 gauche.hook - Hooks . 355
9.12 gauche.interactive - Utilities for interactive session . 356
9.13 gauche.lazy - Lazy sequence utilities . 358
9.14 gauche.listener - Listener . 361
9.15 gauche.logger - User-level logging . 364
9.16 gauche.mop.propagate - Propagating slot access . 366

vi

9.17 gauche.mop.singleton - Singleton . 368
9.18 gauche.mop.validator - Slot with validator . 369
9.19 gauche.net - Networking . 370

9.19.1 Socket address . 370
9.19.2 High-level network functions . 372
9.19.3 Low-level socket interface . 375
9.19.4 Netdb interface . 380

9.20 gauche.package - Package metainformation . 383
9.21 gauche.parameter - Parameters . 383
9.22 gauche.parseopt - Parsing command-line options . 385
9.23 gauche.partcont - Partial continuations . 389
9.24 gauche.process - High Level Process Interface . 393

9.24.1 Running subprocess . 393
9.24.2 Running process pipeline . 398
9.24.3 Process object . 399
9.24.4 Process ports . 401

9.25 gauche.record - Record types . 404
9.25.1 Introduction . 405
9.25.2 Syntactic Layer . 405
9.25.3 Inspection layer . 408
9.25.4 Procedural layer . 408
9.25.5 Pseudo record types . 409

9.26 gauche.reload - Reloading modules . 410
9.27 gauche.selector - Simple dispatcher . 411
9.28 gauche.sequence - Sequence framework . 412

9.28.1 Fundamental sequence accessors . 413
9.28.2 Slicing sequence . 413
9.28.3 Mapping over sequences . 414
9.28.4 Other operations over sequences . 415
9.28.5 Implementing sequence . 420

9.29 gauche.syslog - Syslog . 420
9.30 gauche.termios - Terminal control . 421

9.30.1 Posix termios interface . 421
9.30.2 Common high-level terminal control . 423

9.31 gauche.test - Unit Testing . 423
9.32 gauche.threads - Threads . 428

9.32.1 Thread programming tips . 429
9.32.2 Thread procedures . 430
9.32.3 Synchronization primitives . 433
9.32.4 Thread exceptions . 438

9.33 gauche.time - Measure timings . 439
9.34 gauche.unicode - Unicode utilities . 442

9.34.1 Unicode transfer encodings . 443
9.34.2 Unicode text segmentation . 444
9.34.3 Full string case conversion . 446
9.34.4 East asian width property . 447

9.35 gauche.uvector - Uniform vectors . 447
9.35.1 Uvector basic operations . 448
9.35.2 Uvector conversion operations . 453
9.35.3 Uvector numeric operations . 456
9.35.4 Uvector block I/O . 458

9.36 gauche.version - Comparing version numbers . 459
9.37 gauche.vport - Virtual ports . 461

vii

10 Library modules - R7RS standard libraries 468
10.1 R7RS integration . 468

10.1.1 Traveling between two worlds back and forth . 468
10.1.2 Three import forms . 470

10.2 R7RS small language . 472
10.2.1 R7RS library form . 472
10.2.2 scheme.base - R7RS base library . 473
10.2.3 scheme.case-lambda - R7RS case-lambda . 476
10.2.4 scheme.char - R7RS char library . 476
10.2.5 scheme.complex - R7RS complex numbers . 477
10.2.6 scheme.cxr - R7RS cxr accessors . 477
10.2.7 scheme.eval - R7RS eval . 477
10.2.8 scheme.file - R7RS file library . 478
10.2.9 scheme.inexact - R7RS inexact numbers . 478
10.2.10 scheme.lazy - R7RS lazy evaluation . 478
10.2.11 scheme.load - R7RS load . 479
10.2.12 scheme.process-context - R7RS process context . 479
10.2.13 scheme.read - R7RS read . 479
10.2.14 scheme.repl - R7RS repl . 480
10.2.15 scheme.time - R7RS time . 480
10.2.16 scheme.write - R7RS write . 481
10.2.17 scheme.r5rs - R5RS compatibility . 481

10.3 R7RS large . 481
10.3.1 scheme.list - R7RS lists . 482
10.3.2 scheme.vector - R7RS vectors . 486
10.3.3 scheme.sort - R7RS sort . 491
10.3.4 scheme.set - R7RS sets . 494
10.3.5 scheme.charset - R7RS character sets . 501

10.3.5.1 Character-set constructors . 501
10.3.5.2 Character-set comparison . 502
10.3.5.3 Character-set iteration . 503
10.3.5.4 Character-set query . 503
10.3.5.5 Character-set algebra . 503
10.3.5.6 Predefined character-set . 504

10.3.6 scheme.hash-table - R7RS hash tables . 505
10.3.7 scheme.ideque - R7RS immutable deques . 508
10.3.8 scheme.generator - R7RS generators . 510
10.3.9 scheme.lseq - R7RS lazy sequences . 511
10.3.10 scheme.box - R7RS boxes . 513
10.3.11 scheme.list-queue - R7RS list queues . 513
10.3.12 scheme.comparator - R7RS comparators . 516

11 Library modules - SRFIs . 517
11.1 srfi-1 - List library . 517
11.2 srfi-4 - Homogeneous vectors . 517
11.3 srfi-5 - A compatible let form with signatures and rest arguments 517
11.4 srfi-7 - Feature-based program configuration language . 517
11.5 srfi-13 - String library . 518

11.5.1 General conventions . 518
11.5.2 String predicates . 519
11.5.3 String Constructors . 519
11.5.4 String selection . 520
11.5.5 String comparison . 521

viii

11.5.6 String Prefixes & Suffixes . 522
11.5.7 String searching . 523
11.5.8 String case mapping . 523
11.5.9 String reverse & append . 524
11.5.10 String mapping . 524
11.5.11 String rotation . 525
11.5.12 Other string operations . 526
11.5.13 String filtering . 526
11.5.14 Low-level string procedures . 527

11.6 srfi-14 - Character-set library . 527
11.7 srfi-19 - Time data types and procedures . 527

11.7.1 Time types . 527
11.7.2 Time queries . 528
11.7.3 Time procedures . 528
11.7.4 Date . 529
11.7.5 Date reader and writer . 531

11.8 srfi-27 - Sources of Random Bits . 532
11.9 srfi-29 - Localization . 533
11.10 srfi-37 - args-fold: a program argument processor . 535
11.11 srfi-42 - Eager comprehensions . 537
11.12 srfi-43 - Vector library (legacy) . 542
11.13 srfi-55 - Requiring extensions . 543
11.14 srfi-60 - Integers as bits . 543
11.15 srfi-66 - Octet vectors . 545
11.16 srfi-69 - Basic hash tables . 545
11.17 srfi-74 - Octet-addressed binary blocks . 547
11.18 srfi-98 - Accessing environment variables . 549
11.19 srfi-106 - Basic socket interface . 550
11.20 srfi-111 - Boxes . 552
11.21 srfi-112 - Environment inquiry . 552
11.22 srfi-113 - Sets and bags . 553
11.23 srfi-114 - Comparators . 553
11.24 srfi-117 - Queues based on lists . 558
11.25 srfi-118 - Simple adjustable-size strings . 558
11.26 srfi-127 - Lazy sequence (srfi) . 559
11.27 srfi-132 - Sort library . 559
11.28 srfi-133 - Vector library . 559
11.29 srfi-141 - Integer division . 559
11.30 srfi-143 - Fixnums . 560
11.31 srfi-146 - Mappings and hashmaps . 563

11.31.1 Mappings . 563
11.31.1.1 Mapping and folding . 566

11.31.2 Hashmaps . 568
11.31.2.1 Mapping and folding . 571

11.32 srfi-151 - Bitwise operations . 572
11.33 srfi-152 - String library (reduced) . 576
11.34 srfi-158 - Generators and accumulators . 578

ix

12 Library modules - Utilities . 581
12.1 binary.io - Binary I/O . 581
12.2 binary.pack - Packing Binary Data . 584
12.3 compat.norational - Rational-less arithmetic . 587
12.4 control.job - A common job descriptor for control modules . 587
12.5 control.thread-pool - Thread pools . 589
12.6 crypt.bcrypt - Password hashing . 590
12.7 data.cache - Cache . 591
12.8 data.heap - Heap . 594
12.9 data.ideque - Immutable deques . 596
12.10 data.imap - Immutable map . 597
12.11 data.queue - Queue . 599
12.12 data.random - Random data generators . 602
12.13 data.ring-buffer - Ring buffer . 607
12.14 data.sparse - Sparse data containers . 609

12.14.1 Sparse vectors . 610
12.14.2 Sparse matrixes . 612
12.14.3 Sparse tables . 614

12.15 data.trie - Trie . 615
12.16 dbi - Database independent access layer . 618

12.16.1 DBI user API . 619
12.16.2 Writing drivers for DBI . 622

12.17 dbm - Generic DBM interface . 625
12.17.1 Opening and closing a dbm database . 625
12.17.2 Accessing a dbm database . 627
12.17.3 Iterating on a dbm database . 627
12.17.4 Managing dbm database instance . 628
12.17.5 Dumping and restoring dbm database . 628
12.17.6 Writing a dbm implementation . 629

12.18 dbm.fsdbm - File-system dbm . 630
12.19 dbm.gdbm - GDBM interface . 630
12.20 dbm.ndbm - NDBM interface . 632
12.21 dbm.odbm - Original DBM interface . 633
12.22 file.filter - Filtering file content . 633
12.23 file.util - Filesystem utilities . 635

12.23.1 Directory utilities . 635
12.23.2 Pathname utilities . 638
12.23.3 File attribute utilities . 640
12.23.4 File operations . 641
12.23.5 Lock files . 644

12.24 math.const - Mathematic constants . 646
12.25 math.mt-random - Mersenne Twister Random number generator 646
12.26 math.prime - Prime numbers . 647
12.27 os.windows - Windows support . 649

12.27.1 Windows dialogs . 650
12.27.2 Windows console API . 650

12.28 rfc.822 - RFC822 message parsing . 653
12.29 rfc.base64 - Base64 encoding/decoding . 657
12.30 rfc.cookie - HTTP cookie handling . 658
12.31 rfc.ftp - FTP client . 659
12.32 rfc.hmac - HMAC keyed-hashing . 662
12.33 rfc.http - HTTP . 663
12.34 rfc.icmp - ICMP packets . 668

x

12.35 rfc.ip - IP packets . 669
12.36 rfc.json - JSON parsing and construction . 669
12.37 rfc.md5 - MD5 message digest . 671
12.38 rfc.mime - MIME message handling . 672
12.39 rfc.quoted-printable - Quoted-printable encoding/decoding 677
12.40 rfc.sha - SHA message digest . 678
12.41 rfc.tls - Transport layer security . 678
12.42 rfc.uri - URI parsing and construction . 679
12.43 rfc.zlib - zlib compression library . 684
12.44 slib - SLIB interface . 688
12.45 sxml.ssax - Functional XML parser . 688

12.45.1 SSAX data types . 689
12.45.2 SSAX low-level parsing code . 691
12.45.3 SSAX higher-level parsers and scanners . 695
12.45.4 SSAX Highest-level parsers - XML to SXML . 696

12.46 sxml.sxpath - SXML Query Language . 699
12.46.1 SXPath basic converters and applicators . 699
12.46.2 SXPath query language . 702
12.46.3 SXPath extension . 703

12.47 sxml.tools - Manipulating SXML structure . 705
12.47.1 SXML predicates . 706
12.47.2 SXML accessors . 706
12.47.3 SXML modifiers . 708
12.47.4 SXPath auxiliary utilities . 709
12.47.5 SXML to markup conversion . 710

12.48 sxml.serializer - Serializing XML and HTML from SXML 711
12.48.1 Simple SXML serializing . 711
12.48.2 Custom SXML serializing . 711

12.49 text.console - Text terminal control . 713
12.50 text.csv - CSV tables . 716
12.51 text.diff - Calculate difference of text streams . 719
12.52 text.gettext - Localized messages . 720
12.53 text.html-lite - Simple HTML document construction . 721
12.54 text.parse - Parsing input stream . 723
12.55 text.progress - Showing progress on text terminals . 725
12.56 text.sql - SQL parsing and construction . 727
12.57 text.template - Simple template expander . 727
12.58 text.tr - Transliterate characters . 728
12.59 text.tree - Lazy text construction . 730
12.60 util.combinations - Combination library . 731
12.61 util.digest - Message digester framework . 732
12.62 util.dominator - Calculate dominator tree . 733
12.63 util.isomorph - Determine isomorphism . 734
12.64 util.lcs - The longest common subsequence . 735
12.65 util.levenshtein - Levenshtein edit distance . 736
12.66 util.match - Pattern matching . 738
12.67 util.record - SLIB-compatible record type . 743
12.68 util.relation - Relation framework . 744
12.69 util.stream - Stream library . 746
12.70 util.toposort - Topological sort . 751
12.71 util.unification - Unification . 751
12.72 www.cgi - CGI utility . 752
12.73 www.cgi.test - CGI testing . 757
12.74 www.css - CSS parsing and construction . 758

xi

Appendix A References . 762

Appendix B C to Scheme mapping . 765

Appendix C Function and Syntax Index . 776

Appendix D Module Index . 810

Appendix E Lexical syntax index . 812

Appendix F Class Index . 813

Appendix G Variable Index . 816

1

1 Introduction

This is a users’ guide and reference manual of the Gauche Scheme system. Here I tried to
describe the implementation precisely, sometimes referring to background design choices.

The target readers are those who already know Scheme and want to write useful programs
in Gauche. For those who are new to Scheme, it’ll be easier to start from some kind of tutorial.
I’m planning to write one.

This manual only deals with Scheme side of things. Gauche has another face, a C interface.
Details of it will be discussed in a separate document to be written. Those who want to use
Gauche as an embedded language, or want to write an extension, need that volume.

For the Scheme side, I tried to make this manual self-contained for the reader’s convenience,
i.e. as far as you want to look up Gauche’s features you don’t need to refer to other documents.
For example, description of functions defined in the standard documents are included in this
manual, instead of saying “see the standard document”. However, this document is not a
verbatim copy of the standard documents; sometimes I omit detailed discussions for brevity.
I put pointers to the original documents, so please consult them if you need to refer to the
standards.

If you’re reading this document off-line, you may find the most recent version on the web:

http://practical-scheme.net/gauche/.

1.1 Overview of Gauche

Gauche is a Scheme script engine; it reads Scheme programs, compiles it on-the-fly and executes
it on a virtual machine. Gauche conforms the language standard "Revised^7 Report on the
Algorithmic Language Scheme" ([R7RS], page 762), and supports various common libraries
defined in SRFIs (http://srfi.schemers.org).

The goal of Gauche is to provide a handy tool for programmers and system administrators
to handle daily works conveniently and efficiently in the production environment.

There are lots of Scheme implementations available, and each of them has its design emphasis
and weaknesses. Gauche is designed with emphasis on the following criteria.

Quick startup
One of the situation Gauche is aiming at is in the production environment, where you
write ten-lines throw-away script that may invoked very frequently. This includes
CGI scripts as well. Gauche provides frequently used common features as a part
of rich built-in functions or precompiled Scheme libraries that can be loaded very
quickly.

Fully utilizing multi-core
Gauche supports native threads on most platforms. The internals are fully aware
of preemptive/concurrent threads (that is, no “giant global lock”), so that you can
utilize multiple cores on your machine.

Multibyte strings
We can no longer live happily in ASCII-only or 1-byte-per-character world. The
practical language implementations are required to handle multibyte (wide) char-
acters. Gauche supports multibyte strings natively, providing robust and consis-
tent support than ad hoc library-level implementation. See Section 2.2 [Multibyte
strings], page 10, for details.

Integrated object system
A powerful CLOS-like object system with MetaObject protocol (mostly compatible
with STklos and Guile) is provided.

http://practical-scheme.net/gauche/
http://srfi.schemers.org

Chapter 1: Introduction 2

System interface
Although Scheme abstracts lots of details of the machine, sometimes you have to
bypass these high-level layers and go down to the basement to make things work.
Gauche has built-in support of most of POSIX.1 system calls. Other modules, such
as networking module, usually provide both high-level abstract interface and low-
level interface close to system calls.

Enhanced I/O
No real application can be written without dealing with I/O. Scheme neatly ab-
stracts I/O as a port, but defines least operations on it. Gauche uses a port object
as a unified abstraction, providing utility functions to operate on the underlying I/O
system. See Section 6.22 [Input and output], page 203, for the basic I/O support.

Extended language
Gauche is not just an implementation of Scheme; it has some language-level en-
hancements. For example, lazy sequences allows you to have lazy data structures
that behaves as if they’re ordinary lists (except that they’re realized lazily). It is
different from library-level lazy structure implementation such as streams (srfi-41),
in a sense that you can use any list-processing procedures on lazy sequences. It
enables programs to use lazy algorithms more liberally.

1.2 Notations

1.2.1 Entry format

In this manual, each entry is represented like this:

[Category]foo arg1 arg2
[spec]{module} Description of foo . . .

Category denotes the category of the entry foo. The following categories will appear in this
manual:

Function A Scheme function.
Special Form A special form (in the R7RS term, “syntax”).
Macro A macro.
Module A module
Class A class.
Generic Function A generic function
Method A method
Reader Syntax A lexical syntax that is interpreted by the reader.
Parameter A parameter, which is a procedure that follows a certain

protocol and used to manipulate the dynamic environ-
ment. See Section 9.21 [Parameters], page 383, for the
details.

Generic application In Gauche, you can “apply” a non-procedure object to
arguments as if it is a procedure (see Section 6.18.6
[Applicable objects], page 180, for the details). This
entry explains the behavior of an object applied to
arguments.

Subprocess argument This appears in do-process and run-process to ex-
plain their keyword argument (see Section 9.24.1 [Run-
ning subprocess], page 393)

EC Qualifier This is for SRFI-42 Eager Comprehension qualifiers.
(see Section 11.11 [Eager comprehensions], page 537).

Chapter 1: Introduction 3

For functions, special forms and macros, the entry may be followed by one or more arguments.
In the argument list, the following notations may appear:

arg ... Indicates zero or more arguments.

:optional x y z

:optional (x x-default) (y y-default) z

Indicates it may take up to three optional arguments. The second form specifies
default values to x and y. This is Gauche’s enhancement to Scheme; see Section 4.3
[Making Procedures], page 40, for the definition of complete argument list syntax.

:key x y z

:key (x x-default) (y y-default) z

Indicates it may take keyword arguments x, y and z. The second form shows the
default values for x and y. This is also Gauche’s enhancement to Scheme; see
Section 4.3 [Making Procedures], page 40, for the definition of complete argument
list syntax.

:rest args

Indicates it may take rest arguments. This is also Gauche’s enhancement to Scheme;
see Section 4.3 [Making Procedures], page 40, for the definition of complete argument
list syntax.

Following the entry line, we may indicate the specification the entry comes from, and/or the
module the entry is provided when it’s not built-in.

The specification is shown in brackets. You’ll see the following variations.

[R7RS], [R7RS library]
It is defined in R7RS. If the entry is about a procedure, a syntax or a macro, library
is also shown to indicate the name is exported from the scheme.library module
(or the (scheme library) library, in R7RS terms).

[R7RS+], [R7RS+ library]
It is defined in R7RS, but extended by Gauche, e.g. accepting more optional argu-
ments or different type of arguments. The description contains how it is extended
from R7RS. When you’re writing a portable program, you need to be careful not to
use Gauche-specific features.

[R6RS], [R6RS+], [R5RS], [R5RS+]
It is defined in R6RS or R5RS. The plus sign means it has extended by Gauche.
Since R7RS is mostly upward-compatible to R5RS, and has a lot in common with
R6RS, we mark an entry as R5RS or R6RS only if it is not a part of R7RS.

[SRFI-n], [SRFI-n+]
The entry works as specified in SRFI-n. If it is marked as "[SRFI-n+]", the entry
has additional functionality.

[POSIX] The API of the entry reflects the API specified in POSIX.

The module is shown in curly-braces. If the module isn’t shown, it is built-in for Gauche.
(Note: When you’re writing R7RS code, Gauche built-ins are available through (gauche base)

module, see Section 9.2 [Importing gauche built-ins], page 308).

Some entries may be available from more than one modules through re-exporting or module
inheritance. We only list the primary module in that case.

Here’s an actual entry for an example:

-- Function: utf8->string u8vector :optional start end

[R7RS base] {gauche.unicode} Converts a sequence of utf8 octets in

Chapter 1: Introduction 4

U8VECTOR to a string. Optional START and/or END argument(s) will

limit the range of the input.

This shows the function utf8->string is specified by R7RS, in (scheme base) library.
Gauche originally provides it from gauche.unicode module. You can import the function from
either one, but in general, it’s good to use (import (scheme base)) when writing R7RS code,
and (use gauche.unicode) when writing Gauche code. See Section 10.1 [R7RS integration],
page 468, for the details of differences in writing in R7RS and Gauche.

1.2.2 Names and namespaces

Since R6RS, you can split toplevel definitions of Scheme programs into multiple namespaces. In
the standards such namespaces are called libraries. Gauche predates R6RS and has been calling
them modules, and we use the latter throughout this manual.

(Note: RnRS libraries are more abstract concept than Gauche’s modules; RnRS defines
libraries in a way that they can be implemented in various ways, and it just happens that
Gauche realises the library semantics using modules. When you write a portable R7RS library,
be aware not to rely on Gauche-specific module semantics. Especially, RnRS libraries are more
static than Gauche modules; you cannot add definitions to exiting libraries within RnRS, for
example.)

Sometimes the same name is used for multiple definitions in different modules. If we need
to distinguish those names, we prefix the name with the module name and a hash sign. For
example, gauche#lambda means lambda defined in gauche module. This does not mean you
can write gauche#lambda in the source code, though: This notation is just for explanation.

5

2 Concepts

In this chapter I describe a few Gauche’s design concepts that help you to understand how
Gauche works.

2.1 Standard conformance

Gauche conforms "Revised^7 Report of Algorithmic Language Scheme," (R7RS) including op-
tional syntax and procedures, with a few exceptions explained below.

• Gauche has a keyword object, expressed as a name prefixed by a colon (e.g. :key). It
evaluates to itself, and used extensively when passing so-called keyword arguments (see
Section 4.3 [Making Procedures], page 40).

R7RS requires names starting with colon to be read as a symbol. In the current version of
Gauche, keywords aren’t symbols by default; they are of disjoint types. With an enviorn-
ment variable GAUCHE_KEYWORD_IS_SYMBOL being set, you can make Gauche treat keywords
and symbols the same. See Section 6.8 [Keywords], page 129, for the details. The plan
is that we move to fully R7RS compliant in future, but this change could break existing
code, so we have migration period. We recommend setting the environment variable now
for newly written code.

• Continuations created in a certain situation (specifically, inside a Scheme code that is called
from external C routine) have limited extent (See Section 6.18.7 [Continuations], page 181,
for details).

• Full numeric tower (integer, rational, real and complex numbers) are supported, but ratio-
nals are only exact, and complex numbers are always inexact.

Note that, since Gauche predates R7RS, most existing Gauche source code doesn’t follow
the R7RS program/library structure. Gauche can read both traditional Gauche modules/scripts
and R7RS programs/libraries seamlessly. See Chapter 10 [Library modules - R7RS standard
libraries], page 468, for the details of how R7RS is integrated into Gauche.

Gauche also supports the following SRFIs (Scheme Request for Implementation).

SRFI-0, Feature-based conditional expansion construct.
This has become a part of R7RS small. Gauche supports this as Built-in. See
Section 4.12 [Feature conditional], page 64.

SRFI-1, List library (R7RS lists)
This has become a part of R7RS large. See Section 10.3.1 [R7RS lists], page 482.
(Some of SRFI-1 procedures are built-in).

SRFI-2, AND-LET*: an AND with local bindings, a guarded LET* special form.
Supported natively. See Section 4.6 [Binding constructs], page 50.

SRFI-4, Homogeneous numeric vector datatypes.
The module gauche.uvector provides a superset of srfi-4 procedures, including
arithmetic operations and generic interface on the SRFI-4 vectors. See Section 9.35
[Uniform vectors], page 447.

SRFI-5, A compatible let form with signatures and rest arguments
Supported by the module srfi-5. See Section 11.3 [A compatible let form with
signatures and rest arguments], page 517.

SRFI-6, Basic String Ports.
This has become a part of R7RS small. Gauche supports this as built-in. See
Section 6.22.5 [String ports], page 210.

Chapter 2: Concepts 6

SRFI-7, Feature-based program configuration language
Supported as an autoloaded macro. See Section 11.4 [Feature-based program con-
figuration language], page 517.

SRFI-8, receive: Binding to multiple values.
Syntax receive is built-in. See Section 4.6 [Binding constructs], page 50.

SRFI-9, Defining record types.
Supported by the module gauche.record. See Section 9.25 [Record types],
page 404.

SRFI-10, Sharp-comma external form.
Built-in. See Section 6.22.7.3 [Read-time constructor], page 215.

SRFI-11, Syntax for receiving multiple values.
This has become a part of R7RS small. Gauche supports it as built-in. See
Section 4.6 [Binding constructs], page 50.

SRFI-13, String library
Supported by the module srfi-13. See Section 11.5 [String library], page 518.
(Some of SRFI-13 procedures are built-in).

SRFI-14, Character-set library
This has become a part of R7RS large. Character-set object and a few procedures
are built-in. See Section 6.11 [Character set], page 137. Complete set of SRFI-14
is supported by the module scheme.charset. See Section 10.3.5 [R7RS character
sets], page 501.

SRFI-16, Syntax for procedures of variable arity (case-lambda)
This has become a part of R7RS small. Built-in. See Section 4.3 [Making Proce-
dures], page 40.

SRFI-17, Generalized set!
Built-in. See Section 4.4 [Assignments], page 45.

SRFI-18, Multithreading support
Some SRFI-18 features are built-in, and the rest is in gauche.threads module. See
Section 9.32 [Threads], page 428.

SRFI-19, Time Data Types and Procedures.
Time data type is Gauche built-in (see Section 6.25.9 [Time], page 254). Complete
set of SRFI-19 is supported by the module srfi-19. See Section 11.7 [Time data
types and procedures], page 527.

SRFI-22, Running Scheme scripts on Unix
Supported. See Section 3.3 [Writing Scheme scripts], page 24.

SRFI-23, Error reporting mechanism.
This has become a part of R7RS small. Built-in. See Section 6.20.2 [Signaling
exceptions], page 193.

SRFI-25, Multi-dimensional array primitives.
Supported by the module gauche.array, which defines superset of SRFI-25. See
Section 9.1 [Arrays], page 301.

SRFI-26, Notation for specializing parameters without currying.
As an autoloaded macro. See Section 4.3 [Making Procedures], page 40.

SRFI-27, Sources of Random Bits.
Supported by the module srfi-27. See Section 11.8 [Sources of random bits],
page 532.

Chapter 2: Concepts 7

SRFI-28, Basic format strings.
Gauche’s built-in format procedure is a superset of SRFI-28 format. See
Section 6.22.8 [Output], page 217.

SRFI-29, Localization
Supported by the module srfi-29. See Section 11.9 [Localization], page 533.

SRFI-30, Nested multi-line comments.
This has become a part of R7RS small. Supported by the native reader. See
Section 4.1 [Lexical structure], page 36.

SRFI-31, A special form rec for recursive evaluation
Defined as an autoloaded macro. See Section 4.6 [Binding constructs], page 50.

SRFI-34, Exception Handling for Programs
This has become a part of R7RS small. Built-in. See Section 6.20 [Exceptions],
page 190. (However, Gauche implements srfi-18’s semantics of raise literally, which
differs slightly from srfi-34’s. This may be changed in future.)

SRFI-35, Conditions
Built-in. See Section 6.20.4 [Conditions], page 198.

SRFI-36, I/O Conditions
Partly supported. See Section 6.20.4 [Conditions], page 198.

SRFI-37, args-fold: a program argument processor
Supported by the module srfi-37. See Section 11.10 [A program argument proces-
sor], page 535.

SRFI-38, External Representation for Data With Shared Structure
Built-in. See Section 6.22.7.1 [Reading data], page 212, and Section 6.22.8 [Output],
page 217.

SRFI-39, Parameter objects
This has become a part of R7RS small. Supported by the module
gauche.parameter. See Section 9.21 [Parameters], page 383.

SRFI-40, A Library of Streams
Supported by the module util.stream. See Section 12.69 [Stream library],
page 746.

SRFI-42, Eager comprehensions
Supported by the module srfi-42. See Section 11.11 [Eager comprehensions],
page 537.

SRFI-43, Vector library
Supported by the module srfi-43. See Section 11.12 [Vector library (Legacy)],
page 542. Note that this srfi is superseded by R7RS scheme.vector library (for-
merly known as srfi-133). See Section 10.3.2 [R7RS vectors], page 486.

SRFI-45, Primitives for Expressing Iterative Lazy Algorithms
Built-in. See Section 6.19 [Lazy evaluation], page 184.

SRFI-46, Basic Syntax-rules Extensions
This has become a part of R7RS small. Built-in. See Section 5.2 [Hygienic macros],
page 79.

SRFI-55, require-extension
Supported as an autoloaded macro. See Section 11.13 [Requiring extensions],
page 543.

Chapter 2: Concepts 8

SRFI-60, Integers as bits
Most procedures are built-in: See Section 11.32 [Bitwise operations], page 572.
The complete support is in srfi-60 module: See Section 11.14 [Integers as bits],
page 543.

SRFI-61, A more general cond clause
Supported natively. See Section 4.5 [Conditionals], page 47.

SRFI-62, S-expression comments
This has become a part of R7RS small. Supported by the native reader. See
Section 4.1 [Lexical structure], page 36.

SRFI-64, A Scheme API for test suites
Supported by the module srfi-64.

SRFI-66, Octet vectors
Supported by the module srfi-66 (see Section 11.15 [Octet vectors], page 545).
This is mostly a subset of gauche.uvector, but has one slight difference.

SRFI-69, Basic hash tables
Supported by the module srfi-69 (see Section 11.16 [Basic hash tables], page 545).
Note that this srfi is superseded by R7RS scheme.hash-table library (formerly
known as srfi-125). See Section 10.3.6 [R7RS hash tables], page 505.

SRFI-74, Octet-addressed binary blocks
Supported by the module srfi-74 (see Section 11.17 [Octet-addressed binary
blocks], page 547).

SRFI-78, Lightweight testing
Supported by the module srfi-78. Since Gauche already has its own test framework
(see Section 9.31 [Unit testing], page 423), this is mainly for third-party modules
that adopt srfi-78 for testing.

SRFI-87, => in case clauses
This has become a part of R7RS small. Supported natively. See Section 4.5 [Con-
ditionals], page 47.

SRFI-95, Sorting and merging
Supported natively. See Section 6.24 [Sorting and merging], page 230.

SRFI-96, SLIB Prerequisites
This srfi is not exactly a library, but rather a description of features the platform
should provide to support SLIB. In order to load this module, SLIB must be already
installed. See Section 12.44 [SLIB], page 688, for the details.

SRFI-98, An interface to access environment variables
Supported by the module srfi-98. See Section 11.18 [Accessing environment vari-
ables], page 549.

SRFI-99, ERR5RS Records
Supported by the module gauche.record. See Section 9.25 [Record types],
page 404.

SRFI-106, Basic socket interface
Supported by the module srfi-106. See Section 11.19 [Basic socket interface],
page 550.

SRFI-111, Boxes
This has become a part of R7RS large. Supported by the module scheme.box. See
Section 10.3.10 [R7RS boxes], page 513.

Chapter 2: Concepts 9

SRFI-112, Environment inquiry
Supported by the module srfi-112. See Section 11.21 [Portable runtime environ-
ment inquiry], page 552.

SRFI-113, Sets and Bags
This has become a part of R7RS large. Supported by the module scheme.set. See
Section 10.3.4 [R7RS sets], page 494.

SRFI-114, Comparators
Some of the features are built-in (see Section 6.2.4 [Basic comparators], page 95).
Full srfi spec is supported by the module srfi-114 (see Section 11.23 [Comparators],
page 553).

SRFI-117, Queues based on lists.
This has become a part of R7RS large. Supported by the module
scheme.list-queue, which is implemented on top of data.queue. (see
Section 10.3.11 [R7RS list queues], page 513)

SRFI-118, Simple adjustable-size strings
Supported by the module srfi-118. (see Section 11.25 [Simple adjustable-size
strings], page 558)

SRFI-121, Generators
This has become a part of R7RS large. Gauche’s gauche.generator is superset of
srfi-121 (see Section 9.10 [Generators], page 344).

SRFI-125, Intermediate hash tables
This has become a part of R7RS large. Supported by scheme.hash-table (see
Section 10.3.6 [R7RS hash tables], page 505). Note that Gauche’s native interface
provides the same functionalities, but under slightly different names for the back-
ward compatibility. See Section 6.15 [Hashtables], page 163.

SRFI-127, Lazy sequences
This has become a part of R7RS large. Supported by scheme.lseq (see
Section 10.3.9 [R7RS lazy sequences], page 511).

SRFI-128, Comparators (reduced)
This has become a part of R7RS large. Built-in. See Section 6.2.4 [Basic compara-
tors], page 95, for the details.

SRFI-129, Titlecase procedures
The procedures char-title-case? and char-titlecase are built-in, and
string-titlecase is in gauche.unicode. For the compatibility, you can (use

srfi-129) or (import (srfi 129)) to get these three procedures.

SRFI-131, ERR5RS Record Syntax (reduced)
This srfi is a pure subset of srfi-99, and gauche.record’s define-record-type

covers it. See Section 9.25 [Record types], page 404.

SRFI-132, Sort libraries
This has become a part of R7RS large. Supported by the module scheme.sort. See
Section 10.3.3 [R7RS sort], page 491.

SRFI-133, Vector library (R7RS-compatible)
This has become a part of R7RS large. Supported by the module scheme.vector.
See Section 10.3.2 [R7RS vectors], page 486.

SRFI-134, Immutable Deques
This has become a part of R7RS large. The module data.ideque is compatible to
srfi-134. See Section 12.9 [Immutable deques], page 596.

Chapter 2: Concepts 10

SRFI-141, Integer division
Supported by the module srfi-141. See Section 11.29 [Integer division], page 559.

SRFI-143, Finxums
Supported by the module srfi-143. See Section 11.30 [Fixnums], page 560.

SRFI-145, Assumptions
Built-in. See Section 4.5 [Conditionals], page 47.

SRFI-146, Mappings
Supported by the module srfi-146. See Section 11.31 [Mappings and hashmaps],
page 563.

SRFI-149, Basic syntax-rules template extensions
The built-in syntax-rules support srfi-149.

SRFI-151, Bitwise operations
Supported by the module srfi-151 (see Section 11.32 [Bitwise operations],
page 572). Note that many equivalent procedures are provided built-in (see
Section 6.3.6 [Basic bitwise operations], page 112).

SRFI-152, String library (reduced)
Supported by the module srfi-152 (see Section 11.33 [String library (reduced)],
page 576).

SRFI-158, Generators and accumulators
Supported by the module srfi-158 (see Section 11.34 [Generators and accumu-
lators], page 578). Note that most of generator procedures are supported by
gauche.generator (see Section 9.10 [Generators], page 344).

2.2 Multibyte strings

Traditionally, a string is considered as a simple array of bytes. Programmers tend to imagine
a string as a simple array of characters (though a character may occupy more than one byte).
It’s not the case in Gauche.

Gauche supports multibyte string natively, which means characters are represented by vari-
able number of bytes in a string. Gauche retains semantic compatibility of Scheme string, so
such details can be hidden, but it’ll be helpful if you know a few points.

A string object keeps a type tag and a pointer to the storage of the string body. The storage of
the body is managed in a sort of “copy-on-write” way—if you take substring, e.g. using directly
by substring or using regular expression matcher, or even if you copy a string by copy-string,
the underlying storage is shared (the “anchor” of the string is different, so the copied string is
not eq? to the original string). The actual string is copied only if you destructively modify it.

Consequently the algorithm like pre-allocating a string by make-string and filling it with
string-set! becomes extremely inefficient in Gauche. Don’t do it. (It doesn’t work with
mulitbyte strings anyway). Sequential access of string is much more efficient using string ports
(see Section 6.22.5 [String ports], page 210).

String search primitives such as string-scan (see Section 6.12.7 [String utilities], page 145)
and regular expression matcher (see Section 6.13 [Regular expressions], page 149) can return a
matched string directly, without using index access at all.

You can choose internal encoding scheme at the time of compiling Gauche. At runtime, a
procedure gauche-character-encoding can be used to query the internal encoding. At compile
time, you can use a feature identifier to check the internal encoding. (see Section 3.5 [Platform-
dependent features], page 27.) Currently, the following internal encodings are supported.

utf-8 UTF-8 encoding of Unicode. This is the default. The feature identifier
gauche.ces.utf8 indicates Gauche is compiled with this internal encoding.

Chapter 2: Concepts 11

euc-jp EUC-JP encoding of ASCII, JIS X 0201 kana, JIS X 0212 and JIS X 0213:2000
Japanese character set. The feature identifier gauche.ces.eucjp indicates Gauche
is compiled with this internal encoding.

sjis Shift-JIS encoding of JIS X 0201 kana and JIS X 0213:2000 Japanese character set.
For source-code compatibility, the character code between 0 and 0x7f is mapped to
ASCII. The feature identifier gauche.ces.sjis indicates Gauche is compiled with
this internal encoding.

none 8-bit fixed-length character encoding, with the code between 0 and 0x7f matches
ASCII. It’s up to the application to interpret the string with certain character en-
codings. The feature identifier gauche.ces.none indicates Gauche is compiled with
this internal encoding.

Conversions from other encoding scheme is provided as a special port. See Section 9.4
[Character code conversion], page 318, for details.

The way to specify the encoding of source programs will be explained in the next section.

2.3 Multibyte scripts

You can use characters other than us-ascii not only in literal strings and characters, but in
comments, symbol names, literal regular expressions, and so on.

By default, Gauche assumes a Scheme program is written in its internal character encoding.
It is fine as far as you’re writing scripts to use your own environment, but it becomes a problem
if somebody else tries to use your script and finds out you’re using different character encoding
than his/hers.

So, if Gauche finds a comment something like the following within the first two lines of the
program source, it assumes the rest of the source code is written in <encoding-name>, and does
the appropriate character encoding conversion to read the source code:

;; coding: <encoding-name>

More precisely, a comment in either first or second line that matches a regular expression
#/coding[:=]\s*([\w.-]+)/ is recognized, and the first submatch is taken as an encoding
name. If there are multiple matches, only the first one is effective. The first two lines must not
contain characters other than us-ascii in order for this mechanism to work.

The following example tells Gauche that the script is written in EUC-JP encoding. Note
that the string "-*-" around the coding would be recognized by Emacs to select the buffer’s
encoding appropriately.

#!/usr/bin/gosh

;; -*- coding: euc-jp -*-

... script written in euc-jp ...

Internally, the handling of this magic comment is done by a special type of port. See
Section 6.22.6 [Coding-aware ports], page 212, for the details. See also Section 6.23.1 [Loading
Scheme file], page 225, for how to disable this feature.

2.4 Case-sensitivity

Historically, most Lisp-family languages are case-insensitive for symbols. Scheme departed from
this tradition since R6RS, and the symbols are read in case-sensitive way. (Note that symbols
have been case-sensitive internally even in R5RS Scheme; case-insensitivity is about readers.)

Gauche reads and writes symbols in case-sensitive manner by default, too. However, to
support legacy code, you can set the reader to case-insensitive mode, in the following ways:

Chapter 2: Concepts 12

Use #!fold-case reader directive
When Gauche sees a token #!fold-case during reading a program, the reader
switches to case-insensitive mode. A token #!no-fold-case has an opposite effect—
to make the reader case-sensitive. These tokens affect the port from which they are
read, and are in effect until EOF or another instance of these tokens are read. See
Section 4.1 [Lexical structure], page 36, for more details on #! syntax. This is the
way defined in R6RS and R7RS.

Use -fcase-fold command-line argument
Alternatively, you can give a command-line argument -fcase-fold to the gosh

command (see Section 3.1 [Invoking Gosh], page 15). In this mode, the reader
folds uppercase characters in symbols to lowercase ones. If a symbol name contains
uppercase characters, it is written out using |-escape (see Section 6.7 [Symbols],
page 127).

2.5 Integrated Object System

Gauche has a STklos-style object system, similar to CLOS. If you have used some kind of object
oriented (OO) languages, you’ll find it easy to understand the basic usage:

;; Defines a class point, that has x and y coordinate
(define-class point ()

((x :init-value 0)

(y :init-value 0))

)

(define-method move ((p point) dx dy)

(inc! (slot-ref p ’x) dx)

(inc! (slot-ref p ’y) dy))

(define-method write-object ((p point) port)

(format port "[point ~a ~a]"

(slot-ref p ’x)

(slot-ref p ’y)))

However, if you are familiar with mainstream OO languages but new to CLOS-style object
system, Gauche’s object system may look strange when you look deeper into it. Here I describe
several characteristics of Gauche object system quickly. See Chapter 7 [Object system], page 265,
for details.

Everything is an object (if you care)
You have seen this tagline for the other languages. And yes, in Gauche, everything is
an object in the sense that you can query its class, and get various meta information
of the object at run time. You can also define a new method on any class, including
built-in ones.

Note that, however, in CLOS-like paradigm it doesn’t really matter whether every-
thing is an object or not, because of the following characteristics:

Method is dispatched by all of its arguments.
Unlike other object-oriented languages such as C++, Objective-C, Python, Ruby,
etc., in which a method always belong to a single class, a Gauche method doesn’t
belong to a specific class.

For example, suppose you define a numeric vector class <num-vector> and a numeric
matrix class <num-matrix>. You can define a method product with all possible
combinations of those type of arguments:

Chapter 2: Concepts 13

(product <num-vector> <num-matrix>)

(product <num-matrix> <num-vector>)

(product <num-vector> <num-vector>)

(product <num-matrix> <num-matrix>)

(product <number> <num-vector>)

(product <number> <num-matrix>)

(product <number> <number>)

Each method belongs to neither <num-vector> class nor <num-matrix> class.

Since a method is not owned by a class, you can always define your own method on
the existing class (except a few cases that the system prohibits altering pre-defined
methods). The above example already shows it; you can make product method
work on the built-in class <number>. That is why I said it doesn’t make much sense
to discuss whether everything is object or not in CLOS-style object system.

To step into the details a bit, the methods are belong to a generic function, which
is responsible for dispatching appropriate methods.

Class is also an instance.
By default, a class is also an instance of class <class>, and a generic function is an
instance of class <generic>. You can subclass <class> to customize how a class is
initialized or how its slots are accessed. You can subclass <generic> to customize
how the applicable methods are selected, which order those methods are called, etc.
The mechanism is called metaobject protocol. Metaobject protocol allows you to
extend the language by the language itself.

To find examples, see the files lib/gauche/singleton.scm and
lib/gauche/mop/validator.scm included in the distribution. You can
also read lib/gauche/mop/object.scm, which actually defines how a class is
defined in Gauche. For more details about metaobject protocol, see [MOP],
page 762.

Class doesn’t create namespace
In the mainstream OO language, a class often creates its own namespace. This isn’t
the case in CLOS-style object system. In Gauche, a namespace is managed by the
module system which is orthogonal to the object system.

2.6 Module system

Gauche has a simple module system that allows modularlized development of large software.

A higher level interface is simple enough from the user’s point of view. It works like this:
When you want to use the features provided by module foo, you just need to say (use foo) in
your code. This form is a macro and interpreted at compile time. Usually it loads the files that
defines foo’s features, and imports the external APIs into the calling module.

The use mechanism is built on top of two independent lower mechanisms, namespace separa-
tion and file loading mechanism. Those two lower mechanisms can be used separately, although
it is much more convenient when used together.

The use mechanism is not transitive; that is, if a module B uses a module A, and a module
C uses the module B, C doesn’t see the bindings in A. It is because B and A is not in the
is-a relationship. Suppose the module A implements a low-level functionality and the module
B implements a high-level abstraction; if C is using B, what C wants to see is just a high-level
abstraction, and doesn’t concern how B implements such functionality. If C wants to access
low-level stuff, C has to use A explicitly.

There is another type of relationship, though. You might want to take an exiting module A,
and add some interface to it and provide the resulting module B as an extension of A. In such

Chapter 2: Concepts 14

a case, B is-a A, and it’d be natural that the module that uses B can also see A’s bindings. In
Gauche, it is called module inheritance and realized by extend form.

The following sections in this manual describes modules in details.

• Section 3.7 [Writing Gauche modules], page 31, explains the convention of writing modules.

• Section 4.13 [Modules], page 67, describes special forms and macros to define and to use
modules, along the built-in functions to introspect module internals.

2.7 Compilation

By default, Gauche reads toplevel Scheme forms one at a time, compile it immediately to interme-
diate form and execute it on the VM. As long as you use Gauche interactively, it looks like an in-
terpreter. (There’s an experimental ahead-of-time compiler as well. See HOWTO-precompile.txt
if you want to give a try.)

The fact that we have separate compilation/execution phase, even interleaved, may lead a
subtle surprise if you think Gauche as an interpreter. Here’s a few points to keep in mind:

load is done at run time.
load is a procedure in Gauche, therefore evaluated at run time. If the loaded
program defines a macro, which is available for the compiler after the toplevel form
containing load is evaluated. So, suppose foo.scm defines a macro foo, and you
use the macro like this:

;; in ‘‘foo.scm”
(define-syntax foo

(syntax-rules () ((_ arg) (quote arg))))

;; in your program
(begin (load "foo") (foo (1 2 3)))

⇒ error, bad procedure: ‘1’

(load "foo")

(foo (1 2 3)) ⇒ ’(1 2 3)

The (begin (load ...)) form fails, because the compiler doesn’t know foo is a
special form at the compilation time and compiles (1 2 3) as if it is a normal pro-
cedure call. The latter example works, however, since the execution of the toplevel
form (load "foo") is done before (foo (1 2 3)) is compiled.

To avoid this kind of subtleties, use require or use to load a program fragments.
Those are recognized by the compiler.

require is done at compile time
On the other hand, since require and use is recognized by the compiler, the spec-
ified file is loaded even if the form is in the conditional expression. If you really
need to load a file on certain condition, use load or do dispatch in macro (e.g.
cond-expand form (see Section 4.12 [Feature conditional], page 64).)

15

3 Programming in Gauche

3.1 Invoking Gosh

Gauche can be used either as an independent Scheme interpreter or as an embedded Scheme
library. The interpreter which comes with Gauche distribution is a program named gosh.

[Program]gosh [options] [scheme-↓le arg . . .]
Gauche’s interpreter. Without scheme-↓le, gosh works interactively, i.e. it reads a Scheme
expression from the standard input, evaluates it, and prints the result, and repeat that until
it reads EOF or is terminated.

If gosh is invoked without scheme-↓le, but the input is not a terminal, it enters read-eval-
print loop but not writes out a prompt while waiting input form. This is useful when you
pipe Scheme program into gosh. You can force this behavior or suppress this behavior by -b

and -i options.

If scheme-↓le is specified, gosh runs it as a Scheme program and exit. See Section 3.3 [Writing
Scheme scripts], page 24, for details.

Command-line options

The following command line options are recognized by gosh. The first command line argument
which doesn’t begin with ‘−’ is recognized as the script file. If you want to specify a file that
begins with a minus sign, use a dummy option ‘--’.

[Command Option]-I path
Prepends path to the load path list. You can specify this option more than once to add
multiple paths.

[Command Option]-A path
Appends path to the tail of the load path list. You can specify this option more than once
to add multiple paths.

[Command Option]-q
Makes gosh not to load the default initialization file.

[Command Option]-V
Prints the gosh version and exits.

[Command Option]-v version
If version is not the running gosh’s version, execute the specified version of gosh instead if
it is installed. This is useful when you want to invoke specific version of Gauche. Note that
version must be 0.9.6 or later.

[Command Option]-u module
Use module. Before starting execution of scheme-↓le or entering the read-eval-print loop,
the specified module is used, i.e. it is loaded and imported (See Section 4.13.3 [Defining and
selecting modules], page 69, for details of use). You can specify this option more than once
to use multiple modules.

[Command Option]-l ↓le
Load ↓le before starting execution of scheme-↓le or entering the read-eval-print loop. The
file is loaded in the same way as load (see Section 6.23.1 [Loading Scheme file], page 225).
You can specify this option more than once to load multiple files.

Chapter 3: Programming in Gauche 16

[Command Option]-L ↓le
Load ↓le like -l, but if ↓le does not exist, this silently ignores it instead of reporting an error.
This option can also be specified multiple times.

[Command Option]-e scheme-expression
Evaluate scheme-expression before starting execution of scheme-↓le or entering the read-eval-
print loop. Evaluation is done in the interaction-environment (see Section 6.21 [Eval and repl],
page 202). You can specify this option more than once to evaluate multiple expressions.

[Command Option]-E scheme-expression
Same as -e, except the scheme-expression is read as if it is surrounded by parenthesis. For
example:

% gosh -umath.const -E"print (sin (* pi/180 15))" -Eexit

0.25881904510252074

[Command Option]-b
Batch. Does not print prompts even if the input is a terminal.

[Command Option]-i
Interactive. Print prompts even if the input is not a terminal.

[Command Option]-m module
When a script file is given, this option makes the module named module in which the main

procedure is looked for, instead of the user module. See Section 3.3 [Writing Scheme scripts],
page 24, for the details of executing scripts.

If the named module doesn’t exist after loading the script, an error is signaled.

This is useful to write a Scheme module that can also be executed as a script.

[Command Option]-f compiler-option
This option controls compiler and runtime behavior. For now we have following options
available:

no-inline Prohibits the compiler from inlining procedures and constants. Equivalent to
no-inline-globals, no-inline-locals, no-inline-constants and no-inline-setters com-
bined.

no-inline-globals
Prohibits the compiler from inlining global procedures.

no-inline-locals
Prohibits the compiler from inlining local procedures.

no-inline-constants
Prohibits the compiler from inlining constants.

no-inline-setters
Prohibits the compiler from inlining setters.

no-post-inline-pass
Prohibits the compiler from running post-inline optimization pass.

no-lambda-lifting-pass
Prohibits the compiler from running lambda-lifting pass.

load-verbose
Reports whenever a file is loaded. Useful to check precisely which files are loaded
in what order.

Chapter 3: Programming in Gauche 17

include-verbose
Reports whenever a file is included. Useful to check precisely which files are
included in what order.

warn-legacy-syntax
Warns if the reader sees leagacy hex-escape syntax in string literals. See
Section 6.22.7.2 [Reader lexical mode], page 214.

no-source-info
Don’t keep source information for debugging. Consumes less memory.

case-fold Ignore case for symbols. See Section 2.4 [Case-sensitivity], page 11.

test Adds "../src" and "../lib" to the load path before loading initialization file.
This is useful when you want to test the compiled gosh interpreter inside source
tree, without installing it.

[Command Option]-p pro↓ler-option
Turn on the profiler. The following pro↓ler-option is recognized:

time Records and reports time spent on function calls and number of times each func-
tion is called.

load Records and reports time spent on loading each modules. Useful to tune start-up
time of the scripts. (Results are in elapsed time).

See Section 3.6.1 [Using profiler], page 29, for the details of the profiler.

[Command Option]-r standard-revision
Start gosh with an environment of the specified revision of Scheme standard. Currently only
7 is supported as standar-revision.

By default, gosh starts with user module, which inherits gauche module. That means you
can use whole Gauche core procedures by default without explicitly declaring it.

Proper R7RS code always begins with either define-library or R7RS-style import form,
and Gauche recognizes it and automatically switch to R7RS environments so that R7RS
scripts and libraries can be executed by Gauche without special options. However, users who
are learning R7RS Scheme may be confused when the initial environment doesn’t look like
R7RS.

By giving -r7 option, gosh starts with r7rs.user module that extends the r7rs module,
which defines two R7RS forms, import and define-library.

If you invoke gosh into an interactive REPL mode with -r7 option, all standard R7RS-small
libraries (except (scheme r5rs) are already imported for your convenience.

See Chapter 10 [Library modules - R7RS standard libraries], page 468, for the details on how
Gauche supports R7RS.

(Note: The -r7 option doesn’t change reader lexiacl mode (see Section 6.22.7.2 [Reader
lexical mode], page 214) to strict-r7. That’s because using strict-r7 mode by default
prevents many Gauche code from being loaded.)

[Command Option]--
When gosh sees this option, it stops processing the options and takes next command line
argument as a script file. It is useful in case if you have a script file that begins with a minus
sign, although it is not generally recommended.

The options -I, -A, -l, -u, -e and -E are processes in the order of appearance. For example,
adding a load path by -I affects the -l and -u option after it but not before it.

Chapter 3: Programming in Gauche 18

Environment variables

The following environment variables are recognized:

[Environment variable]GAUCHE_LOAD_PATH
You can specify additional load paths by this environment variable, delimiting the paths by
’:’. The paths are appended before the system default load paths.

See Section 6.23.1 [Loading Scheme file], page 225, for the details of how Gauche finds files
to load.

[Environment variable]GAUCHE_DYNLOAD_PATH
You can specify additional load paths for dynamically loaded objects by this environment
variable, delimiting the paths by ’:’. The paths are appended before the system default load
paths.

See Section 6.23.2 [Loading dynamic library], page 227, for the details of how Gauche finds
dynamically loadable objects.

[Environment variable]GAUCHE_AVAILABLE_PROCESSORS
You can get the number of system’s processors by sys-available-processors (see
Section 6.25.3 [Environment Inquiry], page 234); libraries/programs may use this info
to optimize number of parallel threads. But you might change that, for testing and
benchmarking—e.g. a program automatically uses 8 threads if there are 8 cores, but you
might want to run it with 1, 2, 4 threads as well to see the effect of parallelization. This
environment variable overrides the return value of sys-available-processors.

[Environment variable]GAUCHE_KEYWORD_DISJOINT
[Environment variable]GAUCHE_KEYWORD_IS_SYMBOL

These two environment variables affect whether keywords are treated as symbols or not. See
Section 6.8 [Keywords], page 129, for the details.

[Environment variable]TMP
[Environment variable]TMPDIR
[Environment variable]TEMP
[Environment variable]USERPROFILE

These may affect the return value of sys-tmpdir. Different environment variables may be
used on different platforms. See Section 6.25.4.3 [Pathnames], page 239, for the details.

[Environment variable]GAUCHE_SUPPRESS_WARNING
Suppress system warnings (WARNING: ...). Not generally recommended; use only if you
absolutely need to.

Windows-specific executable

On Windows-native platforms (mingw), two interpreter executables are installed. gosh.exe

is compiled as a Windows console application and works just like ordinary gosh; that is, it
primarily uses standard i/o for communication. Another executable, gosh-noconsole.exe, is
compiled as a Windows no-console (GUI) application. It is not attached to a console when it is
started. Its standard input is connected to the NUL device. Its standard output and standard
error output are special ports which open a new console when something is written to them for
the first time. (NB: This magic only works for output via Scheme ports; direct output from
low-level C libraries will be discarded.)

The main purpose of gosh-noconsole.exe is for Windows scripting. If a Scheme script were
associated to gosh.exe and invoked from Explorer, it would always open a new console window.
However, this console would be of little use, since it would dissapear once the script exits, and

Chapter 3: Programming in Gauche 19

the user wouldn’t be likely to have enough time to look at it. If you associate Scheme scripts to
gosh-noconsole.exe instead, you can avoid this annoying console from popping up.

If you’re using the official Windows installer, Scheme scripts (*.scm) have already associated
to gosh-noconsole.exe and you can invoke them by double-clicking on Explorer. Check out
some examples under C:\Program Files\Gauche\examples.

3.2 Interactive development

When gosh is invoked without any script files, it goes into interactive read-eval-print loop
(REPL).

To exit the interpreter, type EOF (usually Control-D in Unix terminals) or evaluate (exit).

In the interactive session, gosh loads gauche.interactive module (see Section 9.12 [Inter-
active session], page 356) for the convenience. The module also loads a file .gaucherc under
the user’s home directory if it exists. You may put settings there that would help interactive
debugging. (As of Gauche release 0.7.3, .gaucherc is no longer loaded when gosh is run in
script mode.)

Note that .gaucherc is always loaded in the user module, even if gosh is invoked with -r7

option. The file itself is a Gauche-specific feature, so you don’t need to consider portability in
it.

I recommend you to run gosh inside Emacs, for it has rich features useful to interact with
internal Scheme process. Put the following line to your .emacs file:

(setq scheme-program-name "gosh -i")

And you can run gosh by M-x run-scheme.

If you want to use multibyte characters in the interaction, make sure your terminal’s settings
is in sync with gosh’s internal character encodings.

3.2.1 Working in REPL

When you enter REPL, Gauche prompts you to enter a Scheme expression:

gosh>

After you complete a Scheme expression and type ENTER, the result of evaluation is printed.

gosh> (+ 1 2)

3

gosh>

The REPL session binds the last three results of evaluation in the global variables *1, *2
and *3. You can use the previous results via those history variables in subsequent expressions.

gosh> *1

3

gosh> (+ *2 3)

6

If the Scheme expression yields multiple values (see Section 6.18.8 [Multiple values], page 183),
they are printed one by one.

gosh> (min&max 1 -1 8 3)

-1

8

gosh>

The history variable *1, *2 and *3 only binds the first value. A list of all values are bound
to *1+, *2+ and *3+.

gosh> *1

Chapter 3: Programming in Gauche 20

-1

gosh> *2+

(-1 8)

(Note that, when you evaluate *1 in the above example, the history is shifted—so you need
to use *2+ to refer to the result of (min&max 1 -1 8 3).)

The *history procedure shows the value of history variables:

gosh> (*history)

*1: (-1 8)

*2: -1

*3: -1

gosh>

As a special case, if an evaluation yields zero values, history isn’t updated. The *history

procedure returns no values, so merely looking at the history won’t change the history itself.

gosh> (*history)

*1: (-1 8)

*2: -1

*3: -1

gosh> (values)

gosh> (*history)

*1: (-1 8)

*2: -1

*3: -1

Finally, a global variable *e is bound to the last uncaught error condition object.

gosh> (filter odd? ’(1 2 x 4 5))

*** ERROR: integer required, but got x

Stack Trace:

0 (eval expr env)

At line 173 of "/usr/share/gauche-0.9/0.9.3.3/lib/gauche/interactive.scm"

gosh> *e

#<error "integer required, but got x">

(The error stack trace may differ depending on your installation.)

In REPL prompt, you can also enter special top-level commands for common tasks. Top-
level commands are not Scheme expressions, not even S-expressions. They work like traditional
line-oriented shell commands instead.

Top-level commands are prefixed by comma to be distinguished from ordinary Scheme ex-
pressions. To see what commands are available, just type ,help and return.

gosh> ,help

You’re in REPL (read-eval-print-loop) of Gauche shell.

Type a Scheme expression to evaluate.

A word preceeded with comma has special meaning. Type ,help <cmd>

to see the detailed help for <cmd>.

Commands can be abbreviated as far as it is not ambiguous.

,apropos|a Show the names of global bindings that match the regexp.

,cd Change the current directory.

,describe|d Describe the object.

,help|h Show the help message of the command.

,history Show REPL history.

Chapter 3: Programming in Gauche 21

,info|doc Show info document for an entry of NAME, or search entries by REGEXP.

,load|l Load the specified file.

,print-all|pa

Print previous result (*1) without abbreviation.

,print-mode|pm

View/set print-mode of REPL.

,pwd Print working directory.

,reload|r Reload the specified module, using gauche.reload.

,sh Run command via shell.

,source Show source code of the procedure if it’s available.

,use|u Use the specified module. Same as (use module option ...).

To see the help of each individual commands, give the command name (without comma) to
the help command:

gosh> ,help d

Usage: d|describe [object]

Describe the object.

Without arguments, describe the last REPL result.

The ,d (or ,describe) top-level command describes the given Scheme object or the last
result if no object is given. Let’s try some:

gosh> (sys-stat "/home")

#<<sys-stat> 0x2d6adc0>

gosh> ,d

#<<sys-stat> 0x2d6adc0> is an instance of class <sys-stat>

slots:

type : directory

perm : 493

mode : 16877

ino : 2

dev : 2081

rdev : 0

nlink : 9

uid : 0

gid : 0

size : 208

atime : 1459468837

mtime : 1401239524

ctime : 1401239524

In the above example, first we evaluated (sys-stat "/home"), which returns <sys-stat>

object. The subsequent ,d top-level command describes the returned <sys-stat> object.

The description depends on the type of objects. Some types of objects shows extra informa-
tion. If you describe an exact integer, it shows alternative interpretations of the number:

gosh> ,d 1401239524

1401239524 is an instance of class <integer>

(#x538537e4, ~ 1.3Gi, 2014-05-28T01:12:04Z as unix-time)

gosh> ,d 48

48 is an instance of class <integer>

(#x30, #\0 as char, 1970-01-01T00:00:48Z as unix-time)

If you describe a symbol, its known bindings is shown.

gosh> ,d ’filter

filter is an instance of class <symbol>

Chapter 3: Programming in Gauche 22

Known bindings for variable filter:

In module ‘gauche’:

#<closure (filter pred lis)>

In module ‘gauche.collection’:

#<generic filter (2)>

If you describe a procedure, and its source code location is known, that is also shown (see
the Defined at... line):

gosh> ,d string-interpolate

#<closure (string-interpolate str :optional (legacy? #f))> is an

instance of class <procedure>

Defined at "../lib/gauche/interpolate.scm":64

slots:

required : 1

optional : #t

optcount : 1

locked : #f

currying : #f

constant : #f

info : (string-interpolate str :optional (legacy? #f))

setter : #f

Let’s see a couple of other top-level commands. The ,info command shows the manual
entry of the given procedure, variable, syntax, module or a class. (The text is searched from the
installed info document of Gauche. If you get an error, check if the info document is properly
installed.)

gosh> ,info append

-- Function: append list ...

[R7RS] Returns a list consisting of the elements of the first LIST

followed by the elements of the other lists. The resulting list is

always newly allocated, except that it shares structure with the

last list argument. The last argument may actually be any object;

an improper list results if the last argument is not a proper list.

gosh> ,info srfi-19

-- Module: srfi-19

This SRFI defines various representations of time and date, and

conversion methods among them.

On Gauche, time object is supported natively by ’<time>’ class

(*note Time::). Date object is supported by ’<date>’ class

described below.

gosh> ,info <list>

-- Builtin Class: <list>

An abstract class represents lists. A parent class of ’<null>’ and

’<pair>’. Inherits ’<sequence>’.

Note that a circular list is also an instance of the ’<list>’

class, while ’list?’ returns false on the circular lists and dotted

lists.

(use srfi-1)

(list? (circular-list 1 2)) => #f

Chapter 3: Programming in Gauche 23

(is-a? (circular-list 1 2) <list>) => #t

You can also give a regexp pattern to ,info command (see Section 6.13 [Regular expressions],
page 149). It shows the entries in the document that match the pattern.

gosh> ,info #/^string-.*\?/

string-ci<=? Full string case conversion:44

String Comparison:19

string-ci<? Full string case conversion:43

String Comparison:18

string-ci=? Full string case conversion:42

String Comparison:17

string-ci>=? Full string case conversion:46

String Comparison:21

string-ci>? Full string case conversion:45

String Comparison:20

string-immutable? String Predicates:9

string-incomplete? String Predicates:12

string-null? SRFI-13 String predicates:6

string-prefix-ci? SRFI-13 String Prefixes & Suffixes:28

string-prefix? SRFI-13 String Prefixes & Suffixes:26

string-suffix-ci? SRFI-13 String Prefixes & Suffixes:29

string-suffix? SRFI-13 String Prefixes & Suffixes:27

The ,a command (or ,apropos) shows the global identifiers matches the given name or
regexp:

gosh> ,a filter

filter (gauche)

filter! (gauche)

filter$ (gauche)

filter-map (gauche)

Note: The apropos command looks for symbols from the current process—that is, it only
shows names that have been loaded and imported. But it also mean it can show any name as
far as it exists in the current process, regardless of whether it’s a documented API or an internal
entry.

On the other hand, the info command searches info document, regardless of the named
entity has loaded into the current process or not. It doesn’t show undocumented APIs.

You can think that apropos is an introspection tool, while info is a document browsing tool.

When the result of evaluation is a huge nested structure, it may take too long to display the
result. Gauche actually set a limit of length and depth in displaying structures, so you might
occasionally see the very long or deep list is trucated, with . . . to show there are more items.
(Try evaluating (make-list 100) on REPL).

You can type ,pa (or ,print-all) toplevel REPL command to fully redisplay the previous
result without omission.

For deeply nested structures, you may want it to be pretty printed, that is, with newlines and
indentations to show the tree structure. Type ,pm pretty #t (or ,print-mode pretty #t) to
turn on pretty printing.

gosh> ,pm pretty #t length 5

Current print mode:

length : 5

level : 10

pretty : #t

Chapter 3: Programming in Gauche 24

width : #f

base : 10

radix : #f

gosh> (call-with-input-file "Info.plist" (cut ssax:xml->sxml <> ’()))

(*TOP*

(*PI* xml "version=\"1.0\" encoding=\"UTF-8\"")

(plist

(|@|

(version "1.0"))

(dict

(key "CFBundleDevelopmentRegion")

(string "English")

(key "CFBundleExecutable")

(string "Gauche")

....)))

Type ,pm default to make print mode back to default. For more details, type ,help pm.

Note: If you invoke gosh with -q option, which tells gosh not to load the initialization files,
you still get a REPL prompt but no fancy features such as history variables are available. Those
convenience features are implemented in gauche.interactive module, which isn’t loaded with
-q option.

3.3 Writing Scheme scripts

When a Scheme program file is given to gosh, it makes the user module as the current module,
binds a global variable *argv* to the list of the remaining command-line arguments, and then
loads the Scheme program. If the first line of scheme-↓le begins with two character sequence
“#!”, the entire line is ignored by gosh. This is useful to write a Scheme program that works
as an executable script in unix-like systems.

Typical Gauche script has the first line like these

#!/usr/local/bin/gosh

or,
#!/usr/bin/env gosh

or,
#!/bin/sh

:; exec gosh -- $0 "$@"

The second and third form uses a “shell trampoline” technique so that the script works as
far as gosh is in the PATH. The third form is useful when you want to pass extra arguments to
gosh, for typically #!-magic of executable scripts has limitations for the number of arguments
to pass the interpreter.

After the file is successfully loaded, gosh calls a procedure named ‘main’ if it is defined in
the user module. Main receives a single argument, a list of command line arguments. Its first
element is the script name itself.

When main returns, and its value is an integer, gosh uses it for exit code of the program.
Otherwise, gosh exits with exit code 70 (EX_SOFTWARE). This behavior is compatible with the
SRFI-22.

If the main procedure is not defined, gosh exits after loading the script file.

Although you can still write the program main body as toplevel expressions, like shell scripts
or Perl scripts, it is much convenient to use this ‘main’ convention, for you can load the script
file interactively to debug.

Chapter 3: Programming in Gauche 25

Using -m command-line option, you can make gosh call main procedure defined in a module
other than the user module. It is sometimes handy to write a Scheme module that can also be
executed as a script.

For example, you write a Scheme module foo and within it, you define the main procedure.
You don’t need to export it. If the file is loaded as a module, the main procedure doesn’t do
anything. But if you specify -m foo option and give the file as a Scheme script to gosh, then
the main procedure is invoked after loading the script. You can code tests or small example
application in such an alternate main procedure.

Note on R7RS Scripts: If the script is written in R7RS Scheme (which can be distinguished
by the first import declaration, see Section 10.1.2 [Three forms of import], page 470), it is read
into r7rs.user module and its main isn’t called. You can give -mr7rs.main command-line
argument to call the main function in R7RS script. Alternatively, as specified in SRFI-22, if the
script interpreter’s basename is scheme-r7rs, we assume the script is R7RS SRFI-22 script and
calls main in r7rs.user module rather than user module. We don’t install such an alias, but
you can manually make symbolic link or just copy gosh binary as scheme-r7rs.

Although the argument of the main procedure is the standard way to receive the command-
line arguments, there are a couple of other ways to access to the info. See Section 6.25.2
[Command-line arguments], page 233, for the details.

Now I show several simple examples below. First, this script works like cat(1), without any
command-line option processing and error handling.

#!/usr/bin/env gosh

(define (main args) ;entry point
(if (null? (cdr args))

(copy-port (current-input-port) (current-output-port))

(for-each (lambda (file)

(call-with-input-file file

(lambda (in)

(copy-port in (current-output-port)))))

(cdr args)))

0)

The following script is a simple grep command.

#!/usr/bin/env gosh

(define (usage program-name)

(format (current-error-port)

"Usage: ~a regexp file ...\n" program-name)

(exit 2))

(define (grep rx port)

(with-input-from-port port

(lambda ()

(port-for-each

(lambda (line)

(when (rxmatch rx line)

(format #t "~a:~a: ~a\n"

(port-name port)

(- (port-current-line port) 1)

line)))

read-line))))

Chapter 3: Programming in Gauche 26

(define (main args)

(if (null? (cdr args))

(usage (car args))

(let ((rx (string->regexp (cadr args))))

(if (null? (cddr args))

(grep rx (current-input-port))

(for-each (lambda (f)

(call-with-input-file f

(lambda (p) (grep rx p))))

(cddr args)))))

0)

See also Section 9.22 [Parsing command-line options], page 385, for a convenient way to parse
command-line options.

3.4 Debugging

Gauche doesn’t have much support for debugging yet. The idea of good debugging interfaces
are welcome.

For now, the author uses the classic ’debug print stub’ technique when necessary. Gauche’s
reader supports special syntaxes beginning with #?, to print the intermediate value.

The syntax #?=expr shows expr itself before evaluating it, and prints its result(s) after
evaluation.

gosh> #?=(+ 2 3)

#?="(stdin)":1:(+ 2 3)

#?- 5

5

gosh> #?=(begin (print "foo") (values ’a ’b ’c))

#?="(stdin)":2:(begin (print "foo") (values ’a ’b ’c))

foo

#?- a

#?+ b

#?+ c

a

b

c

Note: If the debug stub is evaluated in a thread other than the primordial thread (see
Section 9.32 [Threads], page 428), the output includes a number to distinguish which thread it
is generated. In the following example, #<thread ...> and the prompt is the output of REPL
in the primordial thread, but followig #?=[1]... and #?-[1]... are the debug output from
the thread created by make-thread. The number is for debugging only— they differ for each
thread, but other than that there’s no meaning.

gosh> (use gauche.threads)

gosh> (thread-start! (make-thread (^[] #?=(+ 2 3))))

#<thread #f (1) runnable 0xf51400>

gosh> #?=[1]"(standard input)":1:(+ 2 3)

#?-[1] 5

The syntax #?,(proc arg ...) is specifically for procedure call; it prints the value of argu-
ments right before calling proc, and prints the result(s) of call afterwards.

gosh> (define (fact n)

Chapter 3: Programming in Gauche 27

(if (zero? n)

1

(* n #?,(fact (- n 1)))))

fact

#?,"(standard input)":4:calling ‘fact’ with args:

#?,> 4

#?,"(standard input)":4:calling ‘fact’ with args:

#?,> 3

#?,"(standard input)":4:calling ‘fact’ with args:

#?,> 2

#?,"(standard input)":4:calling ‘fact’ with args:

#?,> 1

#?,"(standard input)":4:calling ‘fact’ with args:

#?,> 0

#?- 1

#?- 1

#?- 2

#?- 6

#?- 24

120

Internally, the syntax #?=x and #?,x are read as (debug-print x) and (debuf-funcall x),
respectively, and the macros debug-print and debug-funcall handles the actual printing. See
Section 6.26.1 [Debugging aid], page 262, for more details.

The reasons of special syntax are: (1) It’s easy to insert the debug stub, for you don’t need
to enclose the target expression by extra parenthesis, and (2) It’s easy to find and remove those
stabs within the editor.

3.5 Using platform-dependent features

Gauche tries to provide low-level APIs close to what the underlying system provides, but some-
times they vary among systems. For example, POSIX does not require symlink, so some
systems may lack sys-symlink (see Section 6.25.4.2 [Directory manipulation], page 238). Quite
a few unix-specific system functions are not available on Windows platform. To allow writing a
portable program across those platforms, Gauche uses cond-expand (see Section 4.12 [Feature
conditional], page 64) extensively. A set of extended feature-identifiers is provided to check
availability of specific features. For example, on systems that has symlink, a feature identi-
fier gauche.sys.symlink is defined. So you can write a code that can switch based on the
availability of sys-symlink as follows:

(cond-expand

(gauche.sys.symlink

... code that uses sys-symlink ...)

(else

... alternative code ...)

)

If you’re familiar with system programming in C, you can think it equivalent to the following
C idiom:

#if defined(HAVE_SYMLINK)

... code that uses symlink ...

#else

... alternative code ...

#endif

Chapter 3: Programming in Gauche 28

There are quite a few such feature identifiers; each identifier is explained in the maunal entry
of the procedures that depend on the feature. Here we list a few important ones:

gauche This feature identifier is always defined. It is useful when you write Scheme code
portable across multiple implementations.

gauche.os.windows

Defined on Windows native platform. Note that cygwin does not define this feature
identifier (but see below).

gauche.os.cygwin

Defined on Cygwin.

gauche.sys.threads

Defined if Gauche is compiled with thread support. See Section 9.32 [Threads],
page 428.

gauche.sys.pthreads

gauche.sys.wthreads

Defined to indicate the underlying thread implementation when Gauche has thread
support. See Section 9.32 [Threads], page 428.

gauche.net.ipv6

Defined if Gauche is compiled with IPv6 support.

gauche.ces.utf8

gauche.ces.eucjp

gauche.ces.sjis

gauche.ces.none

Either one of these feature identifiers is defined, according to the compile-time option
of Gauche’s internal character encoding. See Section 2.2 [Multibyte strings], page 10,
for the details of the internal character encoding.

Because cond-expand is a macro, the body of clauses are expanded into toplevel if
cond-expand itself is in toplevel. That means you can switch toplevel definitions:

(cond-expand

(gauche.os.windows

(define (get-current-user)

... get current username ...))

(else

(define (get-current-user)

(sys-uid->user-name (sys-getuid)))))

Or even conditionally "use" the modules:

(cond-expand

(gauche.os.windows

(use "my-windows-compatibility-module"))

(else))

The traditional technique of testing a toplevel binding (using global-variable-bound?, see
Section 4.13.6 [Module introspection], page 72) doesn’t work well in this case, since the use form
takes effect at compile time. It is strongly recommended to use cond-expand whenever possible.

Currently the set of feature identifiers are fixed at the build time of Gauche, so it’s less flexible
than C preprocessor conditionals. We have a plan to extend this feature to enable adding new
feature identifiers; but such feature can complicate semantics when compilation and execution
is interleaved, so we’re carefully assessing the effects now.

A couple of notes:

Chapter 3: Programming in Gauche 29

Feature identifiers are not variables. They can only be used within the feature-requirement
part of cond-expand (see Section 4.12 [Feature conditional], page 64, for the complete definition
of feature requirements).

By the definition of srfi-0, cond-expand raises an error if no feature requirements are
satisfied and there’s no else clause. A rule of thumb is to provide else clause always, even it
does nothing (like the above example that has empty else clause).

3.6 Profiling and tuning

If you find your script isn’t running fast enough, there are several possibilities to improve its
performance.

It is always a good idea to begin with finding which part of the code is consuming the
execution time. Gauche has a couple of basic tools to help it. A built-in sampling profiler,
explained in the following subsection, can show how much time is spent in each procedure,
and how many times it is called. The gauche.time module (Section 9.33 [Measure timings],
page 439) provides APIs to measure execution time of specific parts of the code.

Optimization is specialization—you look for the most common patterns of execution, and
put a special path to support those patterns efficiently. Gauche itself is no exception, so there
are some patterns Gauche can handle very efficiently, while some patterns it cannot. The next
subsection, Section 3.6.2 [Performance tips], page 30, will give you some tips of how to adapt
your code to fit the patterns Gauche can execute well.

3.6.1 Using profiler

As of 0.8.4, Gauche has a built-in profiler. It is still experimental quality and only be tested on
Linux. It isn’t available for all platforms. It works only in single-thread applications for now.

To use the profiler non-interactively, give -ptime command-line option to gosh.

% gosh -ptime your-script.scm

After the execution of your-script.scm is completed, Gauche prints out the table of func-
tions with its call count and its consumed time, sorted by the total consumed time.

Profiler statistics (total 1457 samples, 14.57 seconds)

num time/ total

Name calls call(ms) samples

---+------+-------+-----------

combinations* 237351 0.0142 337(23%)

(lset-difference #f) 1281837 0.0020 256(17%)

(make-anchor make-anchor) 3950793 0.0005 198(13%)

member 4627246 0.0004 190(13%)

filter 273238 0.0030 81(5%)

every 1315131 0.0004 59(4%)

(lset-difference #f #f) 1281837 0.0004 54(3%)

(make-entry make-entry) 730916 0.0005 40(2%)

(clear? #f) 730884 0.0005 33(2%)

(initialize #f) 599292 0.0005 32(2%)

fold 237307 0.0013 30(2%)

acons 806406 0.0004 29(1%)

clear? 33294 0.0084 28(1%)

(combinations* #f) 805504 0.0002 15(1%)

(make-exit make-exit) 730884 0.0002 15(1%)

lset-difference 237318 0.0006 15(1%)

reverse! 475900 0.0001 6(0%)

(fold <top> <top> <list>) 237323 0.0003 6(0%)

procedure? 238723 0.0002 4(0%)

pair? 237307 0.0001 3(0%)

:

:

Chapter 3: Programming in Gauche 30

Note that the time profiler uses statistic sampling. Every 10ms the profiler interrupts the
process and records the function that is executed then. Compared to the individual execution
time per function call, which is the order of nanoseconds, this sampling rate is very sparse.
However, if we run the program long enough, we can expect the distribution of samples per each
function approximately reflects the distribution of time spent in each function.

Keep in mind that the number is only approximation; the number of sample counts for a
function may easily vary if the program deals with different data sets. It should also be noted
that, for now, GC time is included in the function in which GC is triggered. This sometimes
causes a less important function to "float up" to near-top of the list. To know the general
pattern, it is a good custom to run the program with several different data sets.

On the other hand, the call count is accurate since Gauche actually counts each call.

Because all functions are basically anonymous in Scheme, the ’name’ field of the profiler
result is only a hint. The functions bound at toplevel is generally printed with the global
variable name it is bound at the first time. Internal functions are printed as a list of names,
reflecting the nesting of functions. Methods are also printed as a list of the name and specializers.

The profiler has its own overhead; generally the total process time will increase 20-30%. If
you want to turn on the profiler selectively, or you’re running a non-stop server program and
want to obtain the statistics without exiting the server, you can call the profiler API from your
program; see Section 6.26.2 [Profiler API], page 263, for the details.

3.6.2 Performance tips

Don’t guess, just benchmark. It is the first rule of performance tuning. Especially for the
higher-level languages like Scheme, what impacts on performance greatly depends on the im-
plementation. Certain operations that are very cheap on an implementation may be costly on
others. Gauche has such implementation-specific characteristics, and to know some of them
would help to see what to look out in the benchmark results.

"80% of execution time is spent in 20% of the code" is another old saying. Don’t obscure your
code by "potential" optimization that has little impact on the actual execution. We describe
some tips below, but it doesn’t mean you need to watch them all the time. It is better to keep
most of the code clean and easy to understand, and only do tricks on the innermost loop.

Ports: To satisfy the specification of SRFI-18 (Threading), every call to I/O primitives of
Gauche locks the port. This overhead may be visible if the application does a lot of I/O with
smaller units (e.g. every bytes). The primitives that deals with larger unit, such as read and
read-uvector, are less problematic, since usually they just lock the port once per call and do all
the low-level I/O without the lock overhead. (Note: this doesn’t mean those primitives guarantee
to lock the port throughout the execution of the function; furthermore, the port locking feature
is optimized for the case that port accesses rarely collide. If you know it is possible that more
than one threads read from or write to the same port, it is your responsibility to use mutex
explicitly to avoid the collision.)

If you find out the locking is indeed a bottleneck, there are couple of things you can con-
sider: (1) Try using the larger-unit primitives, instead of calling the smaller-unit ones. (2) Use
with-port-locking (see Section 6.22.2 [Port and threads], page 203) to lock the port in larger
context.

Strings: Because of the multibyte strings, two operations are particularly heavy in Gauche:
string mutation and indexed string access. It is a design choice; we encourage the programming
style that avoids those operations. When you sequentially access the string, string ports (see
Section 6.22.5 [String ports], page 210) provide a cleaner and more efficient way. When you search
and retrieve a substring, there are various higher-level primitives are provided (see Section 6.12.7
[String utilities], page 145, Section 6.13 [Regular expressions], page 149, and Section 11.5 [String

Chapter 3: Programming in Gauche 31

library], page 518, for example). If you’re using strings to represent an octet sequence, use
uniform vectors (see Section 9.35 [Uniform vectors], page 447) instead.

Deep recursion: Gauche’s VM uses a stack for efficient local frame allocation. If recursion
goes very deep (depending on the code, but usually several hundreds to a thousand), the stack
overflows and Gauche moves the content of the stack into the heap. This incurs some overhead.
If you observe a performance degradation beyond a certain amount of data, check out this
possibility.

Generic functions: Because of its dynamic nature, generic function calls are slower than
procedure calls. Not only because of the runtime dispatch overhead, but also because Gauche’s
compile-time optimizer can’t do much optimization for generic function calls. You don’t need
to avoid generic functions because of performance reasons in general, but if you do find single
function call consuming a large part of execution time and it is calling a generic function in its
inner loop—then it may be worth to modify it.

Redefining builtin functions: Gauche inlines some builtin functions if they are not redefined.
Although sometimes it is useful to redefine basic functions, you may want to limit the effect.
For example, put redefined functions in a separate module and use the module in the code that
absolutely needs those functions replaced.

Closure creation: When you create a closure, its closing environment is copied to the heap.
This overhead is small, but it still may be visible when a closure is created within an innermost
loop that is called millions of times. If you suspect this is a problem, try disassemble the function.
Gauche’s compiler uses some basic techniques of closure analysis to avoid creating closures for
typical cases, in which case you see the local function’s bodies are inlined. If you see a CLOSURE

instruction, though, it means a closure is created.

This list isn’t complete, and may change when Gauche’s implementation is improved, so
don’t take this as fixed features. We’ll adjust it occasionally.

3.7 Writing Gauche modules

Gauche’s libraries are organized by modules. Although Gauche can load any valid Scheme
programs, there is a convention that Gauche’s libraries follow. When you write a chunk of
Scheme code for Gauche, it is convenient to make it a module, so that it can be shared and/or
reused.

Usually a module is contained in a file, but you can make a multi-file module. First I explain
the structure of a single-file module. The following template is the convention used in Gauche’s
libraries.

;; Define the module interface

(define-module foo

(use xxx)

(use yyy)

(export foo1 foo2 foo3)

)

;; Enter the module

(select-module foo)

... module body ...

This file must be saved as “foo.scm” in some directory in the *load-path*.

The define-module form creates a module foo. It also loads and imports some other modules
by ‘use’ macros, and declares which symbols the foo module exports, by ‘export’ syntax. (See

Chapter 3: Programming in Gauche 32

section Section 4.13.3 [Defining and selecting modules], page 69, for detailed specification of
those syntaxes).

Those use forms or export forms are not required to appear in the define-module form,
but it is a good convention to keep them in there at the head of the file so that it is visually
recognizable which modules foo depends and which symbols it exports.

The second form, ‘select-module’, specifies the rest of the file is evaluated in the module
foo you just defined. Again, this is just a convention; you can write entire module body inside
define-module. However, I think it is error-prone, for the closing parenthesis can be easily
forgotten or the automatic indentation mechanism of editor will be confused.

After select-module you can write whatever Scheme expression. It is evaluated in the
selected module, foo. Only the bindings of the exported symbols will be directly accessible
from outside.

So, that’s it. Other programs can use your module by just saying ‘(use foo)’. If you want
to make your module available on your site, you can put it to the site library location, which
can be obtained by

(gauche-site-library-directory)

in gosh, or

gauche-config --sitelibdir

from shell.

If you feel like to conserve global module name space, you can organize modules hierarchically.
Some Gauche libraries already does so. See Chapter 8 [Library modules - Overview], page 294,
for examples. For example, text.tr module is implemented in “text/tr.scm” file. Note that the
pathname separator ‘/’ in the file becomes a period in the module name.

3.8 Using extension packages

Building and installing packages

Gauche comes with some amount of libraries, but they aren’t enough at all to use Gauche in
the production environment. There are number of additional libraries available. We call them
extension packages, or simply packages. Each package usually provides one or more modules
that adds extra functionality. Most of the packages provide binding to other C libraries, such
as graphics libraries or database clients. If the package has some C code, it is likely that you
need to compile it on your machine with the installed Gauche system.

Usually a package is in the form of compressed tarball, and the standard "ungzip + untar
+ configure + make + make install" sequence does the job. Read the package’s document, for
you may be able to tailor the library for your own needs by giving command-line options to the
configure script.

From Gauche 0.8, an utility script called gauche-package is installed for the convenience. It
automates the build and install process of packages.

Suppose you have downloaded a package Package-1.0.tar.gz. If the package follows the
convention, all you have to do is to type this:

$ gauche-package install Package-1.0.tar.gz

It ungzips and untars the package, cd into the Package-1.0 subdirectory, run configure,
make, and make install. By default, gauche-package untars the tarball in the current working
directory. You can change it by a customization file; see below.

If you need a special priviledge to install the files, you can use --install-as option which
runs make install part via the sudo program.

$ gauche-package install --install-as=root Package-1.0.tar.gz

Chapter 3: Programming in Gauche 33

If it doesn’t work for you, you can just build the package by gauche-package build Package-

1.0.tar.gz, then manually cd to the Package-1.0 directory and run make install.

You can give configuration options via -C or --configure-options command-line argument,
like this:

$ gauche-package install -C "--prefix=/usr/local" Package-1.0.tar.gz

If the package has adopted the new package description file, it can remember the configuration
options you have specified, and it will automatically reuse them when you install the package
again. (If you’re a package developer, check out examples/spigot/README file in the Gauche
source tree to see how to cooperate with Gauche’s package management system.)

If you don’t have a tarball in your local directory, but you know the URL where you can
download it, you can directly give the URL to gauche-package. It understands http and ftp,
and uses either wget or ncftpget to download the tarball, then runs configure and make.

$ gauche-package install http://www.example.com/Package-1.0.tar.gz

Customizing gauche-package

The gauche-package program reads ~/.gauche-package if it exists. It must contain an asso-
ciative list of parameters. It may look like this:

(

(build-dir . "/home/shiro/tmp")

(gzip . "/usr/local/bin/gzip")

(bzip2 . "/usr/local/bin/bzip2")

(tar . "/usr/local/bin/gtar")

)

The following is a list of recognized parameters. If the program isn’t given in the configuration
file, gauche-package searches PATH to find one.

build-dir

A directory where the tarball is extracted. If URL is given, the downloaded file is
also placed in this directory.

bzip2 Path to the program bzip2.

cat Path to the program cat.

make Path to the program make.

ncftpget Path to the program ncftpget.

rm Path to the program rm.

sudo Path to the program sudo.

tar Path to the program tar.

wget Path to the program wget.

3.9 Building standalone executables

When you want to distribute your Gauche scripts or applications, the users need to install Gauche
runtime on their machine. Although it is always the case for any language implementations—
you need Java runtime to run Java applications, or C runtime to run C applciations—it may be
an extra effort to ask users to install not-so-standard language runtimes.

To ease distribution of Gauche applications, you can create a stand-alone executable. It
statically links entire Gauche system so that it runs by just copying the executable file.

Chapter 3: Programming in Gauche 34

Quick recipe

To generate a standalone executable, just give your script file to the build-standalone script,
which is installed as a part of Gauche.

gosh build-standalone yourscript.scm

It will create an executable file yourscript (or yourscript.exe on Windows) in the current
directory.

To specify the output name different from the script name, give -o option:

gosh build-standalone -o yourcommand yourscript.scm

When your script needs supporting library files, you should list those files as well:

gosh build-standalone yourscript.scm lib/library1.scm lib/library2.scm

The library file paths need to be relative to the respective load path. See the explanation of
-I option below.

Catches

There are a few things you should be aware of.

• The size of the binary tend to be large, since it contains the entire Gauche system regardless
of whether your application use it or not. You can strip down the size if you need to, but
you need to rebuild Gauche library to do so. See doc/HOWTO-standalone.txt in the source
tree for the details.

• The generated binary still depends on external dynamically linked libraries, such as
libpthread. The exact dependency may differ how Gauche is configured, and can be checked
by running system-provided tools, such as ldd on most Unix systems and MinGW or otool
-L on OSX, on the generated standalone binaries. You may want to ensure the users have
requied libraries.

• Currently we don’t yet have a convenient way to statically link extension libraries. We’re
working on it.

• If Gauche is configured to use gdbm, it is linked to the standalone binary by default, hence
the binary itself is covered by GPL. In case if you need to distribute binaries under BSD
license, you need to give -D GAUCHE_STATIC_EXCLUDE_GDBM flag to build-standalone. It
makes build-standalone not to link gdbm (and your script won’t be able to use it).

• If you build Gauche with mbedTLS support (if you have libmbedtls on your machine,
Gauche include its support by default), the resulting standalone binary also depends on
libmbedtls DSO files. If you’re not sure mbedTLS DSO files are available on target machines,
you can exclude rfc.tls.mbed module by giving -D GAUCHE_STATIC_EXCLUDE_MBED flag to
build-standalone.

Using build-standalone

[Program]gosh build-standalone [options] script-↓le [library-↓le . . .]
Create a stand-alone binary to execute a Gauche program in script-↓le. It is executed as if
it is run as gosh script-file, with a few differences.

The main thing is that since script-↓le is no longer loaded from file, code that references
paths relative to script-↓le won’t work. One example is (add-load-path dir :relative)

(see Section 6.23.1 [Loading Scheme file], page 225). Auxiliary library files required by script-
↓le must be explicitly listed as library-↓le . . . , so that they are bundled together into the
executable.

The following command-line options are recognized.

35

[Command Option]-o out↓le
Specifies output executable filename. When omitted, the basename of script-↓le without
extension is used. (Or, on Windows, swapping extension with .exe).

[Command Option]-D var[=val]
Add C preprocessor definitions while compiling the generated C code. An important use case
of this option is to exclude gdbm dependency from the generated binaries, by specifing -D

GAUCHE_STATIC_EXCLUDE_GDBM. Note that you need a whitespace between -D and var.

This option can be specified multiple times.

[Command Option]-I load-path
Specifies the load path where library-↓le . . . are searched. The names given to library-↓le
must match how they are loaded or used. If such paths are not relative to the directory you
run build-standalone, you have to tell where to find those libraries with this option.

For example, suppose you have this structure:

project/src/

+----- main.scm

| (use myscript.util)

+----- myscript/util.scm

(define-module myscript.util ...)

If you run build-standalone in the dirctory as src, you can just say this:

gosh build-standalone main.scm myscript/util.scm

But if you run it under project, you need to say this:

gosh build-standalone -I src src/main.scm myscript/util.scm

Another example; you have a separate library directory:

project/

+----- src/main.scm

| (use myscript.util)

+----- lib/myscript/util.scm

(define-module myscript.util ...)

If you run build-standalone in src, you say this: Or, if you run it in project, you say this:

gosh build-standalone -I lib src/main.scm myscript/util.scm

This option can be specified multiple times. Note that a whitespace is required between -I

and load-path.

[Command Option]--header-dir dir
[Command Option]--library-dir dir

These tells build-standlone where to find Gauche C headers and static libraries.

If you’ve installed Gauche on your system, build-standalone automatically finds these from
the installed directory and you don’t need to worry about them. Use these option only when
you need to use Gauche runtime that’s not installed.

36

4 Core syntax

4.1 Lexical structure

Gauche extends R7RS Scheme lexical parser in some ways. Besides, because of historical reasons,
a few of the default lexical syntax may conflict R7RS specification. You can set a reader mode
to make it R7RS compliant.

Hash-bang directives
Tokens beginning with #! may have special meanings to the reader. R7RS defines
two of such directives—#!fold-case and #!no-fold-case, which switches whether
symbols are read in case-folding or non-case-folding mode, respectively.

see Section 4.1.2 [Hash-bang token], page 39, below, for all the directives Gauche
has.

Square brackets
Gauche adopts the R6RS syntax that regards [] the same as (). Both kind of
parentheses are equivalent, but the kind of corresponding open and close parenthe-
ses must match. Some seasoned Lisper may frown on them, but it helps visually
distinguish different roles of parentheses.

A general convention is to use [] for groupings other than function and macro
application. If such grouping nests, however, use () for outer groupings. Examples:

(cond [(test1 x) (y z)]

[(test2 x) (s t)]

[else (u v)])

(let ([x (foo a b)]

[y (bar c d)])

(baz x y))

It is purely optional, so you don’t need to use them if you don’t like them. R7RS
doesn’t adopt this syntax and leaves [] for extensions, so it is safe to stick to () in
portable R7RS programs. (If the reader is in strict-r7 mode, an error is signalled
when [] is used. See Section 6.22.7.2 [Reader lexical mode], page 214, for the
details.)

Scheme-specific modes of some editors (e.g. Quack on Emacs) allows you to type
just) and inserts either] or) depending on which kind parenthesis it is closing.
We recommend using such modes if you use this convention.

Symbol names
Symbol names are case sensitive by default (see Section 2.4 [Case-sensitivity],
page 11). Symbol name can begin with digits, ’+’ or ’-’, as long as the entire token
doesn’t consist valid number syntax. Other weird characters can be included in a
symbol name by surrounding it with ’|’, e.g. ’|this is a symbol|’. See Section 6.7
[Symbols], page 127, for details.

Numeric literals
Either integral part or fraction part of inexact real numbers can be omitted if it is
zero, i.e. 30., .25, -.4 are read as real numbers. The number reader recognizes
’#’ as insignificant digits. Complex numbers can be written both in the rectangular
format (e.g. 1+0.3i) and in the polar format (e.g. 3.0@1.57). Inexact real numbers
include the positive infinity, the negative infinity, and NaN, which are represented
as +inf.0, -inf.0 and +nan.0, respectively. (-nan.0 is also read as NaN.)

Chapter 4: Core syntax 37

As an extension of Gauche, a character _ can be inserted in or around a sequence of
digits in number literals, as far as the literal is explicitly prefixed (#e, #x, etc). Those
_’s are just ignored. It is to improve readability, e.g. #b1100_1010_1111_1110.

Gauche also adopts Common-Lisp style radix prefixed numeric literals, e.g. #3r120
(120 in base-3, 15 in decimal). Radix between 2 and 36 are recognized; alphabetic
letters a-zA-Z are used beyond decimal.

For the polar notation of complex numbers, Gauche allows the suffix pi to denote
the phase by multiples of pi. The Scheme syntax use radians for the phase, but
you can only approximate pi with the floating point numbers, so it can’t represent
round numbers except zero angle.

gosh> 2@3.141592653589793

-2.0+2.4492935982947064e-16i

With the pi suffix, you can get a round numbers.

gosh> 2@1pi

-2.0

gosh> 2@0.5pi

0.0+2.0i

gosh> 2@-0.5pi

0.0-2.0i

Hex character escapes
You can denote a character using hexadecimal notation of the character code in some
literals; specifically, character literals, charcter set literals, string literals, symbols,
regular expression literals.

R7RS adopted a hex escape notation \xNNNN; for strings and symbols surrounded
by vertical bars, and #\xNNNN for characters. The number of digits is variable, and
the character code is Unicode codepoint.

Gauche had been using two types of escapes; \u and \x. In general, u is for Unicode
codepoint, while x is for the character code in the internal encoding. Besides, except
character literals, we used fixed number of digits, instead of using the terminator ;
as in R7RS.

Since 0.9.4, we interpret \x-escape as R7RS whenever if it consists a valid R7RS
hex-escape, and if not, try to interpret it as legacy Gauche hex-escape.

Although rarely, there are cases that can interpreted both in R7RS syntax and
legacy Gauche syntax, but yielding different characters. Reading legacy files with
such literals in the current Gauche may cause unexpected behavior. You can switch
the reader mode so that it becomes backward-compatible. See Section 6.22.7.2
[Reader lexical mode], page 214, for the details.

Extended sharp syntax
Many more special tokens begins with ’#’ are defined. See the table below.

4.1.1 Sharp syntax

The table below lists sharp-syntaxes.

#! [R6RS][R7RS][SRFI-22] It is either a beginning of
an interpreter line (shebang) of a script, or a spe-
cial token that affects the mode of the reader. See
‘hash-bang token’ section below.

#" Introduces an interpolated string. See
Section 6.12.4 [String interpolation], page 142.

##, #$, #%, #&, #’ Unused.

Chapter 4: Core syntax 38

#([R7RS] Introduces a vector.
#) Unused.
#* If followed by a double quote, denotes an incom-

plete string. See Section 6.12 [Strings], page 139.

#+ Unused.
#, [SRFI-10] Introduces reader constructor syntax.
#-, #. Unused.
#/ Introduces a literal regular expression. See

Section 6.13 [Regular expressions], page 149.

#0 . . . #9 #n#, #n=: [SRFI-38] Shared substructure definition
and reference.
#nR, #nr: Radix prefixed numeric literals.

#: Uninterned symbol. See Section 6.7 [Symbols],
page 127.

#; [SRFI-62] S-expression comment. Reads next one
S-expression and discard it.

#< Introduces an unreadable object.
#=, #> Unused.
#? Introduces debug macros. See Section 3.4 [Debug-

ging], page 26.

#@ Unused.
#a Unused.
#b [R7RS] Binary number prefix.
#c Unused.
#d [R7RS] Decimal number prefix.
#e [R7RS] Exact number prefix.
#f [R7RS] Boolean false, or introducing SRFI-4 uni-

form vector. See Section 9.35 [Uniform vectors],
page 447. R7RS defines both #f and #false as a
boolean false value.

#g, #h Unused.
#i [R7RS] Inexact number prefix.
#j, #k, #l, #m, #n Unused.
#o [R7RS] Octal number prefix.
#p, #q, #r Unused.
#s [SRFI-4] introducing SRFI-4 uniform vector. See

Section 9.35 [Uniform vectors], page 447.

#t [R7RS] Boolean true. R7RS defines #t and #true

as a boolean true value.

#u [SRFI-4] introducing SRFI-4 uniform vector. See
Section 9.35 [Uniform vectors], page 447. R7RS
uses #u8 prefix for bytevectors, which is compatible
to u8 uniform vectors.

#v, #w Unused.
#x [R7RS] Hexadecimal number prefix.
#y, #z Unused.
#[Introduces a literal character set. See Section 6.11

[Character set], page 137.

#\ [R7RS] Introduces a literal character. See
Section 6.10 [Characters], page 133.

#], #^, #_ Unused.

Chapter 4: Core syntax 39

#‘ Legacy syntax for string interpolation, superseded
by #".

#{ Unused.
#| [SRFI-30] Introduces a block comment. Comment

ends by matching ’|#’.

#}, #~ Unused.

4.1.2 Hash-bang token

A character sequence #! has two completely different semantics, depending on how and where
it occurs.

If a file begins with #!/ or #! (hash, bang, and a space), then the reader assumes it is an
interpreter line (shebang) of a script and ignores the rest of characters until the end of line.
(Actually the source doesn’t need to be a file. The reader checks whether it is the beginning of
a port.)

Other than the above case, #!identifier is read as a token with special meanings. This
kind token can be a special directive for the reader, instead of read as a datum.

By default, the following tokens are recognized.

#!fold-case

#!no-fold-case

Switches the reader’s case sensitivity; #!fold-case makes the reader case insen-
sitive, and #!no-fold-case makes it case sensitive. (Also see Section 2.4 [Case-
sensitivity], page 11).

#!r6rs This token is introduced in R6RS and used to indicate the program strictly conforms
R6RS. Gauche doesn’t conform R6RS, but currently it just issues warning when it
sees #!r6rs token, and it keeps reading on.

#!r7rs Make the reader strict-r7 mode, that complies R7RS. See Section 6.22.7.2 [Reader
lexical mode], page 214, for the details.

#!gauche-legacy

Make the reader legacy mode, that is compatible to Gauche 0.9.3 and before. See
Section 6.22.7.2 [Reader lexical mode], page 214, for the details.

4.2 Literals

[Special Form]quote datum
[R7RS base] Evaluates to datum.

(quote x) ⇒ x

(quote (1 2 3)) ⇒ (1 2 3)

[Reader Syntax]’datum
[R7RS] Equivalent to (quote datum).

’x ⇒ x

’(1 2 3) ⇒ (1 2 3)

Note: RnRS says it is an error to alter the value of a literal expression. Gauche doesn’t
check constant-ness of pairs and vectors, and does not signal an error if you modify them using
the destructive procedures such as set-car! and vector-set!. Doing so will cause unexpected
results. Gauche does check constant-ness of strings, and signals an error if you try to alter a
constant string.

Chapter 4: Core syntax 40

4.3 Making Procedures

[Special Form]lambda formals body . . .
[Special Form]^ formals body . . .

[R7RS+] Evaluates to a procedure. The environment in effect when this expression is evalu-
ated is stored in the procedure. When the procedure is called, body is evaluated sequentially
in the stored environment extended by the bindings of the formal arguments, and returns the
value(s) of the last expression in the body.

^ is a concise alias of lambda. It is Gauche’s extension.

(lambda (a b) (+ a b))

⇒ procedure that adds two arguments

((lambda (a b) (+ a b)) 1 2) ⇒ 3

((^(a b) (+ a b)) 1 2) ⇒ 3

Gauche also extends R7RS lambda to take extended syntax in formals to specify optional
and keyword arguments easily. The same functionality can be written in pure R7RS, with
parsing variable-length arguments explicitly, but the code tends to be longer and verbose. It
is recommended to use extended syntax unless you’re writing portable code.

Formals should have one of the following forms:

• (variable ...) : The procedure takes a fixed number of arguments. The actual argu-
ments are bound to the corresponding variables.

((lambda (a) a) 1) ⇒ 1

((lambda (a) a) 1 2) ⇒ error - wrong number of arguments

• variable : The procedure takes any number of arguments. The actual arguments are
collected to form a new list and bound to the variable.

((lambda a a) 1 2 3) ⇒ (1 2 3)

• (variable_0 ... variable_N-1 . variable_N) : The procedure takes at least N argu-
ments. The actual arguments up to N is bound to the corresponding variables. If more
than N arguments are given, the rest arguments are collected to form a new list and
bound to variable N.

((lambda (a b . c) (print "a=" a " b=" b " c=" c)) 1 2 3 4 5)

⇒ prints a=1 b=2 c=(3 4 5)

• (variable ... extended-spec ...) : Extended argument specification. Zero or more
variables that specifies required formal arguments, followed by an extended spec, a list
beginning with a keyword :optional, :key or :rest.

The extended-spec part consists of the optional argument spec, the keyword argument
spec and the rest argument spec. They can appear in any combinations.

:optional optspec ...

Specifies optional arguments. Each optspec can be either one of the following
forms:

variable

(variable init-expr)

The variable names the formal argument, which is bound to the value of the
actual argument if given, or the value of the expression init-expr otherwise.
If optspec is just a variable, and the actual argument is not given to it,
then variable will be bound to #<undef> (see Section 6.5 [Undefined values],
page 115).

Chapter 4: Core syntax 41

The expression init-expr is only evaluated if the actual argument for variable
is not given. The scope in which init-expr is evaluated includes the preceding
formal arguments.

((lambda (a b :optional (c (+ a b))) (list a b c))

1 2) ⇒ (1 2 3)

((lambda (a b :optional (c (+ a b))) (list a b c))

1 2 -1) ⇒ (1 2 -1)

((lambda (a b :optional c) (list a b c))

1 2) ⇒ (1 2 #<undef>)

((lambda (:optional (a 0) (b (+ a 1))) (list a b))

) ⇒ (0 1)

The procedure signals an error if more actual arguments than the number of
required and optional arguments are given, unless it also has :key or :rest
argument spec.

((lambda (:optional a b) (list a b)) 1 2 3)

⇒ error - too many arguments

((lambda (:optional a b :rest r) (list a b r)) 1 2 3)

⇒ (1 2 (3))

:key keyspec ... [:allow-other-keys [variable]]

Specifies keyword arguments. Each keyspec can be either one of the following
forms.

variable

(variable init-expr)

((keyword variable) init-expr)

The variable names the formal argument, which is bound to the actual ar-
gument given with the keyword of the same name as variable. When the
actual argument is not given, init-expr is evaluated and the result is bound
to variable in the second and third form, or #<undef> is bound in the first
form.

(define f (lambda (a :key (b (+ a 1)) (c (+ b 1)))

(list a b c)))

(f 10) ⇒ (10 11 12)

(f 10 :b 4) ⇒ (10 4 5)

(f 10 :c 8) ⇒ (10 11 8)

(f 10 :c 1 :b 3) ⇒ (10 3 1)

With the third form you can name the formal argument differently from the
keyword to specify the argument.

((lambda (:key ((:aa a) -1)) a) :aa 2)

⇒ 2

By default, the procedure with keyword argument spec raises an error
if a keyword argument with an unrecognized keyword is given. Giving
:allow-other-keys in the formals suppresses this behavior. If you give
variable after :allow-other-keys, the list of unrecognized keywords and
their arguments are bound to it. Again, see the example below will help to
understand the behavior.

Chapter 4: Core syntax 42

((lambda (:key a) a)

:a 1 :b 2) ⇒ error - unknown keyword :b

((lambda (:key a :allow-other-keys) a)

:a 1 :b 2) ⇒ 1

((lambda (:key a :allow-other-keys z) (list a z))

:a 1 :b 2) ⇒ (1 (:b 2))

When used with :optional argument spec, the keyword arguments are
searched after all the optional arguments are bound.

((lambda (:optional a b :key c) (list a b c))

1 2 :c 3) ⇒ (1 2 3)

((lambda (:optional a b :key c) (list a b c))

:c 3) ⇒ (:c 3 #<undef>)

((lambda (:optional a b :key c) (list a b c))

1 :c 3) ⇒ error - keyword list not even

:rest variable

Specifies the rest argument. If specified without :optional argument spec,
a list of remaining arguments after required arguments are taken is bound to
variable. If specified with :optional argument spec, the actual arguments
are first bound to required and all optional arguments, and the remaining
arguments are bound to variable.

((lambda (a b :rest z) (list a b z))

1 2 3 4 5) ⇒ (1 2 (3 4 5))

((lambda (a b :optional c d :rest z) (list a b c d z))

1 2 3 4 5) ⇒ (1 2 3 4 (5))

((lambda (a b :optional c d :rest z) (list a b c d z))

1 2 3) ⇒ (1 2 3 #<undef> ())

When the rest argument spec is used with the keyword argument spec, both
accesses the same list of actual argument—the remaining arguments after
required and optional arguments are taken.

((lambda (:optional a :rest r :key k) (list a r k))

1 :k 3) ⇒ (1 (:k 3) 3)

See also let-optionals*, let-keywords and let-keywords* macros in Section 6.18.4
[Optional argument parsing], page 178, for an alternative way to receive
optional/keyword arguments within the spec of R7RS.

[Macro]^c body . . .
A shorthand notation of (lambda (c) body ...). where c can be any character in #[_a-z].

(map (^x (* x x)) ’(1 2 3 4 5)) ⇒ (1 4 9 16 25)

[Macro]cut expr-or-slot expr-or-slot2 . . .
[Macro]cute expr-or-slot expr-or-slot2 . . .

[SRFI-26] Convenience macros to notate a procedure compactly. This form can be used to
realize partial application, a.k.a sectioning or projection.

Each expr-or-slot must be either an expression or a symbol <>, indicating a ’slot’. The last
expr-or-slot can be a symbol <...>, indicating a ’rest-slot’. Cut expands into a lambda form

Chapter 4: Core syntax 43

that takes as many arguments as the number of slots in the given form, and whose body is
an expression

(expr-or-slot expr-or-slot2 ...)

where each occurrence of <> is replaced to the corresponding argument. In case there is a
rest-slot symbol, the resulting procedure is also of variable arity, and all the extra arguments
are passed to the call of expr-or-slot. See the fourth example below.

(cut cons (+ a 1) <>) ≡ (lambda (x2) (cons (+ a 1) x2))

(cut list 1 <> 3 <> 5) ≡ (lambda (x2 x4) (list 1 x2 3 x4 5))

(cut list) ≡ (lambda () (list))

(cut list 1 <> 3 <...>)

≡ (lambda (x2 . xs) (apply list 1 x2 3 xs))

(cut <> a b) ≡ (lambda (f) (f a b))

;; Usage

(map (cut * 2 <>) ’(1 2 3 4))

(for-each (cut write <> port) exprs)

Cute is a variation of cut that evaluates expr-or-slots before creating the procedure.

(cute cons (+ a 1) <>)

≡ (let ((xa (+ a 1))) (lambda (x2) (cons xa x2)))

Gauche provides a couple of different ways to write partial applications concisely; see the $

macro below, and also the pa$ procedure (see Section 6.18.3 [Combinators], page 176).

[Macro]$ arg . . .
A macro to chain applications, hinted from Haskell’s $ operator (although the meaning is
different). Within the macro arguments arg . . . , $ delimits the last argument. For example,
the following code makes the last argument for the procedure f to be (g c d ...)

($ f a b $ g c d ...)

≡ (f a b (g c d ...))

The $ notation can be chained.

($ f a b $ g c d $ h e f ...)

≡ (f a b (g c d (h e f ...)))

If $* appears in the argument list instead of $, it fills the rest of the arguments, instead of
just the last argument.

($ f a b $* g c d ...)

≡ (apply f a b (g c d ...))

($ f a b $* g $ h $* hh ...)

≡ (apply f a b (g (apply h (hh ...))))

Furthermore, if the argument list ends with $ or $*, the whole expression becomes a procedure
expecting the last argument(s).

($ f a b $ g c d $ h e f $)

≡ (lambda (arg) (f a b (g c d (h e f arg))))

≡ (.$ (cut f a b <>) (cut g c d <>) (cut h e f <>))

($ f a b $ g c d $ h e f $*)

≡ (lambda args (f a b (g c d (apply h e f args))))

≡ (.$ (cut f a b <>) (cut g c d <>) (cut h e f <...>))

The more functional the code becomes, the more you tempted to write it as a chain of nested
function calls. Scheme’s syntax can get awkward in such code. Close parentheses tend to

Chapter 4: Core syntax 44

clutter at the end of expressions. Inner applications tends to pushed toward right columns
with the standard indentation rules. Compare the following two code functionally equivalent
to each other:

(intersperse ":"

(map transform-it

(delete-duplicates (map cdr

(group-sequence input)))))

($ intersperse ":"

$ map transform-it

$ delete-duplicates

$ map cdr $ group-sequence input)

It is purely a matter of taste, and also this kind of syntax sugars can be easily abused. Use
with care, but it may work well if used sparingly, like spices.

As a corner case, if neither $ nor $* appear in the argument list, it just calls the function.

($ f a b c) ≡ (f a b c)

[Macro]case-lambda clause . . .
[R7RS case-lambda] Each clause should have the form (formals expr . . .), where formals is
a formal arguments list as for lambda.

This expression evaluates to a procedure that accepts a variable number of arguments and is
lexically scoped in the same manner as procedures resulting from lambda expressions. When
the procedure is called with some arguments, then the first clause for which the arguments
agree with formals is selected, where agreement is specified as for the formals of a lambda

expression. The variables of formals are bound to the given arguments, and the expr . . .
are evaluated within the environment.

It is an error for the arguments not to agree with the formals of any clause.

(define f

(case-lambda

[() ’zero]

[(a) ‘(one ,a)]

[(a b) ‘(two ,a ,b)]))

(f) ⇒ zero

(f 1) ⇒ (one 1)

(f 1 2) ⇒ (two 1 2)

(f 1 2 3) ⇒ Error: wrong number of arguments to case lambda

(define g

(case-lambda

[() ’zero]

[(a) ‘(one ,a)]

[(a . b) ‘(more ,a ,@b)]))

(g) ⇒ zero

(g 1) ⇒ (one 1)

(g 1 2 3) ⇒ (more 1 2 3)

Note that the clauses are examined sequentially to match the number of arguments, so in the
following example g2 never returns (one ...).

(define g2

Chapter 4: Core syntax 45

(case-lambda

[() ’zero]

[(a . b) ‘(more ,a ,@b)]

[(a) ‘(one ,a)]))

(g2 1) ⇒ (more 1)

4.4 Assignments

[Special Form]set! symbol expression
[Special Form]set! (proc arg . . .) expression

[R7RS+ base][SRFI-17] First, expression is evaluated. In the first form, the binding of symbol
is modified so that next reference of symbol will return the result of expression. If symbol
is not locally bound, the global variable named symbol must already exist, or an error is
signaled.

The second form is a “generalized set!” specified in SRFI-17. It is a syntactic sugar of the
following form.

((setter proc) arg ... expression)

Note the order of the arguments of the setter method differs from CommonLisp’s setf.

Some examples:

(define x 3)

(set! x (list 1 2))

x ⇒ (1 2)

(set! (car x) 5)

x ⇒ (5 2)

[Macro]set!-values (var . . .) expr
Sets values of multiple variables at once. Expr must yield as many values as var Each
value is set to the corresponding var.

(define a 0)

(define b 1)

(set!-values (a b) (values 3 4))

a ⇒ 3

b ⇒ 4

(set!-values (a b) (values b a))

a ⇒ 4

b ⇒ 3

[Function]setter proc
[SRFI-17] Returns a setter procedure associated to the procedure proc. If no setter is asso-
ciated to proc, its behavior is undefined.

A setter procedure g of a procedure f is such that when used as (g a b ... v), the next
evaluation of (f a b ...) returns v.

To associate a setter procedure to another procedure, you can use the setter of setter, like
this:

(set! (setter f) g)

A procedure’s setter can be “locked” to it. System default setters, like set-car! for car, is
locked and can’t be set by the above way. In order to lock a setter to a user defined procedure,
use getter-with-setter below.

Chapter 4: Core syntax 46

If proc is not a procedure, a setter generic function of object-apply is returned; it allows the
applicable object extension to work seamlessly with the generalized set!. See Section 6.18.6
[Applicable objects], page 180, for the details.

[Function]has-setter? proc
Returns #t if a setter is associated to proc.

[Function]getter-with-setter get set
[SRFI-17] Takes two procedure get and set. Returns a new procedure which does the same
thing as get, and its setter is locked to set.

The intention of this procedure is, according to the SRFI-17 document, to allow implemen-
tations to inline setters efficiently. Gauche hasn’t implement such optimization yet.

A few macros that adopts the same semantics of generalized set! are also provided. They
are built on top of set!.

[Macro]push! place item
Conses item and the value of place, then sets the result to place. place is either a variable or
a form (proc arg ...), as the second argument of set!. The result of this form is undefined.

(define x (list 2))

(push! x 3)

x ⇒ (3 2)

(push! (cdr x) 4)

x ⇒ (3 4 2)

When place is a list, it roughly expands like the following.

(push! (foo x y) item)

≡
(let ((tfoo foo)

(tx x)

(ty y))

((setter tfoo) tx ty (cons item (tfoo tx ty))))

Note: Common Lisp’s push macro takes its argument reverse order. I adopted this order
since it is consistent with other destructive operations. Perl’s push function takes the same
argument order, but it appends item at the end of the array (Perl’s unshift is closer to
push!). You can use a queue (see Section 12.11 [Queue], page 599) if you need a behavior of
Perl’s push.

[Macro]pop! place
Retrieves the value of place, sets its cdr back to place and returns its car.

(define x (list 1 2 3))

(pop! x) ⇒ 1

x ⇒ (2 3)

(define x (vector (list 1 2 3)))

x ⇒ #((1 2 3))

(pop! (vector-ref x 0)) ⇒ 1

x ⇒ #((2 3))

Note: This works the same as Common Lisp’s pop. Perl’s pop pops value from the end of
the sequence; its shift does the same thing as pop!.

Chapter 4: Core syntax 47

[Macro]inc! place :optional delta
[Macro]dec! place :optional delta

Evaluates the value of place. It should be a number. Adds (inc!) or subtracts (dec!) delta
to/from it, and then stores the result to place. The default value of delta is 1.

This is like Common Lisp’s incf and decf, except that you can’t use the result of inc! and
dec!.

[Macro]update! place proc
Generalized form of push! etc. Proc must be a procedure which takes one argument and
returns one value. The original value of place is passed to the proc, then its result is set to
place.

(define a (cons 2 3))

(update! (car a) (lambda (v) (* v 3)))

a ⇒ (6 . 3)

(update! (cdr a) (cut - <> 3))

a ⇒ (6 . 0)

4.5 Conditionals

[Special Form]if test consequent alternative
[Special Form]if test consequent

[R7RS base] Test is evaluated. If it yields a true value, consequent is evaluated. Otherwise,
alternative is evaluated. If alternative is not provided, it results undefined value.

(if (number? 3) ’yes ’no) ⇒ yes

(if (number? #f) ’yes ’no) ⇒ no

(let ((x ’(1 . 2)))

(if (pair? x)

(values (car x) (cdr x))

(values #f #f)))

⇒ 1 and 2

[Special Form]cond clause1 clause2 . . .
[R7RS+ base][SRFI-61] Each clause must be the form

(test expr ...)

(test => expr)

(test guard => expr)

(else expr expr2 ...)

The last form can appear only as the last clause.

cond evaluates test of each clauses in order, until it yields a true value. Once it yields true,
if the clause is the first form, the corresponding exprs are evaluated and the result(s) of last
expr is(are) returned; if the clause is the second form, the expr is evaluated and it must yield
a procedure that takes one argument. Then the result of test is passed to it, and the result(s)
it returns will be returned.

The third form is specified in SRFI-61. In this form, test can yield arbitrary number of
values. The result(s) of test is(are) passed to guard; if it returns a true value, expr is applied
with an equivalent argument list, and its result(s) is(are) returned. If guard returns #f, the
evaluation proceeds to the next clause.

If no test yields true, and the last clause is not the fourth form (else clause), an undefined
value is returned.

Chapter 4: Core syntax 48

If the last clause is else clause and all tests are failed, exprs in the else clause are evaluated,
and its last expr’s result(s) is(are) returned.

(cond ((> 3 2) ’greater)

((< 3 2) ’less)) ⇒ greater

(cond ((> 3 3) ’greater)

((< 3 3) ’less)

(else ’equal)) ⇒ equal

(cond ((assv ’b ’((a 1) (b 2))) => cadr)

(else #f)) ⇒ 2

[Special Form]case key clause1 clause2 . . .
[R7RS+ base][SRFI-87] Key may be any expression. Each clause should have the form

((datum ...) expr expr2 ...)

((datum ...) => proc)

where each datum is an external representation of some object. All the datums must be
distinct. The last clause may be an “else clause,” which has the form

(else expr expr2 ...)

(else => proc)

First, key is evaluated and its result is compared against each datum. If the result of evalu-
ating key is equivalent (using eqv?, see Section 6.2.1 [Equality], page 89), to a datum, then
the expressions in the corresponding clause are evaluated sequentially, and the result(s) of
the last expression in the clause is(are) returned from the case expression. The forms con-
taining => are specified in SRFI-87. In these forms, the result of key is passed to proc, and
its result(s) is(are) returned from the case expression.

If the result of evaluating key is different from every datum, then if there is an else clause
its expressions are evaluated and the result(s) of the last is(are) the result(s) of the case
expression; otherwise the result of the case expression is undefined.

(case (* 2 3)

((2 3 5 7) ’prime)

((1 4 6 8 9) ’composite)) ⇒ composite

(case (car ’(c d))

((a) ’a)

((b) ’b)) ⇒ undefined

(case (car ’(c d))

((a e i o u) ’vowel)

((w y) ’semivowel)

(else ’consonant)) ⇒ consonant

(case 6

((2 4 6 8) => (cut + <> 1))

(else => (cut - <> 1))) ⇒ 7

(case 5

((2 4 6 8) => (cut + <> 1))

(else => (cut - <> 1))) ⇒ 4

[Macro]ecase key clause1 clause2 . . .
This works exactly like case, except when there’s no else clause and the value of key expres-
sion doesn’t match any of datums provided in clauses. While case form returns undefined
value for such case, ecase raises an error.

Chapter 4: Core syntax 49

It is taken from Common Lisp. It’s a convenient form when you want to detect when unex-
pected value is passed just in case.

(ecase 5 ((1) ’a) ((2 3) ’b) ((4) ’c))
⇒ ERROR: ecase test fell through: got 5, expecting one of (1 2 3 4)

[Special Form]and test . . .
[R7RS base] The test expressions are evaluated from left to right, and the value of the first
expression that evaluates to a false value is returned. Any remaining expressions are not
evaluated. If all the expressions evaluate to true values, the value of the last expression is
returned. If there are no expressions then #t is returned.

(and (= 2 2) (> 2 1)) ⇒ #t

(and (= 2 2) (< 2 1)) ⇒ #f

(and 1 2 ’c ’(f g)) ⇒ (f g)

(and) ⇒ #t

[Special Form]or test . . .
[R7RS base] The test expressions are evaluated from left to right, and the value of the
first expression that evaluates to a true value is returned. Any remaining expressions are
not evaluated. If all expressions evaluate to false values, the value of the last expression is
returned. If there are no expressions then #f is returned.

(or (= 2 2) (> 2 1)) ⇒ #t

(or (= 2 2) (< 2 1)) ⇒ #t

(or #f #f #f) ⇒ #f

(or (memq ’b ’(a b c))

(/ 3 0)) ⇒ (b c)

[Special Form]when test expr1 expr2 . . .
[Special Form]unless test expr1 expr2 . . .

[R7RS base] Evaluates test. If it yields true value (or false in case of unless), expr1 and
expr2 . . . are evaluated sequentially, and the result(s) of the last evaluation is(are) returned.
Otherwise, undefined value is returned.

[Macro]assume test-expr message . . .
[SRFI-145] This declares the programmer’s intent that the code following this path always
satisfy test-expr.

Currently, Gauche evaluates test-expr, and if it evaluates to false, an error is signalled.

(define (real-sqrt x)

(assume (and (real? x) (>= x 0)))

(sqrt x))

gosh> (real-sqrt -1)

*** ERROR: Invalid assumption: (and (real? x) (>= x 0))

Note: This form is advisory—test-expr isn’t guaranteed to be evaluated, nor it isn’t guar-
anteed for an error is signaled when test-expr fails. For example, we may add an optimiza-
tion option that omits testing in speed-optimized code in future. We may also enhance the
compiler to generate better code using the given information—for example, in the above
real-sqrt code, the compiler could theoretically deduce that (sqrt x) only needs to work
as real functions, so it would be able to generate specialized code. Use this form to inform
the compiler and the reader your intention.

[Macro]assume-type expr type
Check if the value of expression expr has type type. If not, raises an error.

(assume-type expr type) ≡ (assume (is-a? expr type))

Chapter 4: Core syntax 50

Note: Like assume, this form is advisory; it is not guaranteed that the check is performed,
nor expr is evaluated.

On the other hand, the type assumption may be used by the compiler future compilers for
optimizations.

4.6 Binding constructs

[Special Form]let ((var expr) . . .) body . . .
[Special Form]let* ((var expr) . . .) body . . .
[Special Form]letrec ((var expr) . . .) body . . .
[Special Form]letrec* ((var expr) . . .) body . . .

[R7RS base] Creates a local scope where var . . . are bound to the value of expr . . . , then
evaluates body vars must be symbols, and there shouldn’t be a duplication. The value(s)
of the last expression of body . . . becomes the value(s) of this form.

The four forms differ in terms of the scope and the order exprs are evaluated. Let evaluates
exprs before (outside of) let form. The order of evaluation of exprs is undefined, and the
compiler may reorder those exprs freely for optimization. Let* evaluates exprs, in the order
they appears, and each expr is evaluated in the scope where vars before it are bound.

Letrec evaluates exprs, in an undefined order, in the environment where vars are already
bound (to an undefined value, initially). letrec is necessary to define mutually recursive
local procedures. Finally, letrec* uses the same scope rule as letrec, and it evaluates expr
in the order of appearance.

(define x ’top-x)

(let ((x 3) (y x)) (cons x y)) ⇒ (3 . top-x)

(let* ((x 3) (y x)) (cons x y)) ⇒ (3 . 3)

(let ((cons (lambda (a b) (+ a b)))

(list (lambda (a b) (cons a (cons b 0)))))

(list 1 2)) ⇒ (1 2 . 0)

(letrec ((cons (lambda (a b) (+ a b)))

(list (lambda (a b) (cons a (cons b 0)))))

(list 1 2)) ⇒ 3

You need to use letrec* if evaluation of one expr requires the value of var that appears
before the expr. In the following example, calculating the value of a and b requires the value
of cube, so you need letrec*. (Note the difference from the above example, where calculating
the value of list doesn’t need to take the value of cons bound in the same letrec. The value
of cons isn’t required until list is actually applied.)

(letrec* ((cube (lambda (x) (* x x x)))

(a (+ (cube 1) (cube 12)))

(b (+ (cube 9) (cube 10))))

(= a b)) ⇒ #t

This example happens to work with letrec in the current Gauche, but it is not guaranteed to
keep working in future. You just should not rely on evaluation order when you use letrec.
In retrospect, it would be a lot simpler if we only have letrec*. Unfortunately letrec

preceded for long time in Scheme history and it’s hard to remove that. Besides, letrec does
have more opportunities to optimize than letrec*.

[Macro]let1 var expr body . . .
A convenient macro when you have only one variable. Expanded as follows.

Chapter 4: Core syntax 51

(let ((var expr)) body ...)

[Macro]if-let1 var expr then
[Macro]if-let1 var expr then else

This macro simplifies the following idiom:

(let1 var expr

(if var then else))

[Macro]rlet1 var expr body . . .
This macro simplifies the following idiom:

(let1 var expr

body ...

var)

[Macro]and-let* (binding . . .) body . . .
[SRFI-2] In short, it works like let*, but returns #f immediately whenever the expression in
bindings evaluates to #f.

Each binding should be one of the following form:

(variable expression)

The expression is evaluated; if it yields true value, the value is bound to variable,
then proceed to the next binding. If no more bindings, evaluates body If
expression yieds #f, stops evaluation and returns #f from and-let*.

(expressionx)

In this form, variable is omitted. Expression is evaluated and the result is used
just to determine whether we continue or stop further evaluation.

bound-variable

In this form, bound-variable should be an identifier denoting a bound variable.
If its value is not #f, we continue the evaluation of the clauses.

Let’s see some examples. The following code searches key from an assoc-list alist and returns
its value if found.

(and-let* ((entry (assoc key alist))) (cdr entry))

If arg is a string representation of an exact integer, returns its value; otherwise, returns 0:

(or (and-let* ((num (string->number arg))

((exact? num))

((integer? num)))

num)

0)

The following is a hypothetical code that searches a certain server port number from a few
possibilities (environment variable, configuration file, ...)

(or (and-let* ((val (sys-getenv "SERVER_PORT")))

(string->number val))

(and-let* ((portfile (expand-path "~/.server_port"))

((file-exists? portfile))

(val (call-with-input-string portfile port->string)))

(string->number val))

8080) ; default

[Macro]and-let1 var test exp1 exp2 . . .
Evaluates test, and if it isn’t #f, binds var to it and evaluates exp1 exp2 Returns the
result(s) of the last expression. If test evaluates to #f, returns #f.

Chapter 4: Core syntax 52

This can be easily written by and-let* or if-let1 as follows. However, we’ve written this
idiom so many times that it deserves another macro.

(and-let1 var test

exp1

exp2 ...)

≡

(and-let* ([var test])

exp1

exp2 ...)

≡

(if-let1 var test

(begin exp1 exp2 ...)

#f)

[Macro]fluid-let ((var val) . . .) body . . .
A macro that emulates dynamic scoped variables. Vars must be variables bound in the
scope including fluid-let form. Vals are expressions. Fluid-let first evaluates vals, then
evaluates body . . . , with binding vars to the corresponding values during the dynamic scope
of body

Note that, in multithreaded environment, the change of the value of vars are visible from
all the threads. This form is provided mainly for the porting convenience. Use parameter
objects instead (see Section 9.21 [Parameters], page 383) for thread-local dynamic state.

(define x 0)

(define (print-x) (print x))

(fluid-let ((x 1))

(print-x)) ⇒ ;; prints 1

[Special Form]receive formals expression body . . .
[SRFI-8] This is the way to receive multiple values. Formals can be a (maybe-improper) list
of symbols. Expression is evaluated, and the returned value(s) are bound to formals like the
binding of lambda formals, then body . . . are evaluated.

(define (divrem n m)

(values (quotient n m) (remainder n m)))

(receive (q r) (divrem 13 4) (list q r))

⇒ (3 1)

(receive all (divrem 13 4) all)

⇒ (3 1)

(receive (q . rest) (divrem 13 4) (list q rest))

⇒ (3 (1))

See also call-with-values in Section 6.18.8 [Multiple values], page 183, which is the
procedural equivalent of receive. You can use define-values (see Section 4.10 [Defini-
tions], page 59) to bind multiple values to variables simultaneously. Also let-values and
let*-values below provides let-like syntax with multiple values.

Chapter 4: Core syntax 53

[Macro]let-values ((vars expr) . . .) body . . .
[R7RS base] vars are a list of variables. expr is evaluated, and its first return value is bound
to the first variable in vars, its second return value to the second variable, and so on, then
body is evaluated. The scope of exprs are the outside of let-values form, like let.

(let-values (((a b) (values 1 2))

((c d) (values 3 4)))

(list a b c d)) ⇒ (1 2 3 4)

(let ((a 1) (b 2) (c 3) (d 4))

(let-values (((a b) (values c d))

((c d) (values a b)))

(list a b c d))) ⇒ (3 4 1 2)

vars can be a dotted list or a single symbol, like the lambda parameters.

(let-values (((x . y) (values 1 2 3 4)))

y) ⇒ (2 3 4)

(let-values ((x (values 1 2 3 4)))

x) ⇒ (1 2 3 4)

If the number of values returned by expr doesn’t match what vars expects, an error is signaled.

[Macro]let*-values ((vars expr) . . .) body . . .
[R7RS base] Same as let-values, but each expr’s scope includes the preceding vars.

(let ((a 1) (b 2) (c 3) (d 4))

(let*-values (((a b) (values c d))

((c d) (values a b)))

(list a b c d))) ⇒ (3 4 3 4)

[Macro]rec var expr
[Macro]rec (name . vars) expr . . .

[SRFI-31] A macro to evaluate an expression with recursive reference.

In the first form, evaluates expr while var in expr is bound to the result of expr. The second
form is equivalent to the followings.

(rec name (lambda vars expr ...))

Some examples:

;; constant infinite stream

(rec s (cons 1 (delay s)))

;; factorial function

(rec (f n)

(if (zero? n)

1

(* n (f (- n 1)))))

4.7 Sequencing

[Special Form]begin form . . .
[R7RS base] Evaluates forms sequentially, and returns the last result(s).

Begin doesn’t introduce new scope like let, that is, you can’t place "internal define" at the
beginning of forms generally. Semantically begin behaves as if forms are spliced into the

Chapter 4: Core syntax 54

surrounding context. For example, toplevel expression like the following is the same as two
toplevel definitions:

(begin (define x 1) (define y 2))

Here’s a trickier example:

(let ()

(begin

(define x 2)

(begin

(define y 3)

))

(+ x y))

≡

(let ()

(define x 2)

(define y 3)

(+ x y))

[Macro]begin0 exp0 exp1 . . .
Evaluates exp0, exp1, . . . , then returns the result(s) of exp0. The name is taken from
MzScheme. This is called prog1 in CommonLisp.

Unlike begin, this does creates a new scope, for the begin0 form is expanded as follows.

(receive tmp exp0

exp1 ...

(apply values tmp))

4.8 Iteration

[Special Form]do ((variable init [step]) . . .) (test expr . . .) body . . .
[R7RS base]

1. Evaluates init . . . and binds variable . . . to each result. The following steps are evaluated
under the environment where variables are bound.

2. Evaluate test. If it yields true, evaluates expr . . . and returns the result(s) of last expr.

3. Otherwise, evaluates body . . . for side effects.

4. Then evaluates step . . . and binds each result to a fresh variable . . . , and repeat from
the step 2.

The following example loops 10 times while accumulating each value of i to j and returns it.

(do ((i 0 (+ i 1))

(j 0 (+ i j)))

((= i 10) j)

(print j))

⇒ 45 ; also prints intermediate values of j

If step is omitted, the previous value of variable is carried over. When there’s no expr, the
non-false value returned by test becomes the value of the do expression.

Since do syntax uses many parentheses, some prefer using square brackets as well as paren-
theses to visually distinguish the groupings. A common way is to group each variable binding,
and the test clause, by square brackets.

(do ([i 0 (+ i 1)]

Chapter 4: Core syntax 55

[j 0 (+ i j)])

[(= i 10) j]

(print j))

Note: Unlike Common Lisp (and “for loops” in many languages), variable is freshly bound
for each iteration. The following example loops 5 times and creates a list of closures, each of
which closes the variable i. When you call each closures, you can see that each of them closes
different i at the time of the iteration they were created.

(define closures

(do ([i 0 (+ i 1)]

[c ’() (cons (^[] i) c)])

[(= i 5) (reverse c)]

))

((car closures)) ⇒ 0

((cadr closures)) ⇒ 1

[Special Form]let name ((var init) . . .) body . . .
[R7RS base] This variation of let is called “named let”. It creates the following procedure
and binds it to name, then calls it with init

(lambda (var ...) body ...)

This syntax itself isn’t necessarily related to iteration. However, the whole point of named
let is that the above lambda expression is within the scope of name—that is, you can call
name recursively within body. Hence this is used very often to write a loop by recursion
(thus, often the procedure is named loop, as in the following example.)

(let loop ([x 0] [y ’()])

(if (= x 10)

y

(loop (+ x 1) (cons x y))))

⇒ (9 8 7 6 5 4 3 2 1 0)

Of course you don’t need to loop with a named let; you can call name in non-tail position,
pass name to other higher-order procedure, etc. Named let exists since it captures a very
common pattern of local recursive procedures. Some Schemers even prefer named let to do,
for the better flexibility.

The following rewrite rule precisely explains the named let semantics. The tricky use of
letrec in the expansion is to make proc visible from body . . . but not from init

(let proc ((var init) ...) body ...)

≡
((letrec ((proc (lambda (var ...) body ...)))

proc)

init ...)

[Macro]dotimes ([variable] num-expr [result]) body . . .
[Macro]dolist ([variable] list-expr [result]) body . . .

Convenience loop syntaxes, imported from Common Lisp. They are not very Scheme-y, in
a sense that these rely on some side-effects in body Nevertheless these capture some
common pattern in day-to-day scripting.

You can use dotimes to repeat body . . . for a number of times given by num-expr, and dolist

to repeat body . . . while traversing a list given by list-expr. While body . . . is evaluated,
variable is bound to the current iteration count (in dotimes), or the current element in the
list (in dolist).

(dotimes (n 5) (write n))

Chapter 4: Core syntax 56

⇒ writes "12345"

(dolist (v ’(a b c d e)) (write v))

⇒ writes "abcde"

If you don’t need to refer to variable, you can omit it. For example, the following example
prints year! 10 times:

(dotimes (10) (print "yeah!"))

If the third element (result) is given in dotimes or dolist, it is evaluated after all repetition is
done, and its result becomes the result of dotimes/dolist. While result is evaluated, variable
is bound to the number of repetitions (in dotimes) or () (in dolist). It is supported because
Common Lisp has it.

Note that a fresh variable is bound for each iteration, as opposed to Common Lisp where
variable is mutated. So if you create a closure closing variable, it won’t be overwritten by
the subsequent iteration.

If you need more than simple iteration, you can use do form, named let, or Section 11.11
[Eager comprehensions], page 537, which provides rich way to iterate.

[Macro]while expr body . . .
[Macro]while expr => var body . . .
[Macro]while expr guard => var body . . .

Var is an identifier and guard is a procedure that takes one argument.

In the first form, expr is evaluated, and if it yields a true value, body . . . are evaluated. It
is repeated while expr yields true value.

In the second form, var is bound to a result of expr in the scope of body

In the third form, the value expr yields are passed to guard, and the execution of body . . .
is repeated while guard returns a true value. var is bound to the result of expr.

The return value of while form itself isn’t specified.

(let ((a ’(0 1 2 3 4)))

(while (pair? a)

(write (pop! a)))) ⇒ prints "01234"

(let ((a ’(0 1 2 3 #f 5 6)))

(while (pop! a) integer? => var

(write var))) ⇒ prints "0123"

[Macro]until expr body . . .
[Macro]until expr guard => var body . . .

Like while, but the condition is reversed. That is, the first form repeats evaluation of expr
and body . . . until expr yields true. In the second form, the result of expr is passed to guard,
and the execution is repeated until it returns true. Var is bound to the result of expr.

(The second form without guard isn’t useful in until, since var would always be bound to
#f).

The return value of until form itself isn’t specified.

(let ((a ’(0 1 2 3 4)))

(until (null? a)

(write (pop! a)))) ⇒ prints "01234"

(until (read-char) eof-object? => ch

(write-char ch))

⇒ reads from stdin and writes char until EOF is read

Chapter 4: Core syntax 57

4.9 Quasiquotation

[Special Form]quasiquote template
[R7RS base] Quasiquotation is a convenient way to build a structure that has some fixed
parts and some variable parts. See the explanation below.

[Reader Syntax]‘template
[R7RS] The syntax ‘x is read as (quasiquote x).

[Special Form]unquote datum . . .
[Special Form]unquote-splicing datum . . .

[R7RS base] These syntaxes have meaning only when they appear in the template of
quasiquoted form. R5RS says nothing about these syntaxes appear outside of quasiquote.
Gauche signals an error in such case, for it usually indicates you forget quasiquote somewhere.

R5RS only allows unquote and unquote-splicing to take a single argument; it is undefined
if you have (unquote) or (unquote x y) inside quasiquoted form. R6RS allows zero or
multi-arguments, and Gauche follows that.

[Reader Syntax],datum
[Reader Syntax],@datum

[R7RS] The syntaxes ,x and ,@x are read as (unquote x) and (unquote-splicing x), re-
spectively.

Quasiquote basics

Suppose you want to create a list (foo bar x y), where foo and bar are symbols, and x and y
are the value determined at runtime. (For the sake of explanation, let’s assume we have variables
x and y that provides those values.) One way to do that is to call the function list explicitly.

(let ((x 0) (y 1))

(list ’foo ’bar x y)) ⇒ (foo bar 0 1)

You can do the same thing with quasiquote, like this:

(let ((x 0) (y 1))

‘(foo bar ,x ,y)) ⇒ (foo bar 0 1)

The difference between the two notations is that the explicit version quotes the parts that
you want to insert literally into the result, while the quasiquote version unquotes the parts that
you don’t want to quote.

The quasiquote version gets simpler and more readable when you have lots of static parts
with scattered variable parts in your structure.

That’s why quasiquote is frequently used with legacy macros, which are basically a procedure
that create program fragments from variable parts provided as macro arguments. See the simple-
minded my-if macro that expands to cond form:

(define-macro (my-if test then else)

‘(cond (,test ,then)

(else ,else)))

(macroexpand ’(my-if (< n 0) n (- n)))

⇒ (cond ((< n 0) n) (else (- n)))

Note the two elses in the macro definition; one isn’t unquoted, thus appears liteally in the
output, while another is unquoted and the corresponding macro argument is inserted in its place.

Of course you can use quasiquotes unrelated to macros. It is a general way to construct
structures. Some even prefer using quasiquote to explicit construction even most of the structure
is variable, for quasiquoted form can be more concise. Gauche also tries to minimize runtime

Chapter 4: Core syntax 58

allocation for quasiquoted forms, so it may potentially be more efficient; see "How static are
quasiquoted forms?" below.

Splicing

When (unquote-splicing expr) appears in a quasiquoted form, expr must evaluate to a list,
which is spliced into the surrounding context. It’s easier to see examples:

(let ((x ’(1 2 3)))

‘(a ,@x b)) ⇒ (a 1 2 3 b)

(let ((x ’(1 2 3)))

‘(a ,x b)) ⇒ (a (1 2 3) b)

(let ((x ’(1 2 3)))

‘#(a ,@x b)) ⇒ #(a 1 2 3 b)

Compare the unquote version and unquote-splicing version. Splicing also works within a
vector.

Multi-argument unquotes

If unquote or unquote-splicing takes multiple arguments, they are interpreted as if each of
its arguments are unquoted or unquote-spliced.

;; This is the same result as ‘(,(+ 1 2) ,(+ 2 3) ,(+ 3 4))

‘((unquote (+ 1 2) (+ 2 3) (+ 3 4)))
⇒ (3 5 7)

;; This is the same result as

;; ‘(,@(list 1 2) ,@(list 2 3) ,@(list 3 4))

‘((unquote-splicing (list 1 2) (list 2 3) (list 3 4)))
⇒ (1 2 2 3 3 4)

;; Edge cases

‘((unquote)) ⇒ ()

‘((unquote-splicing)) ⇒ ()

It is an error for zero or multiple argument unquote/unquote-splicing forms appear which
you cannot splice multiple forms into.

;; Multiple arguments unquotes are error in non-splicing context

‘(unquote 1 2) ⇒ error
‘(unquote-splicing 1 2) ⇒ error

Note that the abbreviated notations ,x and ,@x are only for single-argument forms. You
have to write unquote or unquote-splicing explicitly for zero or multiple argument forms;
thus you don’t usually need to use them. These forms are supported mainly to make the nested
unquoting forms such as ,,@ and ,@,@—R5RS cannot handle the case the inner unquote-splicing
form expands into zero or multiple forms.

How static are quasiquoted forms?

When quasiquoted form contains variable parts, what happens at runtime is just the same as
when an explicit form is used: ‘(,x ,y) is evaluated exactly like (list x y). However, Gauche
tries to minimize runtime allocation when a quasiquoted form has static parts.

First of all, if there’s no variable parts in quasiquoted form, like ‘(a b c), the entire form is
allocated statically. If there is a static tail in the structure, it is also allocated statically; e.g.
‘((,x a b) (,y c d)) works like (list (cons x ’(a b)) (cons y ’(c d))).

Furthermore, when an unquoted expression is a constant expression, Gauche embeds it into
the static form. If you’ve defined a constant like (define-constant x 3), then the form ‘(,x

Chapter 4: Core syntax 59

,(+ x 1)) is compiled as the constant ’(3 4). (See Section 4.10 [Definitions], page 59, for the
explanation of define-constant form.)

In general it is hard to say which part of quasiquoted form is compiled as a static datum
and which part is not, so you shouldn’t write a code that assumes some parts of the structure
returned from quasiquote are freshly allocated. In other words, you better avoid mutating such
structures.

4.10 Definitions

[Special Form]define variable expression
[Special Form]define (variable . formals) body . . .

[R7RS+] This form has different meanings in the toplevel (without no local bindings) or inside
a local scope.

On toplevel, it defines a global binding to a symbol variable. In the first form, it globally
binds a symbol variable to the value of expression, in the current module.

(define x (+ 1 2))

x ⇒ 3

(define y (lambda (a) (* a 2)))

(y 8) ⇒ 16

The second form is a syntactic sugar of defining a procedure. It is equivalent to the following
form.

(define (name . args) body ...)

≡ (define name (lambda args body ...))

If the form appears inside a local scope (internal define), this introduce a local binding of the
variable.

Internal defines can appear in the beginning of body of lambda or other forms that introduces
local bindings. They are equivalent to a letrec* form, as shown below.

(lambda (a b)

(define (cube x) (* x x x))

(define (square x) (* x x))

(+ (cube a) (square b)))

≡

(lambda (a b)

(letrec* ([cube (lambda (x) (* x x x))]

[square (lambda (x) (* x x))])

(+ (cube a) (square b))))

Since internal defines are essentially a letrec* form, you can write mutually recursive local
functions, and you can use preceding bindings introduced in the same scope to calculate the
value to be defined. However, you can’t use a binding that is introduced after an internal
define form to calculate its value; if you do so, Gauche may not report an error immediately,
but you may get strange errors later on.

(lambda (a)

(define x (* a 2))

(define y (+ x 1)) ; ok to use x to calculate y

(* a y))

(lambda (a)

Chapter 4: Core syntax 60

;; You can refer to even? in odd?, since the value of even?

;; isn’t used at the time odd? is defined; it is only used

;; when odd? is called.

(define (odd? x) (or (= x 1) (not (even? (- x 1)))))

(define (even? x) (or (= x 0) (not (odd? (- x 1)))))

(odd? a))

(lambda (a)

;; This is not ok, for defining y needs to use the value

;; of x. However, you may not get an error immediately.

(define y (+ x 1))

(define x (* a 2))

(* a y))

Inside the body of binding constructs, internal defines must appear before any expression of
the same level. The following code isn’t allowed, for an expression (print a) precedes the
define form.

(lambda (a)

(print a)

(define (cube x) (* x x x)) ; error!

(cube a))

It is also invalid to put no expressions but internal defines inside the body of binding con-
structs, although Gauche don’t report an error.

Note that begin (see Section 4.7 [Sequencing], page 53) doesn’t introduce a new scope.
Defines in the begin act as if begin and surrounding parenthesis are not there. Thus these
two forms are equivalent.

(let ((x 0))

(begin

(define (foo y) (+ x y)))

(foo 3))

≡
(let ((x 0))

(define (foo y) (+ x y))

(foo 3))

[Macro]define-values (var . . .) expr
[Macro]define-values (var var1 var2) expr
[Macro]define-values var expr

[R7RS base] Expr is evaluated, and each value of the result is bound to each vars. In the
first form, it is an error unless expr yields the same number of values as vars.

(define-values (lo hi) (min&max 3 -1 15 2))

lo ⇒ -1

hi ⇒ 15

In the second form, expr may yield as many values as var var1 . . . or more; the excess values
are made into a list and bound to var2.

(define-values (a b . c) (values 1 2 3 4))

a ⇒ 1

b ⇒ 2

c ⇒ (3 4)

Chapter 4: Core syntax 61

In the last form, all the values yielded by expr are gathered to a list and bound to var.

(define-values qr (quotient&remainder 23 5))

qr ⇒ (4 3)

You can use define-values wherever define is allowed; that is, you can mix define-values
in internal defines.

(define (foo . args)

(define-values (lo hi) (apply min&max args))

(define len (length args))

(list len lo hi))

(foo 1 4 9 3 0 7)

⇒ (6 0 9)

[Special Form]define-constant variable expression
[Special Form]define-constant (variable . formals) body . . .

This form is only effective in toplevel.

Like top-level define, it defines a top-level definition of variable with the value of expression,
but additionally tells the compiler that (1) the binding won’t change, and (2) the value of
expression won’t change from the one computed at the compile time. So the compiler can
replace references of variable with the compile-time value of expression.

An error is signaled when you use set! to change the value of variable. It is allowed to
redefine variable, but a warning is printed.

The difference from define-inline below is that the value of expression is computed at the
compile time and treated as a literal. Suppose you define x as follows:

(define-constant x (vector 1 2 3))

Then, the code (list x) is compiled to the same code as (list ’#(1 2 3)).

This distinctino is especially important when you do AOT (ahead of time) compilation.

There’s no “internal define-constant”, since the compiler can figure out whether a local
binding is mutated, and optimize code accordingly, without a help of declarations.

[Special Form]define-inline variable expression
[Special Form]define-inline (variable . formals) body . . .

The second form is a shorthand of (define-inline variable (lambda formals body ...)).

If this appears in the position of internal defines, it is the same as internal defines.

If it appears in the toplevel, it defines an inlinable binding. An inlinable binding promises
the compiler that the binding won’t change, but unlike constant bindings introduced by
define-constant, the actual value of expression may be computed at runtime. Hence the
compiler cannot simply replace the references of variable with the compile-time value of
expression.

However, if the compiler can determine that the value of expression is to be a procedure, it
may inline the procedure where it is invoked.

In the example below, the body of dot3 is inlined where dot3 is called. Furthermore, since
the second argument of dot3 is a constant vector, you can see vector-ref on it is computed
at compile time (e.g. CONST -1.0 etc.)

gosh> (define-inline (dot3 a b)

(+ (* (vector-ref a 0) (vector-ref b 0))

(* (vector-ref a 1) (vector-ref b 1))

(* (vector-ref a 2) (vector-ref b 2))))

Chapter 4: Core syntax 62

dot3

gosh> (disasm (^[] (dot3 x ’#(-1.0 -2.0 -3.0))))

CLOSURE #<closure (#f)>

=== main_code (name=#f, code=0x28524e0, size=26, const=4 stack=6):

signatureInfo: ((#f))

0 GREF-PUSH #<identifier user#x.20d38e0>; x

2 LOCAL-ENV(1) ; (dot3 x (quote #(-1.0 -2.0 -3.0)))

3 LREF0 ; a

4 VEC-REFI(0) ; (vector-ref a 0)

5 PUSH

6 CONST -1.0

8 NUMMUL2 ; (* (vector-ref a 0) (vector-ref b 0))

9 PUSH

10 LREF0 ; a

11 VEC-REFI(1) ; (vector-ref a 1)

12 PUSH

13 CONST -2.0

15 NUMMUL2 ; (* (vector-ref a 1) (vector-ref b 1))

16 NUMADD2 ; (+ (* (vector-ref a 0) (vector-ref b 0))

17 PUSH

18 LREF0 ; a

19 VEC-REFI(2) ; (vector-ref a 2)

20 PUSH

21 CONST -3.0

23 NUMMUL2 ; (* (vector-ref a 2) (vector-ref b 2))

24 NUMADD2 ; (+ (* (vector-ref a 0) (vector-ref b 0))

25 RET

As an extreme case, if both arguments are compile-time constant, dot3 is completely com-
puted at compile time:

gosh> (disasm (^[] (dot3 ’#(1 2 3) ’#(4 5 6))))

CLOSURE #<closure (#f)>

=== main_code (name=#f, code=0x2a2b8e0, size=2, const=0 stack=0):

signatureInfo: ((#f))

0 CONSTI(32)

1 RET

The same inlining behavior may be achieved by making dot3 a macro, but if you use
define-inline, dot3 can be used as procedures when needed:

(map dot3 list-of-vectors1 list-of-vectors2)

If dot3 is a macro you can’t pass it as a higher-order procedure.

The inline expansion pass is run top-to-bottom. Inlinable procedure must be defined before
used in order to be inlined.

If you redefine an inlinable binding, Gauche warns you, since the redefinition won’t affect
already inlined call sites. So it should be used with care—either use it internal to the module,
or use it for procedures that won’t change in future. Inlining is effective for performance-
critical parts. If a procedure is called sparingly, there’s no point to define it inlinable.

[Special Form]define-in-module module variable expression
[Special Form]define-in-module module (variable . formals) body . . .

This form must appear in the toplevel. It creates a global binding of variable in module,
which must be either a symbol of the module name or a module object. If module is a
symbol, the named module must exist.

Chapter 4: Core syntax 63

Expression is evaluated in the current module.

The second form is merely a syntactic sugar of:

(define-in-module module variable (lambda formals body ...))

Note: to find out if a symbol has definition (global binding) in the current module, you can
use global-variable-bound? (see Section 4.13.6 [Module introspection], page 72).

4.11 Inclusions

[Special Form]include ↓lename . . .
[Special Form]include-ci ↓lename . . .

[R7RS base] Reads ↓lename . . . at compile-time, and insert their contents as if the forms
are placed in the includer’s source file, surrounded by begin. The include form reads files
as is, while include-ci reads files in case-insensitive way, as if #!fold-case is specified in
the beginning of the file (see Section 2.4 [Case-sensitivity], page 11).

The coding magic comment in each file is honored while reading that file (see Section 2.3
[Multibyte scripts], page 11).

If ↓lename is absolute, the file is just searched. If it is relative, the file is first searched relative
to the file contaning the include form, then the directories in *load-path* are tried.

Example: Suppose a file a.scm contains the following code:

(define x 0)

(define y 1)

You can include this file into another source, like this:

(define (foo)

(include "a.scm")

(list x y))

It works as if the source is written as follows:

(define (foo)

(begin

(define x 0)

(define y 1))

(list x y))

(Note: In version 0.9.4, include behaved differently when pathname begins with either ./
or ../—in which case the file is searched relative to the current working directory of the
compiler. It is rather an artifact of include sharing file search routine with load. But unlike
load, which is a run-time operation, using relative path to the current directory won’t make
much sense for include, so we changed the behavior in 0.9.5.)

Gauche has other means to incorporate source code from another files. Here’s the comparison.

require (use and extend calls require internally)
• Both require and include work at compile-time.

• Require works only in toplevel context, while include can be anywhere.

• Require reads the file only once (second and later require on the same file
becomes no-op), while include reads the file every place it appears.

• The file is searched from *load-path*. The location of the file require form
appears doesn’t matter. (You can add directories relative to the requiring file
using the :relative flag in add-load-path, though).

Chapter 4: Core syntax 64

• Even if the current module is changed by select-module inside the required file,
it is only effective while the required file is read. On the other hand, include
inserts any S-expressions in the included file to the place include appears, so
the effect of select-module persists after include form (Note: Encoding magic
comment and #!fold-case/#!no-fold-case are dealt with by the reader, so
those effect is contained in the file even with include).

• It is forbidden to the file loaded by require to insert a toplevel binding with-
out specifying a module. In other words, the file you require should generally
use define-module, select-module or define-library. See Section 6.23.3
[Require and provide], page 227, for further discussion. On the other hand,
include has no such restrictions.

load

• Works at runtime, while include works at compile-time.

• Works only in toplevel context, while include can be anywhere.

• The file is searched from *load-path*.

• As the case with require, change of the current module won’t persist after
load.

Usually, require (or use and extend) are better way to incorporate sources in other files.
The include form is mainly for the tricks that can’t be acheved with require. For example,
you have a third-party R5RS code and you want to wrap it with Gauche module system. Using
include, you place the following small source file along the third-party code, and you can load
the code with (use third-party-module) without changing the original code at all.

(define-module third-party-module

(export proc ...)

(include "third-party-source.scm"))

4.12 Feature conditional

The cond-expand macro

Sometimes you need to have a different piece of code depending on available features provided
by the implemantation and/or platform. For example, you may want to switch behavior de-
pending on whether networking is available, or to embed an implementation specific procedures
in otherwise-portable code.

In C, you use preprocessor directives such as #ifdef. In Common Lisp, you use reader macro
#+ and #-. In Scheme, you have cond-expand:

[Macro]cond-expand (feature-requirement command-or-de↓nition . . .) . . .
[R7RS base] This macro expands to command-or-de↓nition . . . if feature-requirement is
supported by the current platform.

feature-requirement must be in the following syntax:

feature-requirement

: feature-identifier

| (and feature-requirement ...)

| (or feature-requirement ...)

| (not feature-requirement)

| (library library-name)

The macro tests each feature-requirement in order, and if one is satisfied, the macro itself
expands to the corresponding command-or-de↓nition

Chapter 4: Core syntax 65

The last clause may have else in the position of feature-requirement, to make the clause
expanded if none of the previous feature requirement is fulfilled.

If there’s neither a satisfying clause nor else clause, cond-expand form throws an error. It
is to detect the case early that the platform doesn’t have required features. If the feature
you’re testing is optional, that is, your program works without the feature as well, add empty
else clause as follows.

(cond-expand

[feature expr] ; some optional feature

[else])

feature-identi↓er is a symbol that indicates a feature. If such a feature is supported in the
current platform, it satisfies the feature-requirement. You can do boolean combination of
feature-requirements to compose more complex conditions.

The form (library library-name) is added in R7RS, and it is fulfilled when the named
library is available. Since this is R7RS construct, you have to use R7RS-style library name—
list of symbols/integers, e.g. (gauche net) instead of gauche.net.

Here’s a typical example: Suppose you want to have implementation-specific part for Gauche,
Chicken Scheme and ChibiScheme. Most modern Scheme impelementations defines a feature-
identifier to identify itself. You can write the conditional part as follows:

(cond-expand

[gauche (gauche-specific-code)]

[(or chicken chibi) (chicken-chibi-specific-code)]

[else (fallback-code)]

)

It is important that the conditions of cond-expand is purely examined at the macro-expansion
time, and unfulfilled clauses are discarded. Thus, for example, you can include macro calls
or language extensions that may not be recognized on some implementations. You can also
conditionally define global bindings.

Compare that to cond, which examines conditions at runtime. If you include unsupported
macro call in one of the conditions, it may raise an error at macro expansion time, even if
that clause will never be executed on the platform. Also, it is not possible to conditionally
define global bindings using cond.

There’s a caveat, though. Suppose you want to save the result of macro expansion, and run
the expanded result later on other platforms. The result code is based on the features of
the platform the macro expansion takes place, which may not agree with the features of the
platform the code will run. (This issue always arises in cross-compiling situation in general.)

See below for the list of feature identifiers defined in Gauche.

Gauche-specific feature identifiers

gauche

gauche-X.X.X

Indicates you’re running on Gauche. It is useful to put Gauche-specific code in a
portable program. X.X.X is the gauche’s version (e.g. gauche-0.9.4), in case you
want to have code for specific Gauche version. (Such feature identifier is suggested
by R7RS; but it might not be useful if we don’t have means to compare versions.
Something to consider in future versions.)

gauche.os.windows

gauche.os.cygwin

Defined on Windows-native platform and Cygwin/Windows platform, respectively.
If neither is defined you can assume it’s a unix variant. (Cygwin is supposedly unix
variant, but corners are different enough to deserve it’s own feature identifier.)

Chapter 4: Core syntax 66

gauche.ces.utf8

gauche.ces.eucjp

gauche.ces.sjis

gauche.ces.none

Either one of these is defined based on Gauche’s native character encoding scheme.
See Section 2.2 [Multibyte strings], page 10, for the details.

gauche.net.tls

gauche.net.tls.axtls

gauche.net.tls.mbedtls

Defined if the runtime supports TLS in networking. The two sub feature iden-
tifiers, gauche.net.tls.axtls and gauche.net.tls.mbedtls, are defined if each
subsystem axTLS and mbedTLS is supported, respectively.

gauche.net.ipv6

Defined if the runtime supports IPv6. Note that this only indicates Gauche has
been built with IPv6 support; the OS may not allow IPv6 features, in that case
you’ll get system error when you try to use IPv6.

gauche.sys.threads

gauche.sys.pthreads

gauhce.sys.wthreads

If the runtime supports multithreading, gauche.sys.threads is defined (see
Section 9.32 [Threads], page 428). Multithreading is based on either POSIX
pthreads or Windows threads. The former defines gauche.sys.pthreads, and the
latter defines gauche.sys.wthreads.

gauche.sys.sigwait

gauche.sys.setenv

gauche.sys.unsetenv

gauche.sys.clearenv

gauche.sys.getloadavg

gauche.sys.getrlimit

gauche.sys.lchown

gauche.sys.getpgid

gauche.sys.nanosleep

gauhce.sys.crypt

gauche.sys.symlink

gauche.sys.readlink

gauche.sys.select

gauche.sys.fcntl

gauche.sys.syslog

gauche.sys.setlogmask

gauche.sys.openpty

gauche.sys.forkpty

Those are defined based on the availability of these system features of the platform.

R7RS feature identifiers

r7rs Indicates the implementation complies r7rs.

exact-closed

Exact arithmetic operations are closed; that is, dividing an exact number by a
non-zero exact number always yields an exact number.

ieee-float

Using IEEE floating-point number internally. Full unicode support.

Chapter 4: Core syntax 67

ratios Rational number support

posix

windows Either one is defined, according to the platform.

big-endian

little-endian

Either one is defined, according to the platform.

4.13 Modules

This section describes the semantics of Gauche modules and its API. See also Section 3.7 [Writing
Gauche modules], page 31, for the conventions Gauche is using for its modules.

For R7RS programs, they are called “libraries” and have different syntax than Gauche mod-
ules. See Section 10.2.1 [R7RS library form], page 472, for the details.

4.13.1 Module semantics

Module is an object that maps symbols onto bindings, and affects the resolution of global variable
reference.

Unlike CommonLisp’s packages, which map names to symbols, in Gauche symbols are eq?

in principle if two have the same name (except uninterened symbols; see Section 6.7 [Symbols],
page 127). However, Gauche’s symbol doesn’t have a ’value’ slot in it. From a given symbol, a
module finds its binding that keeps a value. Different modules can associate different bindings
to the same symbol, that yield different values.

;; Makes two modules A and B, and defines a global variable ’x’ in them

(define-module A (define x 3))

(define-module B (define x 4))

;; #<symbol ’x’> ---[module A]--> #<binding that has 3>

(with-module A x) ⇒ 3

;; #<symbol ’x’> ---[module B]--> #<binding that has 4>

(with-module B x) ⇒ 4

A module can export a part or all of its bindings for other module to use. A module can
import other modules, and their exported bindings become visible to the module. A module
can import any number of modules.

(define-module A

(export pi)

(define pi 3.1416))

(define-module B

(export e)

(define e 2.71828))

(define-module C

(import A B))

(select-module C)

(* pi e) ⇒ 8.539748448

A module can also be inherited, that is, you can extend the existing module by inheriting it
and adding new bindings and exports. From the new module, all ancestor’s bindings (including
non-exported bindings) are visible. (A new module inherits the gauchemodule by default, which

Chapter 4: Core syntax 68

is why the built-in procedures and syntax of gauche are available in the new module). From
outside, the new module looks like having all exported bindings of the original module plus the
newly defined and exported bindings.

;; Module A defines and exports deg->rad.

;; A binding of pi is not exported.

(define-module A

(export deg->rad)

(define pi 3.1416) ;; not exported

(define (deg->rad deg) (* deg (/ pi 180))))

;; Module Aprime defines and exports rad->deg.

;; The binding of pi is visible from inside Aprime.

(define-module Aprime

(extend A)

(export rad->deg)

(define (rad->deg rad) (* rad (/ 180 pi))))

;; Module C imports Aprime.

(define-module C

(import Aprime)

;; Here, both deg->rad and rad->deg are visible,

;; but pi is not visible.

)

At any moment of the compilation, there is one "current module" available, and the global
variable reference is looked for from the module. If there is a visible binding of the variable, the
variable reference is compiled to the access of the binding. If the compiler can’t find a visible
binding, it marks the variable reference with the current module, and delays the resolution of
binding at the time the variable is actually used. That is, when the variable is referenced at
run time, the binding is again looked for from the marked module (not the current module at
the run time) and if found, the variable reference code is replaced for the the code to access the
binding. If the variable reference is not found even at run time, an ’undefined variable’ error is
signaled.

Once the appropriate binding is found for the global variable, the access to the binding is
hard-wired in the compiled code and the global variable resolution will never take place again.

The definition special form such as define and define-syntax inserts the binding to the
current module. Thus it may shadow the binding of imported or inherited modules.

The resolution of binding of a global variable happens like this. First, the current module is
searched. Then, each imported module is taken in the reverse order of import, and searched,
including each module’s ancestors. Note that import is not transitive; imported module list is
not chased recursively. Finally, ancestors of the current module are searched in order.

This order is important when more than one modules defines the same name and your module
imports both. Assuming your module don’t define that name, if you first import a module A

then a module B, you’ll see B’s binding.

If you import A, then B, then A again, the last import takes precedence; that is, you’ll see A’s
binding.

If two modules you want to use exports bindings of the same name and you want to access
both, you can add prefix to either one (or both). See Section 4.13.4 [Using modules], page 70,
for the details.

Chapter 4: Core syntax 69

4.13.2 Modules and libraries

Modules are run-time data structure; you can procedurally create modules with arbitrary names
at run-time.

However, most libraries use modules to create their own namespace, so that they can control
which bindings to be visible from library users. (This “library” is a general term, broader than
R7RS “library”).

Usually a library is provided in the form of one or more Scheme source file(s), so it is
convenient to have a convention to map module names to file names, and vice versa; then, you
can load a library file and import its module by one action with use macro, for example.

For the time being, Gauche uses a simple rules for this mapping: Module names are organized
hierarchically, using period ‘.’ for separator, e.g. gauche.mop.validator. If such a module is
requested and doesn’t exist in the current running environment, Gauche maps the module name
to a pathname by replacing periods to directory separator, i.e. gauche/mop/validator, and
look for gauche/mop/validator.scm in the load paths.

Note that this is just a default behavior. Theoretically, one Scheme source file may contain
multiple modules, or one module implementation may span to multiple files. In future, there
may be some hook to customize this mapping for special cases. So, when you are writing routines
that deal with modules and library files, do not apply the above default rule blindly. Gauche
provides two procedures, module-name->path and path->module-name, to do mapping for you
(see Section 4.13.6 [Module introspection], page 72, for details).

4.13.3 Defining and selecting modules

[Special Form]define-module name body . . .
Name must be a symbol. If a module named name does not exist, create one. Then evaluates
body sequentially in the module.

[Special Form]select-module name
Makes a module named name as the current module. It is an error if no module named name
exists.

If select-module is used in the Scheme file, its effect is limited inside the file, i.e. even if
you load/require a file that uses select-module internally, the current module of requirer is
not affected.

[Special Form]with-module name body . . .
Evaluates body sequentially in the module named name. Returns the last result(s). If no
module named name, an error is signaled.

[Special Form]current-module
Evaluates to the current module in the compile context. Note that this is a special form, not
a function. Module in Gauche is statically determined at compile time.

(define-module foo

(export get-current-module)

(define (get-current-module) (module-name (current-module))))

(define-module bar

(import foo)

(get-current-module)) ⇒ foo ; not bar

Chapter 4: Core syntax 70

4.13.4 Using modules

[Special Form]export spec . . .
[R7RS base] Makes bindings specified by each spec available to modules that imports the
current module.

Each spec can be either one of the following forms, where name and exported-name are
symbols.

name The binding with name is exported.

(rename name exported-name)

The binding with name is exported under an alias exported-name.

Note: In Gauche, export is just a special form you can put in the middle of the program,
whereas R7RS defines export as a library declaration, that can only appear immediately
below define-library form. See Section 10.2.1 [R7RS library form], page 472, for the
details.

[Special Form]export-all
Makes all bindings in the current module available to modules that imports it.

[Special Form]import import-spec . . .
Makes all or some exported bindings in the module specified by import-spec available in the
current module. The syntax of import-spec is as follows.

<import-spec> : <module-name>

| (<module-name> <import-option> ...)

<import-option> : :only (<symbol> ...)

| :except (<symbol> ...)

| :rename ((<symbol> <symbol>) ...)

| :prefix <symbol>

<module-name> : <symbol>

The module named by module-name should exist when the compiler sees this special form.

Imports are not transitive. The modules that module-names are importing are not automat-
ically imported to the current module. This keeps modules’ modularity; a library module
can import whatever modules it needs without worrying about polluting the namespace of
the user of the module.

import-option can be used to change how the bindings are imported. With :only, only the
bindings with the names listed in <symbol> ... are imported. With :except, the exported
bindings except the ones with the listed names are imported. With :rename, the binding of
each name in the first of two-symbol list is renamed to the second of it. With :prefix, the
exported bindings are visible with the names that are prefixed by the symbol to the original
names. Without import options, all the exported bindings are imported without a prefix.

(define-module M (export x y)

(define x 1)

(define y 2)

(define z 3))

(import M)

x ⇒ 1

z ⇒ error. z is not exported from M

Chapter 4: Core syntax 71

(import (M :only (y)))

x ⇒ error. x is not in :only list.

(import (M :except (y)))

y ⇒ error. y is excluded by :except.

(import (M :prefix M:))

x ⇒ error
M:x ⇒ 1

M:y ⇒ 2

If more than one import option are given, it is processed as the order of appearance. That
is, if :prefix comes first, then :only or :except has to list the name with prefix.

Note: R7RS has import form, which has slightly differnent syntax and semantics. See
Section 10.1.2 [Three forms of import], page 470, for the details.

[Macro]use name :key only except rename pre↓x
A convenience macro that combines module imports and on-demand file loading. Basically,
(use foo) is equivalent to the following two forms:

(require "foo")

(import foo)

That is, it loads the library file named “foo” (if not yet loaded) which defines a module
named foo in it, and then import the module foo into the current module.

The keyword argument only, except, and pre↓x are passed to import as the import options.

(use srfi-1 :only (iota) :prefix srfi-1:)

(srfi-1:iota 3) ⇒ (0 1 2)

Although the files and modules are orthogonal concept, it is practically convenient to separate
files by modules. Gauche doesn’t force you to do so, and you can always use require and
import separately. However, all modules provided with Gauche are arranged so that they
can be used by use macro.

If a module is too big to fit in one file, you can split them into several subfiles and one main
file. The main file defines the module, and either loads, requires, or autoloads subfiles.

Actually, the file pathname of the given module name is obtained by the procedure
module-name->path below. The default rule is to replace periods ‘.’ in the name for ‘/’; for
example, (use foo.bar.baz) is expanded to:

(require "foo/bar/baz")

(import foo.bar.baz)

This is not very Scheme-ish way, but nevertheless convenient. In future, there may be some
mechanism to customize this mapping.

The file to be use’d must have explict module selection to have any toplevel definitions (usu-
ally via define-module/select-module pair or define-library). If you get an error saying
“Attempted to create a binding in a sealed module: module: #<module gauche.require-
base>”, that’s because the file lacks module selection. See Section 6.23.3 [Require and pro-
vide], page 227, for further discussion.

Chapter 4: Core syntax 72

4.13.5 Module inheritance

The export-import mechanism doesn’t work well in some cases, such as:

• You want to create a module that is mostly the same as the existing one, but adding or
altering some definitions.

• You wrote a bunch of related modules that are often used together, and not want your users
to repeat a bunch of ’use’ forms every time they use your module.

You can use module inheritance in these cases.

[Macro]extend module-name . . .
Makes the current module inherit from named modules. The current inheritance information
is altered by the inheritance information calculated from given modules.

A new module inherits from gauche module when created. If you put (extend scheme) in
that module, for example, the module resets to inherit directly from scheme module that has
only bindings defined in R5RS, hence, after the export form, you can’t use ’import’ or any
other gauche-specific bindings in the module.

If a named module is not defined yet, extend tries to load it, using the same convention use

macro does.

A module can inherit multiple modules, exactly the same way as a class can inherit from
multiple classes. The resolution of order of inheritance needs to be explained a bit.

Each module has a module precedence list, which lists modules in the order of how they are
searched. When the module inherits multiple modules, module precedence lists of inherited
modules are merged into a single list, keeping the constraints that: (1) if a module A appears
before module B in some module precedence list, A has to appear before B in the resulting
module precedence list; and (2) if a module A appears before module B in extend form, A
has to appear before B in the resulting module precedence list. If no precedence list can be
constructed with these constraints, an error is signaled.

For example, suppose you wrote a library in modules mylib.base, mylib.util and
mylib.system. You can bundle those modules into one module by creating a module mylib, as
follows:

(define-module mylib

(extend mylib.system mylib.util mylib.base))

The user of your module just says (use mylib) and all exported symbols from three sub-
modules become available.

4.13.6 Module introspection

This subsection lists procedures that operates on modules at run-time. With these proce-
dures you can introspect the modules, create new modules procedurally, or check the existence
of certain modules/libraries, for example. However, don’t forget that modules are primarily
compile-time structures. Tweaking modules at run-time is only for those who know what they
are doing.

[Builtin Class]<module>
A module class.

[Function]module? obj
Returns true if obj is a module.

[Function]find-module name
Returns a module object whose name is a symbol name. If the named module doesn’t exist,
#f is returned.

Chapter 4: Core syntax 73

[Function]make-module name :key if-exists
Creates and returns a module that has symbol name. If the named module already exists,
the behavior is specified by if-exists keyword argument. If it is :error (default), an error is
signaled. If it is #f, #f is returned.

Note that creating modules on-the-fly isn’t usually necessary for ordinal scripts, since to
execute already written program requires modules to be specified by name, i.e. syntax
define-module, import, extend, with-module all take module names, not module objects.
It is because module are inherently compile-time structures. However, there are some cases
that dynamically created modules are useful, especially the program itself is dynamically
created. You can pass a module to eval to compile and evaluate such dynamically created
programs in it (see Section 6.21 [Eval and repl], page 202).

You can also pass #f to name to create anonymous module. Anonymous modules can’t be
looked up by find-module, nor can be imported or inherited (since import and extend take
module names, not modules). It is useful when you want to have a temporary, segregated
namespace dynamically—for example, you can create an anonymous module to evaluate
code fragments sent from other program, and discards the module when the connection is
terminated. Anonymous modules are not registered in the system dictionary and are garbage
collected when nobody keeps reference to it.

R7RS provides another way to create a transient module with environment procedure. see
Section 10.2.7 [R7RS eval], page 477, for the details.

[Function]all-modules
Returns a list of all named modules. Anonymous modules are not included.

[Function]module-name module
[Function]module-imports module
[Function]module-exports module
[Function]module-table module

Accessors of a module object. Returns the name of the module (a symbol), list of imported
modules, list of exported symbols, and a hash table that maps symbols to bindings, of the
module are returned, respectively.

If the module exports all symbols, module-exports returns #t.

It is an error to pass a non-module object.

[Function]module-parents module
[Function]module-precedence-list module

Returns the information of module inheritance. Module-parents returns the modules mod-
ule directly inherits from. Module-precedence-list returns the module precedence list of
module (see Section 4.13.5 [Module inheritance], page 72).

[Function]global-variable-bound? module symbol
Returns true if symbol’s global binding is visible from module. Module must be a module
object or a symbol name of an existing module.

Note: there used to be the symbol-bound? procedure to check whether a global variable is
bound. It is deprecated and the new code should use global-variable-bound? instead. The
reason of change is that because of the name symbol-bound? and the fact that it assumes
current-module by default, it gives an illusion as if a global bound value is somewhat ’stored’
in a symbol itself (like CommonLisp’s model). It caused a lot of confusion when the current
module differs between compile-time and runtime. The new name and API made it clear
that you are querying module’s property.

Chapter 4: Core syntax 74

[Function]global-variable-ref module symbol :optional default
Returns a value globally bound to the symbol visible from module. Module must be a
module object or a symbol name of an existing module. If there’s no visible global binding
from module for symbol, an error is signaled, unless the default argument is provided, in
which case it is returned instead.

[Function]module-name->path symbol
Converts a module name symbol to a fragment of pathname string (which you use for require
and provide).

[Function]path->module-name string
Reverse function of module-name->path.

If you want to find out specific libraries and/or modules are installed in the system and
available from the program, see Section 6.23.5 [Operations on libraries], page 229.

4.13.7 Predefined modules

Several modules are predefined in Gauche.

[Builtin Module]null
This module corresponds to the null environment referred in R5RS. This module contains
only syntactic bindings of R5RS syntax.

[Builtin Module]scheme
This module contains all the binding of null module, and the binding of procedures defined
in R5RS.

Note that if you change the current module to null or scheme by select-module, there will
be no way to switch back to other modules, since module-related syntaxes and procedures are
not visible from null and scheme modules.

[Builtin Module]gauche
This module contains all the bindings of scheme module, plus Gauche specific built-in pro-
cedures.

[Builtin Module]user
This module is the default module the user code is compiled. all the bindings of gauche
module is imported.

[Builtin Module]gauche.keyword
[Builtin Module]keyword

When Gauche is running with GAUCHE_KEYWORD_IS_SYMBOL mode keywords (symbols begin-
ning with :) is automatically bound to itself in these modules. (see Section 6.8 [Keywords],
page 129, for the details.)

The keyword module doesn’t export those bindings, while gauche.keyword does. The former
is intended to be used internally; the programmer need to know the latter.

If you use the default module inheritance, you don’t need to use this module, since the
keyword module is included in the inheritance chain. If you don’t inherit gauche module,
however, importing the gauche.keyword module gives you access to the keywords without
quotes. For example, R7RS programs and libraries would require either (import (gauche

keyword)) or (import (gauche base)) (the latter inherits gauche.keyword), or you have
to quote all keywords.

The followig R7RS program imports gauche.base; it makes gauche built-in identifiers, and
all self-bound keywords, available:

;; R7RS program

75

(import (scheme base)

(gauche base)) ; import gauche builtins and keywords

;; You can use :directory without quote, for it is bound to itself.

(sys-exec "ls" ’("ls" "-l") :directory "/")

If you use more sophisitcated import tricks, however, keep in mind that keywords are just
imported symbols if GAUCHE_KEYWORD_IS_SYMBOL is set. The following code imports Gauche
builtin identifiers with prefix gauche/. That causes keywords, imported via inheritance, also
get the same prefix; if you don’t want to bother adding prefix to all keywords or quote them,
import gauche.keyword separately.

;; R7RS program

(import (scheme base)

(prefix (gauche base) gauche/) ; use gauche builting with gauche/ prefix

(gauche keyword)) ; imports keywords

;; Without importing gauche.keyword,

;; you need to write ’:directory

(gauche/sys-exec "ls" ’("ls" "-l") :directory "/")

76

5 Macros

Macro of Lisp-family language is very different feature from ones of other languages, such as C
preprocessor macros. It allows you to extend the original language syntax. You can use macros
to change Gauche syntax so that you can run a Scheme program written to other Scheme
implementations, and you can even design your own mini-language to solve your problem easily.

Gauche supports hygienic macros, which allows to write safe macros by avoiding name col-
lisions. If you know traditional Lisp macros but new to hygienic macros, they might seem
confusing at first. We have an introductory section (Section 5.1 [Why hygienic?], page 76) for
those who are not familiar with hygienic macros; if you know what they are, you can skip the
section.

5.1 Why hygienic?

Lisp macro is a programmatic transformation of source code. Amacro transformer is a procedure
that takes a subtree of source code, and returns a reconstructed tree of source code.

The traditional Lisp macros take the input source code as an S-expression, and returns the
output as another S-expression. Gauche supports that type of macro, too, with define-macro

form. Here’s the simple definition of when with the traditional macro.

(define-macro (when test . body)

‘(if ,test (begin ,@body)))

For example, if the macro is used as (when (zero? x) (print "zero") ’zero), the above
macro transformer rewrites it to (if (zero? x) (begin (print "zero") ’zero)). So far, so
good.

But what if the when macro is used in an environment where the names begin or if is bound
to nonstandard values?

(let ([begin list])

(when (zero? x) (print "zero") ’zero))

The expanded result would be as follows:

(let ([begin list])

(if (zero? x) (begin (print "zero") ’zero)))

This obviously won’t work as the macro writer intended, since begin in the expanded code
refers to the locally bound name.

This is a form of variable capture. Note that, when Lisp people talk about variable capture
of macros, it often means another form of capture, where the temporary variables inserted by a
macro would unintentionally capture the variables passed to the macro. That kind of variable
capture can be avoided easily by naming the temporary variables something that never conflict,
using gensym.

On the other hand, the kind of variable capture in the above example can’t be avoided by
gensym, because (let ([begin list]) ...) part isn’t under macro writer’s control. As a macro
writer, you can do nothing to prevent the conflict, just hoping the macro user won’t do such
a thing. Sure, rebinding begin is a crazy idea that nobody perhaps wants to do, but it can
happen on any global variable, even the ones you define for your library.

Various Lisp dialects have tried to address this issue in different ways. Common Lisp some-
what relies on the common sense of the programmer—you can use separate packages to reduce
the chance of accidental conflict but can’t prevent the user from binding the name in the same
package. (The Common Lisp spec says it is undefined if you locally rebind names of CL standard
symbols; but it doesn’t prevent you from locally rebinding symbols that are provided by user
libraries.)

Chapter 5: Macros 77

Clojure introduced a way to directly refer to the toplevel variables by a namespace prefix, so
it can bypass whatever local bindings of the same name (also, it has a sophisticated quasiquote
form that automatically renames free variables to refer to the toplevel ones). It works, as far
as there are no local macros. With local macros, you need a way to distinguish different local
bindings of the same name, as we see in the later examples. Clojure’s way can only distinguish
between local and toplevel bindings. It’s ok for Clojure which doesn’t have local macros, but
in Scheme, we prefer uniform and orthogonal axioms—if functions can be defined locally with
lexical scope, why not macros?

Let’s look at the local macro with lexical scope. For the sake of explanation, suppose we have
hypothetical local macro binding form, let-macro, that binds a local identifiers to a macro trans-
former. (We don’t actually have let-macro; what we have is let-syntax and letrec-syntax,
which have slightly different way to call macro transformers. But here let-macro may be easier
to understand as it is similar to define-macro.)

(let ([f (^x (* x x))])

(let-macro ([m (^[expr1 expr2] ‘(+ (f ,expr1) (f ,expr2)))])

(let ([f (^x (+ x x))])

(m 3 4)))) ; [1]

The local identifierm is bound to a macro transformer that takes two expressions, and returns
an S-expression. So, the (m 3 4) form [1] would be expanded into (+ (f 3) (f 4)). Let’s rewrite
the above expression with the expanded form. (After expansion, we no longer need let-macro

form, so we don’t include it.)

(let ([f (^x (* x x))])

(let ([f (^x (+ x x))])

(+ (f 3) (f 4)))) ; [2]

Now, the question. Which binding f in the expanded form [2] should refer? If we literally
interpret the expansion, it would refer to the inner binding (^x (+ x x)). However, following
the Scheme’s scoping principle, the outer code should be fully understood regardless of innter
code:

(let ([f (^x (* x x))])

(let-macro ([m (^[expr1 expr2] ‘(+ (f ,expr1) (f ,expr2)))])

;; The code here isn’t expected to accidentally alter

;; the behavior defined outside.

))

The macro writer may not know the inner let shadows the binding of f (the inner forms may
be included, or may be changed by other person who didn’t fully realize the macro expansion
needs to refer outer f).

To ensure the local macro to work regardless of what’s placed inside let-macro, we need a
sure way to refer the outer f in the result of macro expansion. The basic idea is to “mark” the
names inserted by the macro transformer m—which are f and +—so that we can distinguish two
f’s.

For example, if we would rewrite the entire form and renames corresponding local identifiers
as follows:

(let ([f_1 (^x (* x x))])

(let-macro ([m (^[expr1 expr2] ‘(+ (f_1 ,expr1) (f_1 ,expr2)))])

(let ([f_2 (^x (+ x x))])

(m 3 4))))

Then the naive expansion would correctly preserve scopes; that is, expansion of m refers f_1,
which wouldn’t conflict with inner name f_2:

(let ([f_1 (^x (* x x))])

Chapter 5: Macros 78

(let ([f_2 (^x (+ x x))])

(+ (f_1 3) (f_1 4))))

(You may notice that this is similar to lambda calculus treating lexical bindings with higher
order functions.)

The above example deal with avoiding f referred from the macro definition (which is, in fact,
f_1) from being shadowed by the binding of f at the macro use (which is f_2).

Another type of variable capture (the one most often talked about, and can be avoided by
gensym) is that a variable in macro use site is shadowed by the binding introduced by a macro
definition. We can apply the same renaming strategy to avoid that type of capture, too. Let’s
see the following example:

(let ([f (^x (* x x))])

(let-macro ([m (^[expr1] ‘(let ([f (^x (+ x x))]) (f ,expr1)))])

(m (f 3))))

The local macro inserts binding of f into the expansion. The macro use (m (f 3)) also
contains a reference to f, which should be the outer f, since the macro use is lexically outside
of the let inserted by the macro.

We could rename f’s according to its lexical scope:

(let ([f_1 (^x (* x x))])

(let-macro ([m (^[expr1] ‘(let ([f_2 (^x (+ x x))]) (f_2 ,expr1)))])

(m (f_1 3))))

Then expansion unambiguously distinguish two f’s.

(let ([f_1 (^x (* x x))])

(let ([f_2 (^x (+ x x))])

(f_2 (f_1 3))))

This is, in principle, what hygienic macro is about (well, almost). In reality, we don’t rename
everything in batch. One caveat is in the latter example—we statically renamed f to f_2, but
it is possible that the macro recursively calls itself, and we have to distinguish f’s introduced in
every individual expansion of m. So macro expansion and renaming should work together.

There are multiple strategies to implement it, and the Scheme standard doesn’t want to bind
implementations to single specific strategy. The standard only states the properties the macro
system should satisfy, in two concise sentences:

If a macro transformer inserts a binding for an identifier (variable or keyword), the
identifier will in effect be renamed throughout its scope to avoid conflicts with other
identifiers.

If a macro transformer inserts a free reference to an identifier, the reference refers
to the binding that was visible where the transformer was specified, regardless of
any local bindings that surround the use of the macro.

Just from reading this, it may not be obvious how to realize those properties, and the existing
hygienic macro mechanisms (e.g. syntax-rules) hide the “how” part. That’s probably one of
the reason some people feel hygienic macros are difficult to grasp. It’s like continuations—its
description is concise but at first you have no idea how it works; then, through experience, you
become familiarized yourself to it, and then you reread the original description and understand
it says exactly what it is.

This introduction may not answer how the hygienic macro realizes those properties, but I hope
it showed what it does and why it is needed. In the following chapters we introduce a couple
of hygienic macro mechanisms Gauche supports, with examples, so that you can familiarize
yourself to the concept.

Chapter 5: Macros 79

5.2 Hygienic macros

Macro bindings

The following forms establish bindings of name and a macro transformer created by transformer-
spec. The binding introduced by these forms shadows a binding of name established in outer
scope, if there’s any.

For toplevel bindings, it will shadow bindings of name imported or inherited from other
modules (see Section 4.13 [Modules], page 67). (Note: This toplevel shadowing behavior is
Gauche’s extension; in R7RS, you shouldn’t redefine imported bindings, so the portable code
should avoid it.)

The effect is undefined if you bind the same name more than once in the same scope.

The transformer-spec can be either one of syntax-rules form, er-macro-transformer form,
or another macro keyword or syntactic keyword. We’ll explain them later.

[Special Form]define-syntax name transformer-spec
[R7RS base] If this form appears in toplevel, it binds toplevel name to a macro transformer
defined by transformer-spec.

If this form appears in the declaration part of body of lambda (internal define-syntax), let
and other similar forms, it binds name locally within that body. Internal define-syntaxes
are converted to letrec-syntax, just like internal defines are converted to letrec*.

[Special Form]let-syntax ((name transformer-spec) . . .) body
[Special Form]letrec-syntax ((name transformer-spec) . . .) body

[R7RS base] Defines local macros. Each name is bound to a macro transformer as specified by
the corresponding transformer-spec, then body is expanded. With let-syntax, transformer-
spec is evaluated with the scope surrounding let-syntax, while with letrec-syntax the
bindings of names are included in the scope where transformer-spec is evaluated. Thus
letrec-syntax allows mutually recursive macros.

Transformer specs

The trasformer-spec is a special expression that evaluates to a macro transformer. It is evaluated
in a different phase than the other expressions, since macro transformers must be executed during
compiling. So there are some restrictions.

At this moment, only one of the following expressions are allowed:

1. A syntax-rules form. This is called “high-level” macro, for it uses pattern matching
entirely, which is basically a different declarative language from Scheme, thus putting the
complication of the phasing and hygiene issues completely under the hood. Some kind
of macros are easier to write in syntax-rules. See Section 5.2.1 [Syntax-rules macro
transformer], page 80, for further description.

2. An er-macro-transformer form. This employs explicit-renaming (ER) macro, where you
can use arbitrary Scheme code to transform the program, with required renaming to keep
hygienity. The legacy Lisp macro can also be written with ER macro if you don’t use
renaming. See Section 5.2.2 [Explicit-renaming macro transformer], page 82, for the details.

3. Macro or syntax keyword. This is Gauche’s extension, and can be used to define alias of
existing macro or syntax keyword.

(define-syntax si if)

(define écrivez write)

(si (< 2 3) (écrivez "oui"))

Chapter 5: Macros 80

5.2.1 Syntax-rules macro transformer

[Special Form]syntax-rules (literal . . .) clause clause2 . . .
[Special Form]syntax-rules ellipsis (literal . . .) clause clause2 . . .

[R7RS base] This form creates a macro transformer by pattern matching.

Each clause has the following form:

(pattern template)

A pattern denotes a pattern to be matched to the macro call. It is an S-expression that
matches if the macro call has the same structure, except that symbols in pattern can match
a whole subtree of the input; the matched symbol is called a pattern variable, and can be
referenced in the template.

For example, if a pattern is (_ "foo" (a b)), it can match the macro call (x "foo" (1 2)),
or (x "foo" (1 (2 3))), but does not match (x "bar" (1 2)), (x "foo" (1)) or (x "foo"

(1 2) 3). You can also match repeating structure or literal symbols; we’ll discuss it fully
later.

Clauses are examined in order to see if the macro call form matches its pattern. If matching
pattern is found, the corresponding template replaces the macro call form. A pattern variable
in the template is replaced with the subtree of input that is bound to the pattern variable.

Here’s a definition of when macro in Section 5.1 [Why hygienic?], page 76, using
syntax-rules:

(define-syntax when

(syntax-rules ()

[(_ test body ...) (if test (begin body ...))]))

The pattern is (_ test body ...), and the template is (if test (begin body ...)). The
ellipsis ... is a symbol; we’re not omitting code here. It denotes that the previous pattern
(body) may repeat zero or more times.

So, if the when macro is called as (when (zero? x) (print "huh?") (print "we got

zero!")), the macro expander first check if the input matches the pattern.

• The test in pattern matches the input (zero? x).

• The body in pattern matches the input (print "huh?") and (print "we got zero!").

The matching of body is a bit tricky; as a pattern variable, you may think that body works
like an array variable, each element holds each match—and you can use them in similarly
repeating substructures in template. Let’s see the template, now that the input fully matched
the pattern.

• In the template, if and begin are not pattern variable, since they are not appeared
in the pattern. So they are inserted as identifiers—that is, hygienic symbols effectively
renamed to make sure to refer to the global if and begin, and will be unaffected by the
macro use environment.

• The test in the template is a pattern variable, so it is replaced for the matched value,
(zero? x).

• The body is also a pattern variable. The important point is that it is also followed by
ellipsis. So we repeat body as many times as the number of matched values. The first
value, (print "huh?"), and the second value, (print "we got zero!"), are expanded
here.

• Hence, we get (if (zero? x) (begin (print "huh?") (print "we got zero!"))) as
the result of expansion. (With the note that if and begin refers to the identifiers
visible from the macro definition environment.)

Chapter 5: Macros 81

The expansion of ellipses is quite powerful. In the template, the ellipses don’t need to follow
the sequence-valued pattern variable immediately; the variable can be in a substructure, as
long as the substructure itself is followed by an ellipsis. See the following example:

(define show

(syntax-rules ()

[(_ expr ...)

(begin

(begin (write ’expr) (display "=") (write expr) (newline))

...)]))

If you call this macro as follows:

(show (+ 1 2) (/ 3 4))

It is expanded to the following form, modulo hygienity:

(begin

(begin (write ’(+ 1 2)) (display "=") (write (+ 1 2)) (newline))

(begin (write ’(/ 3 4)) (display "=") (write (/ 3 4)) (newline)))

So you’ll get this output.

(+ 1 2)=3

(/ 3 4)=3/4

You can also match with a repetition of substructures in the pattern. The following example
is a simplified let that expands to lambda:

(define-syntax my-let

(syntax-rules ()

[(_ ((var init) ...) body ...)

((lambda (var ...) body ...) init ...)]))

If you call it as (my-let ((a expr1) (b expr2)) foo), then var is matched to a and b,
while init is matched to expr1 and expr2, respectively. They can be used separately in the
template.

Suppose “level” of a pattern variable means the number of nested ellipses that designate
repetition of the pattern variable. A subtemplate can be followed as many ellipses as the
maximum level of pattern variables in the subtemplate. In the following example, the level
of pattern variable a is 1 (it is repeated by the last ellipsis in the pattern), while the level of
b is 2 (repeated by the last two ellipses), and the level of c is 3 (repeated by all the ellipses).

(define-syntax ellipsis-test

(syntax-rules ()

[(_ (a (b c ...) ...) ...)

’((a ...)

(((a b) ...) ...)

((((a b c) ...) ...) ...))]))

In this case, the subtemplate a must be repeated by one level of ellipsis, (a b) must be
repeated by two, and (a b c) must be repeated by three.

(ellipsis-test (1 (2 3 4) (5 6)) (7 (8 9 10 11)))

⇒ ((1 7)

(((1 2) (1 5)) ((7 8)))

((((1 2 3) (1 2 4)) ((1 5 6))) (((7 8 9) (7 8 10) (7 8 11)))))

In the template, more than one ellipsis directly follow a subtemplate, splicing the leaves into
the surrounding list:

(define-syntax my-append

(syntax-rules ()

Chapter 5: Macros 82

[(_ (a ...) ...)

’(a)]))

(my-append (1 2 3) (4) (5 6))

⇒ (1 2 3 4 5 6)

(define-syntax my-append2

(syntax-rules ()

[(_ ((a ...) ...) ...)

’(a)]))

(my-append2 ((1 2) (3 4)) ((5) (6 7 8)))

⇒ (1 2 3 4 5 6 7 8)

Note: Allowing multiple ellipses to directly follow a subtemplate, and a pattern variable in
a subtemplate to be enclosed within more than the variable’s level of nesting of ellipses,
are extention to R7RS, and defined in SRFI-149. In the above examples, ellipsis-test,
my-append and my-append2 are outside of R7RS.

Identifiers in a pattern is treated as pattern variables. But sometimes you want to match a
specific identifier in the input. For example, the built-in cond and case detects an identifier
else as a special identifier. You can use literal . . . for that. See the followign example.

(define-syntax if+

(syntax-rules (then else)

[(_ test then expr1 else expr2) (if test expr1 expr2)]))

The identifiers listed as the literals don’t become pattern variables, but literally match the
input. If the input doesn’t have the same identifier in the position, match fails.

(if+ (even? x) then (/ x 2) else (/ (+ x 1) 2))

expands into (if (even? x) (/ x 2) (/ (+ x 1) 2))

(if+ (even? x) foo (/ x 2) bar (/ (+ x 1) 2))

⇒ ERROR: malformed if+

We’ve been saying identifiers instead of symbols. Roughly speaking, an identifier is a symbol
with the surrounding syntactic environment, so that they can keep identity under renaming
of hygiene macro.

The following example fails, because the else passed to the if+ macro is the one locally
bound by let, which is different from the global else when if+ was defined, hence they
don’t match.

(let ((else #f))

(if+ (even? x) then (/ x 2) else (/ (+ x 1) 2))

⇒ ERROR: malformed if+

5.2.2 Explicit-renaming macro transformer

[Special Form]er-macro-transformer procedure-expr
Creates a macro transformer from the given procedure-expr. The created macro transformer
has to be bound to the syntactic keyword by define-syntax, let-syntax or letrec-syntax.
Other use of macro transformers is undefined.

The procedure-expr must evaluate to a procedure that takes three arguments; form, rename
and id=?.

The form argument receives the S-expression of the macro call. The procedure-expr must
return an S-expression as the result of macro expansion. This part is pretty much like the

Chapter 5: Macros 83

traditional lisp macro. In fact, if you ignore rename and id=?, the semantics is the same as
the traditional (unhygienic) macro. See the following example (Note the use of match; it is a
good tool to decompose macro input):

(use util.match)

;; Unhygienic ’when-not’ macro

(define-syntax when-not

(er-macro-transformer

(^[form rename id=?]

(match form

[(_ test expr1 expr ...)

‘(if (not ,test) (begin ,expr1 ,@expr))]

[_ (error "malformed when-not:" form)]))))

(macroexpand ’(when-not (foo) (print "a") ’boo))

⇒ (if (not (foo)) (begin (print "a") ’boo))

This is ok as long as you know you don’t need hygiene—e.g. when you only use this macro
locally in your code, knowning all the macro call site won’t contain name conflicts. However,
if you provide your when-not macro for general use, you have to protect namespace pollution
around the macro use. For example, you want to make sure your macro work even if it is
used as follows:

(let ((not values))

(when-not #t (print "This shouldn’t be printed")))

The rename argument passed to procedure-expr is a procedure that takes a symbol (or, to
be precise, a symbol or an identifier) and effectively renames it to a unique identifier that
keeps identity within the macro definition environment and won’t be affected in the macro
use environment.

As a rule of thumb, you have to pass all new identifiers you insert into macro output to the
rename procedure to keep hygiene. In our when-not macro, we insert if, not and begin into
the macro output, so our hygienic macro would look like this:

(define-syntax when-not

(er-macro-transformer

(^[form rename id=?]

(match form

[(_ test expr1 expr ...)

‘(,(rename ’if) (,(rename ’not) ,test)

(,(rename ’begin) ,expr1 ,@expr))]

[_ (error "malformed when-not:" form)]))))

This is cumbersome and makes it hard to read the macro, so Gauche provides an auxiliary
macro quasirename, which works like quasiquote but renaming identifiers in the form. See
the entry of quasirename below for the details. You can write the hygienic when-not as
follows:

(define-syntax when-not

(er-macro-transformer

(^[form rename id=?]

(match form

[(_ test expr1 expr ...)

(quasirename rename

(if (not ,test) (begin ,expr1 ,@expr)))]

[_ (error "malformed when-not:" form)]))))

Chapter 5: Macros 84

You can intentionally break hyginene by inserting a symbol without renaming. The following
code implements anaphoric when, meaning the result of the test expression is available in the
expr1 exprs . . . with the name it. Since the binding of the identifier it does not exist in
the macro use site, but rather injected into the macro use site by the macro expander, it is
unhygienic.

(define-syntax awhen

(er-macro-transformer

(^[form rename id=?]

(match form

[(_ test expr1 expr ...)

‘(,(rename ’let1) it ,test ; ’it’ is not renamed

(,(rename ’begin) ,expr1 ,@expr))]))))

If you use quasirename, you can write ,’it to prevent it from being renamed:

(define-syntax awhen

(er-macro-transformer

(^[form rename id=?]

(match form

[(_ test expr1 expr ...)

(quasirename rename

(let1 ,’it ,test

(begin ,expr1 ,@expr)))]))))

Here’s an example:

(awhen (find odd? ’(0 2 8 7 4))

(print "Found odd number:" it))

⇒ prints Found odd number:7

Finally, the id=? argument to the procedure-expr is a procedure that takes two arguments,
and returns #t iff both are identifiers and either both are referring to the same binding or
both are free. It can be used to compare literal syntactic keyword (e.g. else in cond and
case forms) hygienically.

The following if=> macro behaves like if, except that it accepts (if=> test => procedure)

syntax, in which procedure is called with the value of test if it is not false (similar to (cond

[test => procedure]) syntax). The symbol => must match hygienically, that is, it must
refer to the same binding as in the macro definition.

(define-syntax if=>

(er-macro-transformer

(^[form rename id=?]

(match form

[(_ test a b)

(if (id=? (rename ’=>) a)

(quasirename rename

(let ((t ,test))

(if t (,b t))))

(quasirename rename

(if ,test ,a ,b)))]))))

The call (rename ’=>) returns an identifier that captures the binding of => in the macro
definition, and using id=? with the thing passed to the macro argument checks if both refer
to the same binding.

(if=> 3 => list) ⇒ (3)

(if=> #f => list) ⇒ #<undef>

Chapter 5: Macros 85

;; If the second argument isn’t =>, if=> behaves like ordinary if:

(if=> #t 1 2) ⇒ 1

;; The binding of => in macro use environment differs from

;; the macro definition environment, so this if=> behaves like

;; ordinary if, instead of recognizing literal =>.

(let ((=> ’oof)) (if=> 3 => list)) ⇒ oof

[Macro]quasirename renamer form
It works like quasiquote, except that the symbols and identifiers that appear in the “literal”
portion of form (i.e. outside of unquote and unquote-splicing) are replaced by the result
of applying rename on themselves.

For example, a form:

(quasirename r (a ,b c "d"))

would be equivalent to write:

(list (r ’a) b (r ’c) "d")

This is not specifically tied to macros; the renamer can be any procedure that takes one
symbol or identifier argument:

(quasirename (^[x] (symbol-append ’x: x)) (+ a ,(+ 1 2) 5))

⇒ (x:+ x:a 3 5)

However, it comes pretty handy to construct the result form in ER macros. Compare the
following two:

(use util.match)

;; using quasirename

(define-syntax swap

(er-macro-transformer

(^[f r c]

(match f

[(_ a b) (quasirename r

(let ((tmp ,a))

(set! ,a ,b)

(set! ,b tmp)))]))))

;; not using quasirename

(define-syntax swap

(er-macro-transformer

(^[f r c]

(match f

[(_ a b) ‘((r’let) (((r’tmp) ,a))

((r’set!) ,a ,b)

((r’set!) ,b (r’tmp)))]))))

5.3 Traditional macros

[Special Form]define-macro name procedure
[Special Form]define-macro (name . formals) body . . .

Defines name to be a global macro whose transformer is procedure. The second form is a
shorthand notation of the following form:

(define-macro name (lambda formals body ...))

Chapter 5: Macros 86

When a form (name arg ...) is seen by the compiler, it calls procedure with arg When
procedure returns, the compiler inserts the returned form in place of the original form, and
compile it again.

5.4 Macro expansion

[Function]macroexpand form
[Function]macroexpand-1 form

If form is a list and its first element is a variable globally bound to a macro, macroexpand-1
invokes its macro transformer and returns the expanded form. Otherwise, returns form as is.

macroexpand repeats macroexpand-1 until the form can’t be expanded.

These procedures can be used to expand globally defined macros.

[Function]macroexpand-all form
Fully expand macros inside form. The result only contains function calls and Gauche’s built-
in syntax. The form is assumed to be a toplevel form within the current module. (See
Section 4.13.1 [Module semantics], page 67, for the concept of the current module. It can be
tricky, for sometimes the current module differ between compile-time and run-time.)

Any local variables introduced in form is renamed to avoid collision. Since each local variable
has unique name, all let forms become letrec forms (we can safely replace let with letrec

if no bindings introduced by let shadows outer bindings.)

NB: If a macro in form inserts a reference to a global variable which belongs to other module,
the information is lost in the current implementation. There are a few ways to address this
issue; we may leave such reference as an identifier object, convert it to with-module form,
or introduce a special syntax to represent such case. It’s undecided currently, so do not rely
too much on the current behavior. For the time being, it’s best to use this feature only for
interactive macro testing.

(macroexpand-all

’(letrec-syntax

[(when-not (syntax-rules ()

[(_ test . body) (if test #f (begin . body))]))]

(let ([if list])

(define x (expt foo))

(let1 x 3

(when-not (bar) (if x))))))

⇒ (letrec ((if.0 list))

(letrec ((x.1 (expt foo)))

(letrec ((x.2 ’3))

(if (bar) ’#f (if.0 x.2)))))

[Special Form]%macroexpand form
[Special Form]%macroexpand-1 form

5.5 Macro utilities

[Macro]syntax-error msg arg . . .
[Macro]syntax-errorf fmt arg . . .

Signal an error. They are same as error and errorf (see Section 6.20.2 [Signaling exceptions],
page 193), except that the error is signaled at macro-expansion time (i.e. compile time) rather
than run time.

87

They are useful to tell the user the wrong usage of macro in the comprehensive way, instead of
the cryptic error from the macro transformer. Because of the purpose, arg . . . are first passed
to unwrap-syntax described below, to strip off the internal syntactic binding informations.

(define-syntax my-macro

(syntax-rules ()

((_ a b) (foo2 a b))

((_ a b c) (foo3 a b c))

((_ . ?)

(syntax-error "malformed my-macro" (my-macro . ?)))))

(my-macro 1 2 3 4)

⇒ error: "malformed my-macro: (my-macro 1 2 3 4)"

[Function]unwrap-syntax form
Removes internal syntactic information from form. In order to implement a hygienic macro,
macro transformer replaces symbols in the macro form for identifiers, which captures the
syntactic environment where they are defined. Although it is necessary information for the
compiler, it is rather confusing for users if it appears in the messages. This function replaces
occurrences of identifiers in form to the original symbols.

88

6 Core library

6.1 Types and classes

Scheme is a dynamically and strongly typed language. That is, every value knows its type at
run-time, and the type determines what kind of operations can be applied on the value.

In Gauche, classes are used to describe types. A class is also an object you can handle at
runtime. You can also create a new class in order to have objects with distinct types.

Since R6RS, Scheme got a standard way to define a new type, through define-record-

type. You can use record types in Gauche as well, via gauche.record module. See Section 9.25
[Record types], page 404. Internally a record type is implemented as a class.

In this section we introduce the most basic interface to the Gauche’s type system. See
Chapter 7 [Object system], page 265, for the details of how to define your own classes and
creates values (instances).

Predefined classes are bound to a global variable; Gauche’s convention is to name the variable
that holds a class with brackets < and >, e.g. <string>. (It’s nothing syntactically special with
these brackets; they’re valid characters to consist of variable names). We’ll introduce classes for
each built-in type as we go through this chapter. Here are a few basic classes to start with:

[Builtin Class]<top>
This class represents the supertype of all the types in Gauche. That is, for any class X,
(subtype? X <top>) is #t, and for any object x, (is-a? x <top>) is #t.

[Builtin Class]<bottom>
This class represents the subtype of all the types in Gauche. For any class X, (subtype?
<bottom> X) is #t, and for any object x, (is-a? x <bottom>) is #f.

There’s no instance of <bottom>.

Note: Although <bottom> is subtype of other types, the class precedence list (CPL) of
<bottom> only contains <bottom> and <top>. It’s because it isn’t always possible to calculate
a linear list of all the types. Even if it is possible, it would be expensive to check and update
the CPL of <bottom> every time a new class is defined or an existing class is redefined.
Procedures subtype? and is-a? treat <bottom> specially.

One of use case of <bottom> is applicable? procedure. See Section 6.18.1 [Procedure class
and applicability], page 173.

[Builtin Class]<object>
This class represents a supertype of all user-defined classes.

[Function]class-of obj
Returns a class metaobject of obj.

(class-of 3) ⇒ #<class <integer>>

(class-of "foo") ⇒ #<class <string>>

(class-of <integer>) ⇒ #<class <class>>

Note: In Gauche, you can redefine existing user-defined classes. If the new definition has dif-
ferent configuration of the instance, class-of on existing instance triggers instance updates;
see Section 7.2.5 [Class redefinition], page 278, for the details. Using current-class-of

suppresses instance updates (see Section 7.3.2 [Accessing instance], page 282).

[Function]is-a? obj class
Returns true if obj is an instance of class or an instance of descendants of class.

(is-a? 3 <integer>) ⇒ #t

Chapter 6: Core library 89

(is-a? 3 <real>) ⇒ #t

(is-a? 5+3i <real>) ⇒ #f

(is-a? :foo <symbol>) ⇒ #f

Note: If obj’s class has been redefined, is-a? also triggers instance update. See Section 7.2.5
[Class redefinition], page 278, for the details.

[Function]subtype? sub super
Returns #t if a class sub is a subclass of a class super (includes the case that sub is super).
Otherwise, returns #f.

(The name subtype? is taken from Common Lisp’s procedure subtypep.)

6.2 Equality and comparison

Comparing two objects seems trivial, but if you look into deeper, there are lots of subtleties
hidden in the corners. What should it mean if two procedures are equal to each other? How to
order two complex numbers? It all depends on your purpose; there’s no single generic answer.
So Scheme (and Gauche) provides several options, as well as the way to make your own.

6.2.1 Equality

Scheme has three different general equality test predicates. Other than these, some types have
their own comparison predicates.

[Function]eq? obj1 obj2
[R7RS base] This is the fastest and finest predicate. Returns #t if obj1 and obj2 are identical
objects—that is, if they represents the same object on memory or in a register. Notably, you
can compare two symbols or two keywords with eq? to check if they are the same or not.
You can think eq? as a pointer comparison for any heap-allocated objects.

Booleans can be compared with eq?, but you can’t compare characters and numbers reliably—
objects with the same numerical value may or may not eq? to each other. If you identity
comparison needs to include those objects, use eqv? below.

(eq? #t #t) ⇒ #t

(eq? #t #f) ⇒ #f

(eq? ’a ’a) ⇒ #t

(eq? ’a ’b) ⇒ #f

(eq? (list ’a) (list ’a)) ⇒ #f

(let ((x (list ’a)))

(eq? x x)) ⇒ #t

[Function]eqv? obj1 obj2
[R7RS base] When obj1 and obj2 are both exact or both inexact numbers (except NaN),
eqv? returns #t iff (= obj1 obj2) is true. When obj1 and obj2 are both characters, eqv?
returns #t iff (char=? obj1 obj2) is true. Otherwise, eqv? is the same as eq? on Gauche.

(eqv? #\a #\a) ⇒ #t

(eqv? #\a #\b) ⇒ #f

(eqv? 1.0 1.0) ⇒ #t

(eqv? 1 1) ⇒ #t

(eqv? 1 1.0) ⇒ #f

(eqv? (list ’a) (list ’a)) ⇒ #f

(let ((x (list ’a)))

(eqv? x x)) ⇒ #t

Note that comparison of NaNs has some peculiarity. Any numeric comparison fails if there’s
at least one NaN in its argument. Therefore, (= +nan.0 +nan.0) is always #f. However,
Gauche may return #t for (eq? +nan.0 +nan.0) or (eqv? +nan.0 +nan.0).

Chapter 6: Core library 90

[Function]equal? obj1 obj2
[R7RS+] If obj1 and obj2 are both aggregate types, equal? compares its elements recursively.
Otherwise, equal? behaves the same as eqv?.

If obj1 and obj2 are not eqv? to each other, not of builtin types, and the class of both objects
are the same, equal? calls the generic function object-equal?. By defining the method,
users can extend the behavior of equal? for user-defined classes.

(equal? (list 1 2) (list 1 2)) ⇒ #t

(equal? "abc" "abc") ⇒ #t

(equal? 100 100) ⇒ #t

(equal? 100 100.0) ⇒ #f

Note: This procedure correctly handles the case when both obj1 and obj2 have cycles through
pairs and vectors, as required by R6RS and R7RS. However, if the cycle involves user-defined
classes, equal? may fail to terminate.

[Generic Function]object-equal? obj1 obj2
This generic function is called when equal? is called on the objects it doesn’t know about.
You can define this method on your class so that equal? can check equivalence. This method
is supposed to return #t if obj1 is equal to obj2, #f otherwise. If you want to check equivalence
of elements recursively, do not call object-equal? directly; call equal? on each element.

(define-class <foo> ()

((x :init-keyword :x)

(y :init-keyword :y)))

(define-method object-equal? ((a <foo>) (b <foo>))

(and (equal? (slot-ref a ’x) (slot-ref b ’x))

(equal? (slot-ref a ’y) (slot-ref b ’y))))

(equal? (make <foo> :x 1 :y (list ’a ’b))

(make <foo> :x 1 :y (list ’a ’b)))

⇒ #t

(equal? (make <foo> :x 1 :y (make <foo> :x 3 :y 4))

(make <foo> :x 1 :y (make <foo> :x 3 :y 4)))

⇒ #t

[Method]object-equal? (obj1 <top>) (obj2 <top>)
This method catches equal? between two objects of a user-defined classe, in case the user
doesn’t define a specialized method for the class.

When called, it scans the registered default comparators that can handle both obj1 and obj2,
and if it finds one, use the comparator’s equality predicate to see if two arguments are equal to
each other. When no matching comparators are found, it just returns #f. See Section 6.2.4.3
[Predefined comparators], page 98, about the default comparators: Look for the entries of
default-comparator and comparator-register-default!.

Note: If you define object-equal? with exactly the same specializers of this method, you’ll
replace it and that breaks default-comparator operation. Future versions of Gauche will
prohibit such redefinition. For now, be careful not to redefine it accidentally.

Sometimes you want to test if two aggregate structures are topologically equal, i.e., if one
has a shared substructure, the other has a shared substructure in the same way. Equal? can’t
handle it; module util.isomorph provides a procedure isomorphic? which does the job (see
Section 12.63 [Determine isomorphism], page 734).

Chapter 6: Core library 91

6.2.2 Comparison

Equality only concern about whether two objects are equivalent or not. However, sometimes
we want to see the order among objects. Again, there’s no single “universal order”. It doesn’t
make mathematical sense to ask if one complex number is greater than another, but having some
artificial order is useful when you want a consistent result of sorting a list of objects including
numbers.

[Function]compare obj1 obj2
A general comparison procedure. Returns -1 if obj1 is less than obj2, 0 if obj1 is equal to
obj2, and 1 if obj1 is greater than obj2.

If obj1 and obj2 are incomparable, an error is signalled. However, compare defines total
order between most Scheme objects, so that you can use it on wide variety of objects. The
definition is upper-compatible to the order defined in srfi-114.

Some built-in types are handled by this procedure reflecting “natural” order of comparison if
any (e.g. real numbers are compared by numeric values, characters are compared by char<

etc.) For convenience, it also defines superficial order between objects that doesn’t have
natural order; complex numbers are ordered first by their real part, then their imaginary
part, for example. That is, 1+i comes before 2-i, which comes before 2, which comes before
2+i.

Boolean false comes before boolean true.

Lists are ordered by dictionary order: Take the common prefix. If either one is () and the
other is not, () comes first. If both tails are not empty, compare the heads of the tails. (This
makes empty list the “smallest” of all lists).

Vectors (including uniform vectors) are compared first by their lengths, and if they are the
same, elements are compared from left to right. Note that it’s different from lists and strings.

(compare ’(1 2 3) ’(1 3))

⇒ -1 ; (1 2 3) is smaller

(compare ’#(1 2 3) ’#(1 3))

⇒ 1 ; #(1 3) is smaller

(compare "123" "13")

⇒ -1 ; "123" is smaller

If two objects are of subclasses of <object>, a generic function object-compare is called.

If two objects are of different types and at least one of them isn’t <object>, then they are
ordered by their types. Srfi-114 defines the order of builtin types as follows:

1. Empty list.

2. Pairs.

3. Booleans.

4. Characters.

5. Strings.

6. Symbols.

7. Numbers.

8. Vectors.

9. Uniform vectors (u8 < s8 < u16 < s16 < u32 < s32 < u64 < s64 < f16 < f32 < f64)

10. All other objects.

[Generic Function]object-compare obj1 obj2
Specializing this generic function extends compare procedure for user-defined classes.

This method must return either -1 (obj1 precedes obj2), 0 (obj1 equals to obj2), 1 (obj1
succeeds obj2), or #f (obj1 and obj2 cannot be ordered).

Chapter 6: Core library 92

[Method]object-compare (obj1 <top>) (obj2 <top>)
This method catches compare between two objects of a user-defined class, in case the user
doesn’t define a specialized method for the class.

When called, it scans the registered default comparators that can handle both obj1 and obj2,
and if it finds one, use the comparator’s compare procedure to determine the order of obj1 and
obj2. When no matching comparators are found, it returns #f, meaning two objects can’t be
ordered. See Section 6.2.4.3 [Predefined comparators], page 98, about the default compara-
tors: Look for the entries of default-comparator and comparator-register-default!.

Note: If you define object-compare with exactly the same specializers of this method, you’ll
replace it and that breaks default-comparator operation. Future versions of Gauche will
prohibit such redefinition. For now, be careful not to redefine it accidentally.

[Function]eq-compare obj1 obj2
Returns -1 (less than), 0 (equal to) or 1 (greater than) according to a certain total ordering
of obj1 and obj2. Both arguments can be any Scheme objects, and can be different type of
objects. The following properties are guaranteed.

• (eq-compare x y) is 0 iff (eq? x y) is #t.

• The result is consistent within a single run of the process (but may differ between runs).

Other than these, no actual semantics are given to the ordering.

This procedure is useful when you need to order arbitrary Scheme objects, but you don’t care
the actual order as far as it’s consistent.

6.2.3 Hashing

Hash functions have close relationship with equality predicate, so we list them here.

[Function]eq-hash obj
[Function]eqv-hash obj

These are hash functions suitable to be used with eq? and eqv?, respectively. The returned
hash value is system- and process-dependent, and can’t be carried over the boundary of the
running process.

Note: don’t hash numbers by eq-hash. Two numbers are not guaranteed to be eq? even if
they are numerically equal.

[Function]default-hash obj
[R7RS+] This is a hash function suitable to be used with equal?. In R7RS, this is defined in
scheme.comparator (originally in srfi-128).

If obj is either a number, a boolean, a character, a symbol, a keyword, a string, a list or a
vector, internal hash function is used to calculate the hash value. If obj is other than that,
a generic function object-hash is called to calculate the hash value (see below).

The hash value also depends on hash-salt, which differs for every run of the process.

[Function]portable-hash obj salt
Sometimes you need to calculate a hash value that’s “portable”, in a sense that the value
won’t change across multiple runs of the process, nor between different platforms. Such hash
value can be used with storing objects externally to share among processes.

This procedure calculates a hash value of obj with such characteristics; the hash value is the
same for the same object and the same salt value. Here “same object” roughly means having
the same external representation. Objects equal? to each other are same. If you write out
an object with write, and read it back, they are also the same objects in this sense.

This means objects without read/write invariance, such as ports, can’t be handled with
portable-hash. It is caller’s responsibility that obj won’t contain such objects.

Chapter 6: Core library 93

The salt argument is a nonnegative fixnum and gives variations in the hash function. You
have to use the same salt to get consistent results.

If obj is other than a number, a boolean, a character, a symbol, a keyword, a string, a list or
a vector, this procedure calls a generic function object-hash is called to calculate the hash
value (see below).

[Function]legacy-hash obj
Up to 0.9.4, Gauche had a hash function called hash that was used in both equal?-hashtable
and for the portable hash function. It had a problem, though.

1. There was no way to salt the hash function, which makes the hashtables storing externally
provided data vulnerable to collision attack.

2. The hash function behaves poorly, especially on flonums.

3. There are bugs in bignum and flonum hashing code that have produced different results
on different architectures.

Since there are existing hash values calculated with the old hash function, we preserve the
behavior of the original hash function as legacy-hash. Use this when you need to access
old data. (The hash function also behaves as legacy-hash by default, but it has tweaks; see
below.)

The new code that needs portable hash value should use portable-hash instead.

[Generic Function]object-hash obj rec-hash
By defining a method for this generic function, objects of user-defined types can have a hash
value and can be used in a equal? hash table.

The method has to return an exact non-negative integer, and must return the same value for
two object which are equal?. Furthermore, the returned value must not rely on the platform
or state of the process, if obj is a portable object (see portable-hash above for what is
portable.)

If the method needs to get hash value of obj’s elements, it has to call rec-hash on them. It
guarantees that the proper hash function is called recursively. So you can count on rec-hash

to calculate a portable hash value when object-hash itself is called from portable-hash.

If obj has several elements, you can call combine-hash-value on the elements’ hash values.

(define-class <myclass> () (x y))

;; user-defined equality function

(define-method object-equal? ((a <myclass>) (b <myclass>))

(and (equal? (ref a ’x) (ref b ’x))

(= (abs (ref a ’y)) (abs (ref b ’y)))))

;; user-defined hash function

(define-method object-hash ((a <myclass>) rec-hash)

(combine-hash-value (rec-hash (ref a ’x))

(rec-hash (abs (ref a ’y)))))

[Method]object-hash (obj <top>) rec-hash
[Method]object-hash (obj <top>)

These two methods are defined by the system and ensures the backward compatibility and the
behavior of default-comparator. Be careful not to replace these methods by defining the
exactly same specializers. In future versions of Gauche, attempts to replace these methods
will raise an error.

Chapter 6: Core library 94

[Function]combine-hash-value ha hb
Returns a hash value which is a combination of two hash values, ha and hb. The guaranteed
invariance is that if (= ha1 ha2) and (= hb1 hb2) then (= (combine-hash-value ha1 hb1)

(combine-hash-value ha2 hb2)). This is useful to write user-defined object-hash method.

[Function]hash obj
This function is deprecated.

Calculate a hash value of obj suitable for equal? hash. By default, it returns the same
value as legacy-hash. However, if this is called from default-hash or portable-hash (via
object-hash method), it recurses to the calling hash function.

The behavior is to keep the legacy code work. Until 0.9.5, hash is the only hash function
to be used for both portable hash and equal?-hash, and object-hash method takes single
argument (an object to hash) and calls hash recursively whenever it needs to get a hash value
of other objects pointed from the argument.

As of 0.9.5 we have more than one hash functions that calls object-hash, so the method
takes the hash function as the second argument to recurse. However, we can’t just break the
legacy code; so there’s a default method defined in object-hash which is invoked when no
two-arg method is defined for the given object, and dispatches to one-arg method. As far as
the legacy object-hash code calls hash, it calls proper function. The new code shouldn’t
rely on this behavior, and must use the second argument of object-hash instead.

[Function]boolean-hash bool
[Function]char-hash char
[Function]char-ci-hash char
[Function]string-hash str
[Function]string-ci-hash str
[Function]symbol-hash sym
[Function]number-hash num

[R7RS comparator] These are hash functions for specific type of objects, defined in R7RS
scheme.comparator. In Gauche, these procedures are just a wrapper of default-hash

with type checks (and case folding when relevant). These are mainly provided to con-
form scheme.comparator; in your code you might just want to use default-hash (or
eq-hash/eqv-hash, depending on the equality predicate).

The case-folding versions, char-ci-hash and string-ci-hash, calls char-foldcase and
string-foldcase respectively, on the argument before passing it to hash. (See Section 6.10
[Characters], page 133, for char-foldcase. See Section 9.34.3 [Full string case conversion],
page 446, for string-foldcase).

[Function]hash-bound
[Function]hash-salt

[R7RS comparator] Both evaluates to an exact nonnegative integers. In R7RS, these are
defined in scheme.comparator.

(Note: scheme.comparator defines these as macros, in order to allow implementatins opti-
mize runtime overhead. In Gauche we use procedures but the overhead is negligible.)

User-defined hash functions can limit the range of the result between 0 and (hash-bound),
respectively, without worrying to lose quality of hash function. (User-defined hash functions
don’t need to honor (hash-bound) at all; hashtables takes modulo when necessary.)

User-defined hash function can also take into account of the value (hash-salt) into hash
calculation; the salt value may differ between runs of the Scheme processes, or even between
hash table instances. It is to avoid collision attack. Built-in hash functions already takes the
salt value into account, so if your hash function is combining the hash values of primitive
types, you don’t need to worry about salt values.

Chapter 6: Core library 95

6.2.4 Basic comparators

Equality and comparison procedures are parameters in various data structures. A treemap needs
to order its keys; a hashtable needs to see if the keys are the same or not, and it also need a
hash function consistent with the equality predicate.

If we want to work on generic data structures, we need to abstract those variations of compar-
ison schemes. So here comes the comparator, a record that bundles closely-related comparison
procedures together.

There are two SRFIs that define comparators. The one that was originally called srfi-128

has now become a part of R7RS large as scheme.comparator, and we recommend new code to
use it. Gauche has all of scheme.comparator procedures built-in. The older, and rather complex
one is srfi-114; Gauche also supports it mainly for the backward compatibility. Importantly,
Gauche’s native <comparator> object is compatible to both scheme.comparator and srfi-114

comparators.

6.2.4.1 Comparator class and constructors

[Builtin Class]<comparator>
A comparator record that bundles the following procedures:

Type test predicate
Checks if an object can be compared with this comparator.

Equality predicate
See if given two objects are equal to each other; returns a boolean value.

Ordering predicate
Compare given two objects, and returns true iff the first one is strictly precedes
the second one. That is, this is a less-than predicate.

Comparison procedure
Compare given two objects, and returns either -1 (the first one is less than the
second), 0 (they are equal), or 1 (the first one is greater than the second).

Hash function
Returns a hash value of the given object.

Scheme.comparator’s comparators use the ordering predicate, while SRFI-114 comparators
use the comparison procedure. Gauche’s <comparator> supports both by automatically gen-
erating the missing one; that is, if you create a comparator with scheme.comparator inter-
face, by giving an ordering predicate, Gauche automatically fills the comparison procedure,
and if you create one with SRFI-114 interface by giving a comparison procedure, Gauche
generates the ordering predicate.

A comparator may not have an ordering predicate / comparison procedure, and/or a
hash function. You can check if the comparator can be used for ordering or hashing by
comparator-ordered? and comparator-hashable?, respectively.

Some built-in data types such as hashtables (see Section 6.15 [Hashtables], page 163) and
treemaps (see Section 6.16 [Treemaps], page 168), take a comparator in their constructors.
The sort and merge procedures also accept comparators (see Section 6.24 [Sorting and merg-
ing], page 230).

[Function]make-comparator type-test equal order hash :optional name
[R7RS comparator] Creates a new comparator form the given type-test, equal, order and
hash functions, and returns it. In R7RS, this is defined in scheme.comparator

See the description of <comparator> above for the role of those procedures.

Chapter 6: Core library 96

Note: Both scheme.comparator and srfi-114 defines make-comparator, but where
scheme.comparator takes order argument, srfi-114 takes compare argument. Since
scheme.comparator is preferable, we adopt it for the built-in interface, and give a different
name (make-comparator/compare) for SRFI-114 constructor.

Actually, some arguments can be non-procedures, to use predefined procedures, for the
convenience. Even if non-procedure arguments are passed, the corresponding accessors
(e.g. comparator-type-test-procedure for the type-test procedure) always return a
procedure—either the given one or the predefined one.

The type-test argument must be either #t or a predicate taking one argument to test suit-
ability of the object for comparing by the resulting comparator. If it is #t, a procedure that
always return #t is used.

The equal argument must a predicate taking two arguments to test equality.

the order argument must be either #f or a procedure taking two arguments and returning a
boolean value. It must return #t iff the first argument strictly precedes the second one. If
#f is passed, the comparator can not be used for ordering.

The hash argument must be either #f, or a procedure taking one argument and returning
nonnegative exact integer. If #f is given, it indicates the comparator can’t hash objects; the
predefined procedure just throws an error.

The fifth, optional argument name, is Gauche’s extension. It can be any object but usually
a symbol; it is only used when printing the comparator, to help debugging.

[Function]make-comparator/compare type-test equal compare hash :optional name
This is SRFI-114 comparator constructor. In SRFI-114, this is called make-comparator.
Avoiding name conflict, we renamed it. If you (use srfi-114) you get the original name
make-comparator (and the built-in make-comparator is shadowed). This is provided for the
backward compatibility, and new code should use built-in make-comparator above.

It’s mostly the same as make-comparator above, except the following:

• The third argument (compare) is a comparison procedure instead of an ordering predi-
cate. It must be either #f, or a procedure taking two arguments and returning either -1,
0, or 1, depending on whether the first argument is less than, equal to, or greater than
the second argument. If it is #f, it indicates the comparator can’t order objects.

• You can pass #t to the equal argument when you give a comparison procedure. In that
case, equality is determined by calling the comparison procedure and see if the result is
0.

6.2.4.2 Comparator predicates and accessors

[Function]comparator? obj
[R7RS comparator] Returns true iff obj is a comparator. In R7RS, this is provided from
scheme.comparator.

[Method]object-equal? (a <comparator>) (b <comparator>)
Comparing two comparators by equal? compares their contents, via this method. Even a
and b are comparators created separately, they can be equal? if all of their slots are the
same.

This is Gauche’s extension. The standard says nothing about equality of comparators, but
it is sometimes useful if you can compare two.

(equal? (make-comparator #t equal? #f hash ’foo)

(make-comparator #t equal? #f hash ’foo))

⇒ #t

Chapter 6: Core library 97

;; The following may be #t or #f, depending on how the anonymous

;; procedure is allocated.

(equal? (make-comparator (^x x) eq? #f #f)

(make-comparator (^x x) eq? #f #f))

[Function]comparator-flavor cmpr
Returns a symbol ordering if cmpr is created with scheme.comparator constructor, and
returns comparison if cmpr is created with SRFI-114 constructor.

Usually applications don’t need to distinguish these two kinds of comparators, for either kind
of comparators can behave just as another kind. This procedure is for some particular cases
when one wants to optimize for the underlying comparator implementation.

[Function]comparator-ordered? cmpr
[Function]comparator-hashable? cmpr

[R7RS comparator] Returns true iff a comparator cmpr can be used to order objects, or to
hash them, respectively. In R7RS, this is provided from scheme.comparator.

[Function]comparator-type-test-procedure cmpr
[Function]comparator-equality-predicate cmpr
[Function]comparator-ordering-predicate cmpr
[Function]comparator-hash-function cmpr

[R7RS comparator] Returns type test procedure, equality predicate, ordering procedure
and hash function of comparator cmpr, respectively. In R7RS, this is provided from
scheme.comparator.

These accessors always return procedures; if you give #f to the order or hash argument of the
constructor, comparator-ordering-predicate and comparator-hash-function still return
a procedure, which will just raise an error.

[Function]comparator-comparison-procedure cmpr
[SRFI-114] This is a SRFI-114 procedure, but sometimes handy with scheme.comparator

comparators. Returns a procedure that takes two objects that satisfy the type predicates
of cmpr. The procedure returns either -1, 0 or 1, depending on whether the first object is
less than, equal to, or greater than the second. The comparator must be ordered, that is,
it must have an ordering predicate (or a comparison procedure, if it is created by SRFI-114
consturctor).

[Function]comparator-test-type cmpr obj
[Function]comparator-check-type cmpr obj

[R7RS comparator] Test whether obj can be handled by a comparator cmpr, by applying
cmpr’s type test predicate. The former (comparator-test-type) returns a boolean values,
while the latter (comparator-check-type) signals an error when obj can’t be handled.

In R7RS, this is provided from scheme.comparator.

[Function]=? cmpr obj obj2 obj3 . . .
[Function]<? cmpr obj obj2 obj3 . . .
[Function]<=? cmpr obj obj2 obj3 . . .
[Function]>? cmpr obj obj2 obj3 . . .
[Function]>=? cmpr obj obj2 obj3 . . .

[R7RS comparator] Compare objects using a comparator cmpr. All of obj, obj2, obj3 . . .
must satisfy the type predicate of cmpr. When more than two objects are given, the order
of comparison is undefined.

In order to use <?, <=?, >? and >=?, comparator must be ordered.

In R7RS, this is provided from scheme.comparator.

Chapter 6: Core library 98

[Function]comparator-hash cmpr obj
[R7RS comparator] Returns a hash value of obj with the hash function of a comparator cmpr.
The comparator must be hashable, and obj must satisfy comparator’s type test predicate.

In R7RS, this is provided from scheme.comparator.

[Function]comparator-compare cmpr a b
[SRFI-114] Order two objects a and b using cmpr, and returns either one of -1 (a is less
than b), 0 (a equals to b), or 1 (a is greater than b). Objects must satisfy cmpr’s type test
predicate.

A simple comparison can be done by <? etc, but sometimes three-way comparison comes
handy. So we adopt this procedure from srfi-114.

6.2.4.3 Predefined comparators

[Variable]default-comparator
[SRFI-114] This variable bounds to a comparator that is used by default in many context.

It can compare most of Scheme objects, even between objects with different types. In fact,
it is defined as follows:

(define default-comparator

(make-comparator/compare #t equal? compare default-hash

’default-comparator))

As you see in the definition, equality, ordering and hashing are handled by equal?, compare
and default-hash, respectively. They takes care of builtin objects, and also equal? and
compare handle the case when two objects () are of different types.

For objects of user-defined classes, those procedures call generic functions object-equal?,
object-compare, and object-hash, respectively. Defining methods for them automatically
extended the domain of default-comparator.

Scheme.comparator defines another way to extend default-comparator. See
comparator-register-default! below for the details.

[Function]comparator-register-default! comparator
[R7RS comparator] In R7RS, this is provided from scheme.comparator. This
is the scheme.comparator way for user programs to extend the behavior of the
default-comparator (which is what make-default-comparator returns).

Note that, in Gauche, you can also extend default comparator’s behavior by defining special-
ized methods for object-equal?, object-compare and object-hash. See the description of
default-comparator above, for the details.

In fact, Gauche uses those generic functions to handle the registered comparators; methods
specialized for <top> are defined for these generic functions, which catches the case when
default-comparator is applied on object(s) of user-defined classes that don’t have special-
ized methods defined for those generic functions. The catching method examines registered
comparators to find one that can handle passed argument(s), and if it finds one, use it.

You might frown at this procedure having a global side-effect. Well, scheme.comparator ex-
plicitly prohibits comparators registered by this procedure alters the behavior of the default
comparator in the existing domain—it is only allowed to handle objects that aren’t already
handled by the system’s original default comparator and other already registered compara-
tors. So, the only effect of adding new comparator should make the default comparator work
on objects that had been previously raised an error.

In reality, it is impossible to enforce the condition. If you register a comparator whose
domain overlaps overlaps the domain the default comparator (and its extensions via Gauche’s

Chapter 6: Core library 99

methods), the program becomes non-portable at that moment. In the current version, the
comparators registered by comparator-register-default! has the lowest precedence on
the dispatch mechanism, but you shouldn’t count on that.

[Variable]eq-comparator
[Variable]eqv-comparator
[Variable]equal-comparator

[SRFI-114] Built-in comparators that uses eq?, eqv? and equal? for the equality predicate,
respectively. They accept any kind of Scheme objects. Each has corresponding hash functions
(i.e. eq-hash for eq-comparator, eqv-hash for eqv-comparator and default-hash for
equal-comparator). Only eq-comparator is ordered, using eq-compare to order the objects
(see Section 6.2.2 [Comparison], page 91, for eq-compare).

Note that eq-comparator and eqv-comparator are not equivalent from what make-eq-

comparator and make-eqv-comparator return, respectively. The latter two are defined in
scheme.comparator and specified to use default-hash for the hash function. It is heav-
ier than eq-hash/eqv-hash, and it can’t be used for circular objects, nor for the mutable
objects with which you want to hash them by identity. We provide eq-comparator and
eqv-comparator in case you want to avoid limitations of default-hash.

[Variable]boolean-comparator
[Variable]char-comparator
[Variable]char-ci-comparator
[Variable]string-comparator
[Variable]string-ci-comparator

[SRFI-114] Compare booleans, characters, and strings, respectively. The *-ci-* variants
uses case-insensitive comparison. All have appropriate hash functions, too.

The string case-insensitive comparison uses Unicode full-string case conversion (see
Section 9.34.3 [Full string case conversion], page 446).

[Variable]exact-integer-comparator
[Variable]integer-comparator
[Variable]rational-comparator
[Variable]real-comparator
[Variable]complex-comparator
[Variable]number-comparator

[SRFI-114] Compare exact integers, integers, rational numbers, real numbers, complex num-
bers and general numbers, respectively. In Gauche number-comparator is the same as
complex-comparator.

The equality are determined by =. For exact integer, integer, rational and real comparators,
the order is the numerical order. Two complex numbers are compared first by their real
components, and then their imaginary components only if the real components are the same.

Note that those comparator rejects NaN. You need make-inexact-real-comparator in
srfi-114 module to compare NaNs with your own discretion. See Section 11.23 [Com-
parators], page 553, for the details.

[Variable]pair-comparator
[Variable]list-comparator
[Variable]vector-comparator
[Variable]uvector-comparator
[Variable]bytevector-comparator

[SRFI-114] The default comparators to compare pairs, lists, vectors, uniform vectors and
bytevectors (which is synonym to u8vector). Their respective elements are compared with
the default comparators.

Chapter 6: Core library 100

Note that lists are compared by dictionary order ((1 2 3) comes before (1 3)), while in
vector-families shorter ones are ordered first (#(1 3) comes before #(1 2 3)).

6.2.4.4 Combining comparators

[Function]make-default-comparator
[R7RS comparator] Returns a default comparator. In Gauche, this returns the
default-comparator object. In R7RS, this is provided from scheme.comparator.

[Function]make-eq-comparator
[Function]make-eqv-comparator

[R7RS comparator] Returns comparators that use eq? and eqv? for its equality predi-
cate, respectively. Note that they use default-hash for hash functions, as specified by
scheme.comparator, which has a few drawbacks: You can’t use it if you want to hash based
on identity of mutable objects, it diverges on circular objects, and it is slow if applied on a
large structures. We recommend to use eq-comparator or eqv-comparator if possible (see
Section 6.2.4.3 [Predefined comparators], page 98).

In R7RS, this is provided from scheme.comparator.

[Function]make-reverse-comparator cmpr
[SRFI-114] Returns a comparator with the same type test predicate, equality procedure, and
hash function as the given comparator, but the comparison procedure is flipped.

[Function]make-key-comparator cmpr test key
Suppose you have some kind of structure, but you only need to look at one part of it to
compare them.

Returns a new comparator that uses test as type test predicate. Its equality predicate,
comparison procedure and hash function are constructed by applying key to the argument(s)
then passing the result to the corresponding procedure of cmpr. If cmpr lacks comparison
procedure and/or hash function, so does the returned comparator.

In the following example, the tree-map users compares the given user records only by the
username slots:

(use gauche.record)

(define-record-type user #t #t

username ; string

password-hash ; string

comment) ; string

(define users ; table of users, managed by tree-map

(make-tree-map

(make-key-comparator string-comparator user? user-username)))

[Function]make-tuple-comparator cmpr1 cmpr2 . . .
Creates a comparator that compares lists of the form (x1 x2 ...), where each element is
compared with the corresponding comparator. For example, (make-tuple-comparator c1

c2 c3) will compare three-element list, whose first elements are compared by c1, second
elements by c2 and third elements by c3.

6.3 Numbers

Gauche supports the following types of numbers

multi-precision exact integer
There’s no limit of the size of number except the memory of the machine.

Chapter 6: Core library 101

multi-precision exact non-integral rational numbers.
Both denominator and numerator are represented by exact integers. There’s no
limit of the size of number except the memory of the machine.

inexact floating-point real numbers
Using double-type of underlying C compiler, usually IEEE 64-bit floating point
number.

inexact floating-point complex numbers
Real part and imaginary part are represented by inexact floating-point real numbers.

6.3.1 Number classes

[Builtin Class]<number>
[Builtin Class]<complex>
[Builtin Class]<real>
[Builtin Class]<rational>
[Builtin Class]<integer>

These classes consist a class hierarchy of number objects. <complex> inherits <number>,
<real> inherits <complex>,<rational> inherits <real> and <integer> inherits <rational>.

Note that these classes do not exactly correspond to the number hierarchy defined in R7RS.
Especially, only exact integers are the instances of the <integer> class. That is,

(integer? 1) ⇒ #t

(is-a? 1 <integer>) ⇒ #t

(is-a? 1 <real>) ⇒ #t

(integer? 1.0) ⇒ #t

(is-a? 1.0 <integer>) ⇒ #f

(is-a? 1.0 <real>) ⇒ #t

(class-of (expt 2 100)) ⇒ #<class <integer>>

(class-of (sqrt -3)) ⇒ #<class <complex>>

6.3.2 Numerical predicates

[Function]number? obj
[Function]complex? obj
[Function]real? obj
[Function]rational? obj
[Function]integer? obj

[R7RS base] Returns #t if obj is a number, a complex number, a real number, a rational
number or an integer, respectively. In Gauche, a set of numbers is the same as a set of
complex numbers. A set of rational numbers is the same as a set of real numbers, except
+inf.0, -inf.0 and +nan.0 (since we have only limited-precision floating numbers).

(complex? 3+4i) ⇒ #t

(complex? 3) ⇒ #t

(real? 3) ⇒ #t

(real? -2.5+0.0i) ⇒ #t

(real? #e1e10) ⇒ #t

(integer? 3+0i) ⇒ #t

(integer? 3.0) ⇒ #t

(real? +inf.0) ⇒ #t

Chapter 6: Core library 102

(real? +nan.0) ⇒ #t

(rational? +inf.0) ⇒ #f

(rational? +nan.0) ⇒ #f

Note: R6RS adopts more strict definition on exactness, and notably, it defines a complex
number with non-exact zero imaginary part is not a real number. Currently Gauche doesn’t
have exact complex numbers, and automatically coerces complex numbers with zero imagi-
nary part to a real number. Thus R6RS code that relies on the fact that (real? 1+0.0i) is
#f won’t work with Gauche.

[Function]real-valued? obj
[Function]rational-valued? obj
[Function]integer-valued? obj

[R6RS] In Gauche these are just an alias of real?, rational? and integer?. They are
provided for R6RS compatibility.

The difference of those and non -valued versions in R6RS is that these returns #t if obj
is a complex number with nonexact zero imaginary part. Since Gauche doesn’t distinguish
complex numbers with zero imaginary part and real numbers, we don’t have the difference.

[Function]exact? obj
[Function]inexact? obj

[R7RS base] Returns #t if obj is an exact number and an inexact number, respectively.

(exact? 1) ⇒ #t

(exact? 1.0) ⇒ #f

(inexact? 1) ⇒ #f

(inexact? 1.0) ⇒ #t

(exact? (modulo 5 3)) ⇒ #t

(inexact? (modulo 5 3.0)) ⇒ #f

[Function]exact-integer? obj
[R7RS base] Same as (and (exact? obj) (integer? obj)), but more efficient.

[Function]zero? z
[R7RS base] Returns #t if a number z equals to zero.

(zero? 1) ⇒ #f

(zero? 0) ⇒ #t

(zero? 0.0) ⇒ #t

(zero? 0.0+0.0i) ⇒ #t

[Function]positive? x
[Function]negative? x

[R7RS base] Returns #t if a real number x is positive and negative, respectively. It is an
error to pass a non-real number.

[Function]finite? z
[Function]infinite? z
[Function]nan? z

[R7RS inexact] For real numbers, returns #f iff the given number is finite, infinite, or NaN,
respectively.

For non-real complex numbers, finite? returns #t iff both real and imaginary components
are finite, infinite? returns #t if at least either real or imaginary component is infinite,
and nan? returns #t if at least either real or imaginary component is NaN. (Note: It is

Chapter 6: Core library 103

incompatible to R6RS, in which these procedures must raise an error if the given argument
is non-real number.)

In R7RS, these procedures are in (scheme inexact) library.

[Function]odd? n
[Function]even? n

[R7RS base] Returns #t if an integer n is odd and even, respectively. It is an error to pass a
non-integral number.

(odd? 3) ⇒ #t

(even? 3) ⇒ #f

(odd? 3.0) ⇒ #t

[Function]fixnum? n
[Function]bignum? n

Returns #t iff n is an exact integer whose internal representation is ↓xnum and bignum,
respectively. Portable Scheme programs don’t need to care about the internal representation
of integer. These are for certain low-level routines that does particular optimization.

6.3.3 Numerical comparison

[Function]= z1 z2 z3 . . .
[R7RS base] If all the numbers z are equal, returns #t.

(= 2 2) ⇒ #t

(= 2 3) ⇒ #f

(= 2 2.0) ⇒ #t

(= 2 2.0 2.0+0i) ⇒ #t

(= 2/4 1/2) ⇒ #t

[Function]< x1 x2 x3 . . .
[Function]<= x1 x2 x3 . . .
[Function]> x1 x2 x3 . . .
[Function]>= x1 x2 x3 . . .

[R7RS base] Returns #t If all the real numbers x are monotonically increasing, monotonically
nondecreasing, monotonically decreasing, or monotonically nonincreasing, respectively.

[Function]max x1 x2 . . .
[Function]min x1 x2 . . .

[R7RS base] Returns a maximum or minimum number in the given real numbers, respectively.
If any of the arguments are NaN, NaN is returned.

See also find-min and find-max in Section 9.5.2 [Selection and searching in collection],
page 325.

[Function]min&max x1 x2 . . .
Returns a maximum and minimum number in the given real numbers.

See also find-min&max in Section 9.5.2 [Selection and searching in collection], page 325.

6.3.4 Arithmetics

[Function]+ z . . .
[Function]* z . . .

[R7RS base] Returns the sum or the product of given numbers, respectively. If no argument
is given, (+) yields 0 and (*) yields 1.

Chapter 6: Core library 104

[Function]- z1 z2 . . .
[Function]/ z1 z2 . . .

[R7RS base] If only one number z1 is given, returns its negation and reciprocal, respectively.

If more than one number are given, returns:

z1 - z2 - z3 ...

z1 / z2 / z3 ...

respectively.

(- 3) ⇒ -3

(- -3.0) ⇒ 3.0

(- 5+2i) ⇒ -5.0-2.0i

(/ 3) ⇒ 1/3

(/ 5+2i) ⇒ 0.172413793103448-0.0689655172413793i

(- 5 2 1) ⇒ 2

(- 5 2.0 1) ⇒ 2.0

(- 5+3i -i) ⇒ 5.0+2.0i

(/ 14 6) ⇒ 7/3

(/ 6+2i 2) ⇒ 3.0+1.0i

Note: Gauche didn’t have exact rational number support until 0.8.8; before that, / coerced
the result to inexact even if both divisor and dividend were exact numbers, when the result
wasn’t a whole number. It is not the case anymore.

If the existing code relies on the old behavior, it runs very slowly on the newer versions of
Gauche, since the calculation proceeds with exact rational arithmetics that is much slower
than floating point arithmetics. You want to use /. below to use fast inexact arithmetics
(unless you need exact results).

[Function]+. z . . .
[Function]*. z . . .
[Function]-. z1 z2 . . .
[Function]/. z1 z2 . . .

Like +, *, -, and /, but the arguments are coerced to inexact number. So they always return
inexact number. These are useful when you know you don’t need exact calculation and want
to avoid accidental overhead of bignums and/or exact rational numbers.

[Function]abs z
[R7RS+] For real number z, returns an absolute value of it. For complex number z, returns
the magnitude of the number. The complex part is Gauche extension.

(abs -1) ⇒ 1

(abs -1.0) ⇒ 1.0

(abs 1+i) ⇒ 1.4142135623731

[Function]quotient n1 n2
[Function]remainder n1 n2
[Function]modulo n1 n2

[R7RS base] Returns the quotient, remainder and modulo of dividing an integer n1 by an
integer n2. The result is an exact number only if both n1 and n2 are exact numbers.

Remainder and modulo differ when either one of the arguments is negative. Remainder R
and quotient Q have the following relationship.

n1 = Q * n2 + R

where abs(Q) = floor(abs(n1)/abs(n2)). Consequently, R’s sign is always the same as
n1’s.

Chapter 6: Core library 105

On the other hand, modulo works as expected for positive n2, regardless of the sign of n1
(e.g. (modulo -1 n2) == n2 - 1). If n2 is negative, it is mapped to the positive case by the
following relationship.

modulo(n1, n2) = −modulo(−n1, −n2)
Consequently, modulo’s sign is always the same as n2’s.

(remainder 10 3) ⇒ 1

(modulo 10 3) ⇒ 1

(remainder -10 3) ⇒ -1

(modulo -10 3) ⇒ 2

(remainder 10 -3) ⇒ 1

(modulo 10 -3) ⇒ -2

(remainder -10 -3) ⇒ -1

(modulo -10 -3) ⇒ -1

[Function]quotient&remainder n1 n2
Calculates the quotient and the remainder of dividing integer n1 by integer n2 simultaneously,
and returns them as two values.

[Function]div x y
[Function]mod x y
[Function]div-and-mod x y
[Function]div0 x y
[Function]mod0 x y
[Function]div0-and-mod0 x y

[R6RS] These are integer division procedures introduced in R6RS. Unlike quotient, modulo
and remainder, these procedures can take non-integral values. The dividend x can be an
arbitrary real number, and the divisor y can be non-zero real number.

div returns an integer n, and mod returns a real number m, such that:

• x = n y + m, and

• 0 <= m < |y|.

Examples:

(div 123 10) ⇒ 12

(mod 123 10) ⇒ 3

(div 123 -10) ⇒ -12

(mod 123 -10) ⇒ 3

(div -123 10) ⇒ -13

(mod -123 10) ⇒ 7

(div -123 -10) ⇒ 13

(mod -123 -10) ⇒ 7

(div 123/7 10/9) ⇒ 15

(mod 123/7 10/9) ⇒ 19/21

;; 123/7 = 10/9 * 15 + 19/21

Chapter 6: Core library 106

(div 14.625 3.75) ⇒ 3.0

(mod 14.625 3.75) ⇒ 3.375

;; 14.625 = 3.75 * 3.0 + 3.375

For a nonnegative integer x and an integer y, The results of div and mod matches those of
quotient and remainder. If x is negative, they differ, though.

div-and-mod calculates both div and mod and returns their results in two values.

div0 and mod0 are similar, except the range of m:

• x = n y + m

• -|y|/2 <= m < |y|/2

(div0 123 10) ⇒ 12

(mod0 123 10) ⇒ 3

(div0 127 10) ⇒ 13

(mod0 127 10) ⇒ -3

(div0 127 -10) ⇒ -13

(mod0 127 -10) ⇒ -3

(div0 -127 10) ⇒ -13

(mod0 -127 10) ⇒ 3

(div0 -127 -10) ⇒ 13

(mod0 -127 -10) ⇒ 3

div0-and-mod0 calculates both div0 and mod0 and returns their results in two values.

Here’s a visualization of R6RS and R7RS division and modulo operations: http://blog.

practical-scheme.net/gauche/20100618-integer-divisions It might help to grasp how
they works.

[Function]floor-quotient n d
[Function]floor-remainder n d
[Function]floor/ n d
[Function]truncate-quotient n d
[Function]truncate-remainder n d
[Function]truncate/ n d

[R7RS base] These are integer division operators introduced in R7RS. The names explicitly
indicate how they behave when numerator and/or denominator is/are negative.

The arguments n and d must be an integer. If any of them are inexact, the result is inexact.
If all of them are exact, the result is exact. Also, d must not be zero.

Given numerator n, denominator d, quotient q and remainder r, the following relations are
always kept.

r = n - dq

abs(r) < abs(d)

Now, (floor-quotient n d) and (truncate-quotient n d) are the same as (floor (/ n

d)) and (truncate (/ n d)), respectively. The *-remainder counterparts are derived from
the above relation.

The /-suffixed version, floor/ and truncate/, returns corresponding quotient and remainder
as two values.

(floor-quotient 10 -3) ⇒ -4

(floor-remainder 10 -3) ⇒ -2

http://blog.practical-scheme.net/gauche/20100618-integer-divisions
http://blog.practical-scheme.net/gauche/20100618-integer-divisions

Chapter 6: Core library 107

(truncate-quotient 10 -3) ⇒ -3

(truncate-remainder 10 -3) ⇒ 1

SRFI-141 introduces other variation of integer divisions (see Section 11.29 [Integer division],
page 559).

[Function]gcd n . . .
[Function]lcm n . . .

[R7RS base] Returns the greatest common divisor or the least common multiplier of the given
integers, respectively

Arguments must be integers, but doesn’t need to be exact. If any of arguments is inexact,
the result is inexact.

[Function]continued-fraction x
Returns a lazy sequence of regular continued fraction expansion of finite real number x. An
error is raised if x is infinite or NaN, or not a real number. The returned sequence is lazy, so
the terms are calculated as needed.

(continued-fraction 13579/2468)

⇒ (5 1 1 122 1 9)

(+ 5 (/ (+ 1 (/ (+ 1 (/ (+ 122 (/ (+ 1 (/ 9))))))))))

⇒ 13579/2468

(continued-fraction (exact 3.141592653589793))

⇒ (3 7 15 1 292 1 1 1 2 1 3 1 14 3 3 2 1 3 3 7 2 1 1 3 2 42 2)

(continued-fraction 1.5625)

⇒ (1.0 1.0 1.0 3.0 2.0)

[Function]numerator q
[Function]denominator q

[R7RS base] Returns the numerator and denominator of a rational number q.

[Function]rationalize x ebound
[R7RS base] Returns the simplest rational approximation q of a real number x, such that the
difference between x and q is no more than the error bound ebound.

Note that Gauche doesn’t have inexact rational number, so if x and/or ebound is inexact,
the result is coerced to floating point representation.

(rationalize 1234/5678 1/1000) ⇒ 5/23

(rationalize 3.141592653589793 1/10000)

⇒ 3.141509433962264

(rationalize (exact 3.141592653589793) 1/10000)

⇒ 333/106

(rationalize (exact 3.141592653589793) 1/10000000)

⇒ 75948/24175

;; Some edge cases

(rationalize 2 +inf.0) ⇒ 0

(rationalize +inf.0 0) ⇒ +inf.0

(rationalize +inf.0 +inf.0) ⇒ +nan.0

[Function]floor x
[Function]ceiling x

Chapter 6: Core library 108

[Function]truncate x
[Function]round x

[R7RS base] The argument x must be a real number. Floor and ceiling return a maximum
integer that isn’t greater than x and a minimum integer that isn’t less than x, respectively.
Truncate returns an integer that truncates x towards zero. Round returns an integer that is
closest to x. If fractional part of x is exactly 0.5, round returns the closest even integer.

Following Scheme’s general rule, the result is inexact if x is an inexact number; e.g. (round
2.3) is 2.0. If you need an exact integer by rounding an inexact number, you have to use
exact on the result, or use one of the following procedure ((floor->exact etc).

[Function]floor->exact x
[Function]ceiling->exact x
[Function]truncate->exact x
[Function]round->exact x

These are convenience procedures of the popular phrase (exact (floor x)) etc.

[Function]clamp x :optional min max
Returns

min if x < min

x if min <= x <= max

max if max < x

If min or max is omitted or #f, it is regarded as -inf.0 or +inf.0, respectively. Returns an
exact integer only if all the given numbers are exact integers.

(clamp 3.1 0.0 1.0) ⇒ 1.0

(clamp 0.5 0.0 1.0) ⇒ 0.5

(clamp -0.3 0.0 1.0) ⇒ 0.0

(clamp -5 0) ⇒ 0

(clamp 3724 #f 256) ⇒ 256

[Function]exp z
[Function]log z
[Function]log z1 z2
[Function]sin z
[Function]cos z
[Function]tan z
[Function]asin z
[Function]acos z
[Function]atan z
[Function]atan y x

[R7RS inexact] Transcendental functions. Work for complex numbers as well. In R7RS, these
procedures are in the (scheme inexact) module.

The two-argument version of log is added in R6RS, and returns base-z2 logarithm of z1.

The two-argument version of atan returns (angle (make-rectangular x y)) for the real
numbers x and y.

[Function]sinh z
[Function]cosh z
[Function]tanh z
[Function]asinh z
[Function]acosh z
[Function]atanh z

Hyperbolic trigonometric functions. Work for complex numbers as well.

Chapter 6: Core library 109

[Function]sqrt z
[R7RS inexact] Returns a square root of a complex number z. The branch cut scheme is the
same as Common Lisp. For real numbers, it returns a positive root.

If z is the square of an exact real number, the return value is also an exact number.

(sqrt 2) ⇒ 1.4142135623730951

(sqrt -2) ⇒ 0.0+1.4142135623730951i

(sqrt 256) ⇒ 16

(sqrt 256.0) ⇒ 16.0

(sqrt 81/169) ⇒ 9/13

[Function]exact-integer-sqrt k
[R7RS base] Given an exact nonnegative integer k, returns two exact nonnegative integer s
and r that satisfy the following equations:

k = (+ (* s s) r)

k < (* (+ s 1) (+ s 1))

(exact-integer-sqrt 782763574)

⇒ 27977 and 51045

[Function]square z
[R7RS base] Returns (* z z).

[Function]expt z1 z2
[R7RS base] Returns z1^z2 (z1 powered by z2), where z1 and z2 are complex numbers.

[Function]expt-mod base exponent mod
Calculates (modulo (expt base exponent) mod) efficiently.

The next example shows the last 10 digits of a mersenne prime M 74207281 (2^74207281 -
1)

(- (expt-mod 2 74207281 #e1e10) 1)

⇒ 1086436351

[Function]gamma x
[Function]lgamma x

Gamma function and natural logarithmic of absolute value of Gamma function.

NB: Mathematically these functions are defined in complex domain, but currently we only
supports real number argument.

[Function]fixnum-width
[Function]greatest-fixnum
[Function]least-fixnum

[R6RS] These procedures return the width of fixnum (w), the greatest integer representable
by fixnum (2^(w-1) - 1), and the least integer representable by fixnum (- 2^(w-1)), respec-
tively. You might want to care the fixnum range when you are writing a performance-critical
section.

These names are defined in R6RS. Common Lisp and ChezScheme have most-positive-

fixnum and most-negative-fixnum.

NB: Before 0.9.5, fixnum-width had a bug to return one smaller than the supposed value.

Chapter 6: Core library 110

6.3.5 Numerical conversions

[Function]make-rectangular x1 x2
[Function]make-polar x1 x2

[R7RS complex] Creates a complex number from two real numbers, x1 and x2.
make-rectangular returns x1 + ix2. make-polar returns x1e^(ix2).

In R7RS, these procedures are in the (scheme complex) library.

[Function]real-part z
[Function]imag-part z
[Function]magnitude z
[Function]angle z

[R7RS complex] Decompose a complex number z and returns a real number. real-part and
imag-part return z’s real and imaginary part, respectively. magnitude and angle return z’s
magnitude and angle, respectively.

In R7RS, these procedures are in the (scheme complex) library.

[Function]decode-float x
For a given finite floating-point number, returns a vector of three exact integers, #(m, e,

sign), where

x = (* sign m (expt 2.0 e))

sign is either 1, 0 or -1.

If x is +inf.0 or -inf.0, m is #t. If x is +nan.0, m is #f.

The API is taken from ChezScheme.

(decode-float 3.1415926)

⇒ #(7074237631354954 -51 1)

(* 7074237631354954 (expt 2.0 -51))

⇒ 3.1415926

(decode-float +nan.0)

⇒ #(#f 0 -1)

[Function]encode-float vector
This is an inverse of decode-float. Vector must be a three-element vector as returned from
decode-float.

(encode-float ’#(7074237631354954 -51 1))

⇒ 3.1415926

(encode-float ’#(#t 0 1))

⇒ +inf.0

[Function]fmod x y
[Function]modf x
[Function]frexp x
[Function]ldexp x n

[POSIX] These procedures can be used to compose and decompose floating point numbers.
Fmod computes the remainder of dividing x by y, that is, it returns x-n*y where n is the
quotient of x/y rounded towards zero to an integer. Modf returns two values; a fractional
part of x and an integral part of x. Frexp returns two values, fraction and exponent of x,
where x = fraction * 2^exponent, and 0.5 <= |fraction| < 1.0, unless x is zero. (When x is

Chapter 6: Core library 111

zero, both fraction and exponent are zero). Ldexp is a reverse operation of frexp; it returns
a real number x * 2^n.

(fmod 32.1 10.0) ⇒ 2.1

(fmod 1.5 1.4) ⇒ 0.1

(modf 12.5) ⇒ 0.5 and 12.0

(frexp 3.14) ⇒ 0.785 and 2

(ldexp 0.785 2) ⇒ 3.14

[Function]exact z
[Function]inexact z

[R7RS base] Returns an exact or an inexact representation of the given number z, respectively.
Passing an exact number to exact, and an inexact number to inexact, are no-op.

Gauche doesn’t have exact complex number with non-zero imaginary part, nor exact infinites
and NaNs, so passing those to exact raises an error.

(inexact 1) ⇒ 1.0

(inexact 1/10) ⇒ 0.1

If an inexact finite real number is passed to exact, the simplest exact rational number within
the precision of the floating point representation is returned.

(exact 1.0) ⇒ 1

(exact 0.1) ⇒ 1/10

(exact (/ 3.0)) ⇒ 1/3

For all finite inexact real number x, (inexact (exact x)) is always eqv? to the original
number x.

(Note that the inverse doesn’t hold, that is, an exact number n and (exact (inexact n))

aren’t necessarily the same. It’s because many (actually, infinite number of) exact numbers
can be mapped to one inexact number.)

To specify the error tolerance when converting inexact real numbers to exact rational num-
bers, use rationalize or real->rational.

[Function]exact->inexact z
[Function]inexact->exact z

[R5RS] Converts exact number to inexact one, and vice versa.

In fact, exact->inexact returns the argument as is if an inexact number is passed, and
inexact->exact returns the argument if an exact number is passed, so in Gauche they are
equivalent to inexact and exact, respectively. Note that other R5RS implementation may
raise an error if passing an inexact number to exact->inexact, for example.

Generally exact and inexact are preferred, for they are more concise, and you don’t need
to care whether the argument is exact or inexact numbers. These procedures are for com-
patibility with R5RS programs.

[Function]real->rational x :optional hi lo open?
Find the simplest rational representation of a finite real number x within the specified error
bounds. This is the low-level routine called by rationalize and exact.

The result rational value r satisfies the following condition:

(<= (- x lo) r (+ x hi)) ; when open? is #f

(< (- x lo) r (+ x hi)) ; otherwise

Note that both hi and lo must be nonnegative.

If hi and/or lo is omitted, it is determined by x: if x is exact, hi and lo are defaulted to zero;
if x is inexact, hi and lo depend on the precision of the floating point representation of x. In
the latter case, the open? also depends on x—it is true if the mantissa of x is odd, and false

Chapter 6: Core library 112

otherwise, reflecting the round-to-even rule. So, if you call real->rational with one finite
number, you’ll get the same result as exact:

(real->rational 0.1) ⇒ 1/10

Passing zeros to the error bounds makes it return the exact conversion of the floating number
itself (that is, the exact calculation of (* sign mantissa (expt 2 exponent))).

(real->rational 0.1 0 0) ⇒ 3602879701896397/36028797018963968

(If you give both hi and lo, but omit open?, we assume closed range.)

[Function]number->string z :optional radix use-upper?
[Function]string->number string :optional radix

[R7RS+] These procedures convert a number and its string representation in radix radix
system. radix must be between 2 and 36 inclusive. If radix is omitted, 10 is assumed.

Number->string takes a number z and returns a string. If z is not an exact integer, radix
must be 10. For the numbers with radix more than 10, lower case alphabet character is used
for digits, unless the optional argument use-upper? is true, in that case upper case characters
are used. The argument use-upper? is Gauche’s extension.

String->number takes a string string and parses it as a number in radix radix system. If
the number looks like non-exact number, only radix 10 is allowed. If the given string can’t
be a number, #f is returned.

[Generic Function]x->number obj
[Generic Function]x->integer obj

Generic coercion functions. Returns ‘natural’ interpretation of obj as a number or an exact
integer, respectively. The default methods are defined for numbers and strings; a string
is interpreted by string->number, and if the string can’t be interpreted as a number, 0 is
returned. Other obj is simply converted to 0. If obj is naturally interpreted as a number that
is not an exact integer, x->integer uses round and inexact->exact to obtain an integer.

Other class may provide a method to customize the behavior.

6.3.6 Basic bitwise operations

These procedures treat integers as half-open bit vectors. If an integer is positive, it is regarded
as if infinite number of zeros are padded to the left. If an integer is negative, it is regarded in
2’s complement form, and infinite number of 1’s are padded to the left.

In regard to the names of those operations, there are two groups in the Scheme world;
Gauche follows the names of the original SLIB’s “logical” module, which was rooted in CL.
Another group uses a bit long but descriptive name such as arithmetic-shift.

SRFI-151 (see Section 11.32 [Bitwise operations], page 572) defines both names, and also
some additional procedures. If you’re porting libraries written for other Scheme, you might
want to check it.

[Function]ash n count
[SRFI-60] Shifts integer n left with count bits. If count is negative, ash shifts n right with
−count bits.

; Note: 6 ≡ [...00110], and
; -6 ≡ [...11010]
(ash 6 2) ⇒ 24 ;[...0011000]
(ash 6 -2) ⇒ 1 ;[...0000001]
(ash -6 2) ⇒ -24 ;[...1101000]
(ash -6 -2) ⇒ -2 ;[...1111110]

Chapter 6: Core library 113

[Function]logand n1 . . .
[Function]logior n1 . . .
[Function]logxor n1 . . .

[SRFI-60] Returns bitwise and, bitwise inclusive or and bitwise exclusive or of integers n1
. . . . If no arguments are given, logand returns -1, and logior and logxor returns 0.

[Function]lognot n
[SRFI-60] Returns bitwise not of an integer n.

[Function]logtest n1 n2 . . .
[SRFI-60] ≡ (not (zero? (logand n1 n2 ...)))

[Function]logbit? index n
[SRFI-60] Returns #t if index-th bit of integer n is 1, #f otherwise.

[Function]bit-field n start end
[SRFI-151] Extracts start-th bit (inclusive) to end-th bit (exclusive) from an exact integer n,
where start < end.

[Function]copy-bit index n bit
[SRFI-151] If bit is true, sets index-th bit of an exact integer n. If bit is false, resets index-th
bit of an exact integer n.

[Function]copy-bit-field n from start end
[SRFI-60] Returns an exact integer, each bit of which is the same as n except the start-th bit
(inclusive) to end-th bit (exclusive), which is a copy of the lower (end-start)-th bits of an
exact integer from.

(number->string (copy-bit-field #b10000000 -1 1 5) 2)

⇒ "10011110"

(number->string (copy-bit-field #b10000000 #b010101010 1 7) 2)

⇒ "11010100"

Note: The API of this procedure was originally taken from SLIB, and at that time, the
argument order was (copy-bit-field n start end from). During the discussion of SRFI-60
the argument order was changed for the consistency, and the new versions of SLIB followed it.
We didn’t realize the change until recently - before 0.9.4, this procedure had the old argument
order. Code that is using this procedure needs to be fixed. If you need your code to work
with both versions of Gauche, have the following definition in your code.

(define (copy-bit-field to from start end)

(if (< start end)

(let1 mask (- (ash 1 (- end start)) 1)

(logior (logand to (lognot (ash mask start)))

(ash (logand from mask) start)))

from))

[Function]logcount n
[SRFI-60] If n is positive, returns the number of 1’s in the bits of n. If n is negative, returns
the number of 0’s in the bits of 2’s complement representation of n.

(logcount 0) ⇒ 0

(logcount #b0010) ⇒ 1

(logcount #b0110) ⇒ 2

(logcount #b1111) ⇒ 4

Chapter 6: Core library 114

(logcount #b-0001) ⇒ 0 ;; 2’s complement:111111

(logcount #b-0010) ⇒ 1 ;; 2’s complement:111110

(logcount #b-0011) ⇒ 1 ;; 2’s complement:111101

(logcount #b-0100) ⇒ 2 ;; 2’s complement:111100

[Function]integer-length n
[SRFI-151] Returns the minimum number of bits required to represent an exact integer n.
Negative integer is assumed to be in 2’s complement form. A sign bit is not considered.

(integer-length 255) ⇒ 8

(integer-length 256) ⇒ 9

(integer-length -256) ⇒ 8

(integer-length -257) ⇒ 9

[Function]twos-exponent n
If n is a power of two, that is, (expt 2 k) and k >= 0, then returns k. Returns #f if n is not
a power of two.

[Function]twos-exponent-factor n
Returns maximum k such that (expt 2 k) is a factor of n. In other words, returns the number
of consecutive zero bits from LSB of n. When n is zero, we return -1 for the consistency of
the following equivalent expression.

This can be calculated by the following expression; this procedure is for speed to save creating
intermediate numbers when n is bignum.

(- (integer-length (logxor n (- n 1))) 1)

This procedure is also equivalent to srfi-60’s log2-binary-factors and first-set-bit (see
Section 11.14 [Integers as bits], page 543).

6.3.7 Endianness

In the Scheme world you rarely need to know about how the numbers are represented inside
the machine. However, it matters when you have to exchange data to/from the outer world in
binary representation.

Gauche’s binary I/O procedures, such as in the binary.io module (see Section 12.1 [Bi-
nary I/O], page 581) and write-uvector/read-uvector! (see Section 9.35 [Uniform vectors],
page 447), take optional endian argument to specify the endianness.

Currently Gauche recognizes the following endiannesses.

big-endian

Big endian. With this endianness, a 32-bit integer #x12345678 will be written out
as an octet sequence #x12 #x34 #x56 #x78.

little-endian

Little endian. With this endianness, a 32-bit integer #x12345678 is written out as
an octet sequence #x78 #x56 #x34 #x12.

arm-little-endian

This is a variation of little-endian, and used in ARM processors in some
specific modes. It works just like little-endian, except reading/writing
double-precision floating point number (f64), which is written as two little-endian
32bit words ordered by big-endian (e.g. If machine register’s representation is
#x0102030405060708, it is written as #x04 #x03 #x02 #x01 #x08 #x07 #x06 #x05.

When the endian argument is omitted, those procedures use the parameter default-endian:

Chapter 6: Core library 115

[Parameter]default-endian
This is a dynamic parameter (see Section 9.21 [Parameters], page 383) to specify the endian-
ness the binary I/O routines use when its endian argument is omitted. The initial value of
this parameter is the system’s native endianness.

The system’s native endianness can be queried with the following procedure:

[Function]native-endian
Returns a symbol representing the system’s endianness.

6.4 Booleans

[Builtin Class]<boolean>
A boolean class. Only #t and #f belong to this class.

[Function]not obj
[R7RS base] Returns #t if and only if obj is #f, and returns #f otherwise.

[Function]boolean? obj
[R7RS base] Returns #t if obj is a boolean value.

[Function]boolean obj
Returns #f iff obj is #f, and returns #t otherwise. Convenient to coerce a value to boolean.

[Function]boolean=? a b c . . .
[R7RS base] Every argument must be a boolean value. Returns #t iff all values are the same,
#f otherwise.

6.5 Undefined values

While working with Gauche, sometimes you encounter a value printed as #<undef>, an undefined
value.

gosh> (if #f #t)

#<undef>

It is a value used as a filler where the actual value doesn’t matter, or to indicate there’s no
other suitable value.

Do not confuse undefined values with unbound variables; A variable can be bound to
#<undef>, for it is just an ordinary first-class value. On the other hand, an unbound vari-
able means there’s no value associated with the variable.

However, #<undef> may be used in certain occasions to indicate that a value is not provided
for the variable. For example, an optional procedure parameter without default value is bound
to #<undef> if an actual argument is not given (see Section 4.3 [Making Procedures], page 40).
Note that it cannot be distinguished from the case a value is actually provided, and the value
just happens to be #<undef>. If you get an #<undef>, you can say at most is that the value
doesn’t matter. You shouldn’t let it carry too much meanings.

Being said that, there are a couple of procedures to deal with undefined values.

[Function]undefined? obj
Returns #t iff obj is an undefined value.

[Function]undefined
Returns an undefined value.

Chapter 6: Core library 116

6.6 Pairs and Lists

Pairs and lists are one of the most fundamental data structure in Scheme. Gauche core provides
all standard list procedures, plus some useful procedures that are commonly supported in lots
of implementations. If they are not enough, you can find more procedures in the modules
described in Section 10.3.1 [R7RS lists], page 482, and Section 12.60 [Combination library],
page 731. See also Section 9.5 [Collection framework], page 322, and Section 9.28 [Sequence
framework], page 412, for generic collection/sequence operations.

6.6.1 Pair and null class

[Builtin Class]<list>
An abstract class represents lists. A parent class of <null> and <pair>. Inherits <sequence>.

Note that a circular list is also an instance of the <list> class, while list? returns false on
the circular lists and dotted lists.

(use srfi-1)

(list? (circular-list 1 2)) ⇒ #f

(is-a? (circular-list 1 2) <list>) ⇒ #t

[Builtin Class]<null>
A class of empty list. () is the only instance.

[Builtin Class]<pair>
A class of pairs.

6.6.2 List predicates

[Function]pair? obj
[R7RS base] Returns #t if obj is a pair, #f otherwise.

[Function]null? obj
[R7RS base] Returns #t if obj is an empty list, #f otherwise.

[Function]null-list? obj
[SRFI-1] Returns #t if obj is an empty list, #f if obj is a pair. If obj is neither a pair nor
an empty list, an error is signaled.

This can be used instead of null? to check the end-of-list condition when you want to be
more picky about non-proper lists.

[Function]list? obj
[R7RS base] Returns #t if obj is a proper list, #f otherwise. This function returns #f if obj
is a dotted or circular list.

See also proper-list?, circular-list? and dotted-list? below.

[Function]proper-list? x
[SRFI-1] Returns #t if x is a proper list.

[Function]circular-list? x
[SRFI-1] Returns #t if x is a circular list.

[Function]dotted-list? x
[SRFI-1] Returns #t if x is a finite, non-nil-terminated list. This includes non-pair, non-()
values (e.g. symbols, numbers), which are considered to be dotted lists of length 0.

Chapter 6: Core library 117

6.6.3 List constructors

[Function]cons obj1 obj2
[R7RS base] Constructs a pair of obj1 and obj2 and returns it.

(cons ’a ’b) ⇒ (a . b)

[Function]make-list len :optional ↓ll
[R7RS base] Makes a proper list of length len. If optional argument ↓ll is provided, each
element is initialized by it. Otherwise each element is undefined.

(make-list 5 #t) ⇒ (#t #t #t #t #t)

[Function]list obj . . .
[R7RS base] Makes a list, whose elements are obj

(list 1 2 3) ⇒ (1 2 3)

(list) ⇒ ()

[Function]list* obj1 obj2 . . .
[Function]cons* obj1 obj2 . . .

[R7RS list] Like list, but the last argument becomes cdr of the last pair. Two procedures are
exactly the same. Gauche originally had list*, and SRFI-1 (R7RS (scheme list))defines
cons*.

(list* 1 2 3) ⇒ (1 2 . 3)

(list* 1) ⇒ 1

[Function]list-copy list
[R7RS base] Shallow copies list. If list is circular, this function diverges.

[Function]iota count :optional (start 0) (step 1)
[R7RS list] Returns a list of count numbers, starting from start, increasing by step. Count
must be a nonnegative integer. If both start and step are exact, the result is a list of exact
numbers; otherwise, it is a list of inexact numbers.

(iota 5) ⇒ (0 1 2 3 4)

(iota 5 1 3/7) ⇒ (1 10/7 13/7 16/7 19/7)

(iota 5 0 -0.1) ⇒ (0 -0.1 -0.2 -0.3 -0.4)

This creates a list eagerly. If the list is short it is fast enough, but if you want to count tens
of thousands of numbers, you may want to do so lazily. See liota (see Section 6.19.2 [Lazy
sequences], page 185).

[Macro]cond-list clause . . .
Construct a list by conditionally adding entries. Each clause has a test and expressions. When
its test yields true, the result of associated expression is used to construct the resulting list.
When the test yields false, nothing is inserted.

Clause must be either one of the following form:

(test expr ...)

Test is evaluated, and when it is true, expr . . . are evaluated, and the return
value becomes a part of the result. If no expr is given, the result of test is used
if it is not false.

(test => proc)

Test is evaluated, and when it is true, proc is called with the value, and the
return value is used to construct the result.

Chapter 6: Core library 118

(test @ expr ...)

Like (test expr ...), except that the result of the last expr must be a list, and
it is spliced into the resulting list, like unquote-splicing.

(test => @ proc)

Like (test => proc), except that the result of proc must be a list, and and it is
spliced into the resulting list, like unquote-splicing.

(let ((alist ’((x 3) (y -1) (z 6))))

(cond-list ((assoc ’x alist) ’have-x)

((assoc ’w alist) ’have-w)

((assoc ’z alist) => cadr)))

⇒ (have-x 6)

(let ((x 2) (y #f) (z 5))

(cond-list (x @ ‘(:x ,x))

(y @ ‘(:y ,y))

(z @ ‘(:z ,z))))

⇒ (:x 2 :z 5)

6.6.4 List accessors and modifiers

[Function]car pair
[Function]cdr pair

[R7RS base] Returns car and cdr of pair, respectively.

[Function]set-car! pair obj
[Function]set-cdr! pair obj

[R7RS base] Modifies car and cdr of pair, by obj, respectively.

Note: (setter car) ≡ set-car!, and (setter cdr) ≡ set-cdr!.

[Function]caar pair
[Function]cadr pair

. . .

[Function]cdddar pair
[Function]cddddr pair

[R7RS base][R7RS cxr] caar ≡ (car (car x)), cadr ≡ (car (cdr x)), and so on.

In R7RS, more than two-level of accessors are defined in the (scheme cxr) library.

The corresponding setters are also defined.

(let ((x (list 1 2 3 4 5)))

(set! (caddr x) -1)

x)

⇒ (1 2 -1 4 5)

[Function]length list
[R7RS base] Returns the length of a proper list list. If list is a dotted list, an error is signaled.
If list is a circular list, this function diverges.

[Function]length+ x
[R7RS list] If x is a proper list, returns its length. For all other x, including a circular list, it
returns #f.

Chapter 6: Core library 119

[Function]length=? x k
[Function]length<? x k
[Function]length<=? x k
[Function]length>? x k
[Function]length>=? x k

Returns #t iff x is a (possibly improper) list whose length is equal to, less than, less than
or equal to, greater than, or greater than or equal to k, respectively. This procedure only
follows the list up to the k items, so it doesn’t realize elements of lazy sequence more than
needed (See Section 6.19.2 [Lazy sequences], page 185, for the lazy sequences).

Dotted lists and circular lists are allowed. For the dotted list, the cdr of the last pair isn’t
counted; that is, a non-pair object has length 0, and (a . b) has length 1. A circular list is
treated as if it has infinite length.

(length<=? ’(a b) 2) ⇒ #t

(length<=? ’(a b) 1) ⇒ #f

(length<=? ’() 0) ⇒ #t

;; dotted list cases

(length<=? ’a 0) ⇒ #t

(length<=? ’(a . b) 0) ⇒ #f

(length<=? ’(a . b) 1) ⇒ #t

NB: The name of these procedures might be misleading, for other procedures with the name
something<=? etc. usually takes objects of the same type. We don’t have any better idea
now, unfortunately.

[Function]take x i
[Function]drop x i

[R7RS list] take returns the first i elements of list x. drop returns all but the first i elements
of list x.

(take ’(a b c d e) 2) => (a b)

(drop ’(a b c d e) 2) => (c d e)

x may be any value:

(take ’(1 2 3 . d) 2) => (1 2)

(drop ’(1 2 3 . d) 2) => (3 . d)

(drop ’(1 2 3 . d) 3) => d

drop is exactly equivalent to performing i cdr operations on x. The returned value shares
a common tail with x. On the other hand, take always allocates a new list for result if the
argument is a list of non-zero length.

An error is signaled if i is past the end of list x. See take* and drop* below for more tolerant
version.

For generic subsequence extraction from any sequence, see subseq in Section 9.28.2 [Slicing
sequence], page 413.

[Function]take* list k :optional (↓ll? #f) (padding #f)
[Function]drop* list k

More tolerant version of take and drop. They won’t raise an error even if k is larger than
the size of the given list.

If the list is shorter than k elements, take* returns a copy of list by default. If ↓ll? is true,
padding is added to the result to make its length k.

On the other hand, drop* just returns an empty list when the input list is shorter than k
elements.

(take* ’(a b c d) 3) ⇒ (a b c)

Chapter 6: Core library 120

(take* ’(a b c d) 6) ⇒ (a b c d)

(take* ’(a b c d) 6 #t) ⇒ (a b c d #f #f)

(take* ’(a b c d) 6 #t ’z) ⇒ (a b c d z z)

(drop* ’(a b c d) 3) ⇒ (d)

(drop* ’(a b c d) 5) ⇒ ()

Note: For generic subsequence extraction from any sequence, see subseq in Section 9.28.2
[Slicing sequence], page 413.

[Function]take-right lis k
[Function]drop-right lis k

[R7RS list] take-right returns the last k elements of lis. drop-right returns all but the
last k elements of lis.

(take-right ’(a b c d e) 2) => (d e)

(drop-right ’(a b c d e) 2) => (a b c)

lis may be any finite list.

(take-right ’(1 2 3 . d) 2) => (2 3 . d)

(drop-right ’(1 2 3 . d) 2) => (1)

(take-right ’(1 2 3 . d) 0) => d

(drop-right ’(1 2 3 . d) 0) => (1 2 3)

take-right’s return value always shares a common tail with lis. drop-right always allocates
a new list if the argument is a list of non-zero length.

An error is signaled if k is larger than the length of lis. See take-right* and drop-right*

below, for more tolerant version.

[Function]take-right* list k :optional (↓ll? #f) (padding #f)
[Function]drop-right* list k

Like take* and drop*, but counts from right of list. If list is shorter than k elements, they
won’t raise an error. Instead, drop-right* just returns an empty list, and take-right*

returns list itself by default. If ↓ll? is true for take-right*, padding is added on the left of
the result to make its length k. The result still shares the list.

[Function]take! lis k
[Function]drop-right! lis k

[R7RS list] Linear update variants of take and drop-right. Those procedures may destruc-
tively modifies lis.

If lis is circular, take! may return a list shorter than expected.

[Function]list-tail list k :optional fallback
[R7RS base] Returns k-th cdr of list. list can be a proper, dotted or circular list. (If list is a
dotted list, its last cdr is simply ignored).

If k is negative or larger than the length of list, the behavior depends on whether the optional
fallback argument is given or not. If fallback is given, it is returned. Otherwise, an error is
signaled.

[Function]list-ref list k :optional fallback
[R7RS+] Returns k-th element of list. list can be a proper, dotted or circular list.

By default, list-ref signals an error if k is negative, or greater than or equal to the length
of list. However, if an optional argument fallback is given, it is returned for such case. This
is an extension of Gauche.

Chapter 6: Core library 121

[Function]list-set! list k v
[R7RS base] Modifies the k-th element of a list by v. It is an error unless k is an exact integer
between 0 and one minus the length of k. If list is immutable, no error is signalled but the
behavior is undefined.

[Function]last-pair list
[R7RS list] Returns the last pair of list. list can be a proper or dotted list.

(last-pair ’(1 2 3)) ⇒ (3)

(last-pair ’(1 2 . 3)) ⇒ (2 . 3)

(last-pair 1) ⇒ error

[Function]last pair
[R7RS list] Returns the last element of the non-empty, finite list pair. It is equivalent to (car
(last-pair pair)).

(last ’(1 2 3)) ⇒ 3

(last-pair ’(1 2 . 3)) ⇒ 2

[Function]split-at x i
[Function]split-at! x i

[R7RS list] split-at splits the list x at index i, returning a list of the first i elements, and
the remaining tail.

(split-at ’(a b c d e) 2) ⇒ (a b) (c d e)

split-at! is the linear-update variant. It may destructively modifies x to produce the result.

[Function]split-at* list k :optional (↓ll? #f) (padding #f)
More tolerant version of split-at. Returns the results of take* and drop*.

(split-at* ’(a b c d) 6 #t ’z)

⇒ (a b c d z z) and ()

[Function]slices list k :optional ↓ll? padding
Splits list into the sublists (slices) where the length of each slice is k. If the length of list is
not a multiple of k, the last slice is dealt in the same way as take*; that is, it is shorter than
k by default, or added padding if ↓ll? is true.

(slices ’(a b c d e f g) 3)

⇒ ((a b c) (d e f) (g))

(slices ’(a b c d e f g) 3 #t ’z)

⇒ ((a b c) (d e f) (g z z))

[Function]intersperse item list
Inserts item between elements in the list. (The order of arguments is taken from Haskell’s
intersperse).

(intersperse ’+ ’(1 2 3)) ⇒ (1 + 2 + 3)

(intersperse ’+ ’(1)) ⇒ (1)

(intersperse ’+ ’()) ⇒ ()

6.6.5 Walking over lists

[Function]map proc list1 list2 . . .
[R7RS+] Applies proc for each element(s) of given list(s), and returns a list of the results.
R7RS doesn’t specify the application order of map, but Gauche guarantees proc is always
applied in order of the list(s). Gauche’s map also terminates as soon as one of the list is
exhausted.

(map car ’((a b) (c d) (e f))) ⇒ (a c e)

Chapter 6: Core library 122

(map cons ’(a b c) ’(d e f))

⇒ ((a . d) (b . e) (c . f))

Note that the gauche.collection module (see Section 9.5 [Collection framework], page 322)
extends map to work on any type of collection.

[Function]append-map f clist1 clist2 . . .
[Function]append-map! f clist1 clist2 . . .

[R7RS list] Functionally equivalent to the followings, though a bit more efficient:

(apply append (map f clist1 clist2 ...))

(apply append! (map f clist1 clist2 ...))

At least one of the list arguments must be finite.

[Function]map* proc tail-proc list1 list2 . . .
Like map, except that tail-proc is applied to the cdr of the last pair in the argument(s) to
get the cdr of the last pair of the result list. This procedure allows improper list to appear
in the arguments. If a single list is given, tail-proc always receives a non-pair object.

(map* - / ’(1 2 3 . 4)) ⇒ (-1 -2 -3 . 1/4)

(define (proper lis)

(map* values

(lambda (p) (if (null? p) ’() (list p)))

lis))

(proper ’(1 2 3)) ⇒ (1 2 3)

(proper ’(1 2 3 . 4)) ⇒ (1 2 3 4)

If more than one list are given, the shortest one determines how tail-proc is called. When
map* reaches the last pair of the shortest list, tail-proc is called with cdrs of the current pairs.

(map* + vector ’(1 2 3 4) ’(1 2 . 3))

⇒ (2 4 . #((3 4) 3))

Note: The name map* is along the line of list*/cons* that can produce improper list (See
Section 6.6.3 [List constructors], page 117, see Section 10.3.1 [R7RS lists], page 482).

[Function]for-each proc list1 list2 . . .
[R7RS base] Applies proc for each element(s) of given list(s) in order. The results of proc
are discarded. The return value of for-each is undefined. When more than one list is given,
for-each terminates as soon as one of the list is exhausted.

Note that the gauche.collection module (see Section 9.5 [Collection framework], page 322)
extends for-each to work on any type of collection.

[Function]fold kons knil clist1 clist2 . . .
[R7RS list] The fundamental list iterator. When it is given a single list clist1 = (e1 e2 . . .
en), then this procedure returns

(kons en ... (kons e2 (kons e1 knil)) ...)

If n list arguments are provided, then the kons function must take n+1 parameters: one
element from each list, and the "seed" or fold state, which is initially knil. The fold operation
terminates when the shortest list runs out of values. At least one of the list arguments must
be finite.

Examples:

(fold + 0 ’(3 1 4 1 5 9)) ⇒ 23 ;sum up the elements

Chapter 6: Core library 123

(fold cons ’() ’(a b c d e)) ⇒ (e d c b a) ;reverse
(fold cons* ’() ’(a b c) ’(1 2 3 4 5))

⇒ (c 3 b 2 a 1) ;n-ary case

[Function]fold-right kons knil clist1 clist2 . . .
[R7RS list] The fundamental list recursion operator. When it is given a single list clist1 =
(e1 e2 . . . en), then this procedure returns

(kons e1 (kons e2 ... (kons en knil)))

If n list arguments are provided, then the kons function must take n+1 parameters: one
element from each list, and the "seed" or fold state, which is initially knil. The fold operation
terminates when the shortest list runs out of values. At least one of the list arguments must
be finite.

Examples:

(fold-right cons ’() ’(a b c d e))

⇒ (a b c d e) ;copy list
(fold-right cons* ’() ’(a b c) ’(1 2 3 4 5))

⇒ (a 1 b 2 c 3) ;n-ary case

[Function]fold-left snok knil clist1 clist2 . . .
[R6RS] This is another variation of left-associative folding. When it is given a single list
clist1 = (e1 e2 . . . en), then this procedure returns:

(snok (... (snok (snok knil e1) e2) ...) en)

Compare this with fold above; association is the same, but the order of arguments passed to
the procedure snok is reversed from the way arguments are passed to kons in fold. If snok
is commutative, fold and fold-left produces the same result.

(fold-left + 0 ’(1 2 3 4 5) ⇒ 15

(fold-left cons ’z ’(a b c d))

⇒ ((((z . a) . b) . c) . d)

(fold-left (^[a b] (cons b a)) ’z ’(a b c d))

⇒ (a b c d z)

If more than one lists are given, snok is called with the current seed value knil and each
corresponding element of the input lists clist1 clist2

(fold-left list ’z ’(a b c) ’(A B C))

⇒ (((z a A) b B) c C)

Note: Most functional languages have left- and right- associative fold operations, which
correspond to fold-left and fold-right, respectively. (e.g. Haskell’s foldl and foldr).
In Scheme, SRFI-1 first introduced fold and fold-right. R6RS introduced fold-left.
(However, in R6RS the behavior is undefined if the lengths of clist1 clist2 . . . aren’t the
same, while in Gauche fold-left terminates as soon as any one of the lists terminates.)

[Function]reduce f ridentity list
[Function]reduce-right f ridentity list

[R7RS list] Variant of fold and fold-right. f must be a binary operator, and ridentity is
the value such that for any value x that is valid as f ’s input,

(f x ridentity) ≡ x

These functions effectively do the same thing as fold or fold-right, respectively, but omit
the first application of f to ridentity, using the above nature. So ridentity is used only when
list is empty.

Chapter 6: Core library 124

[Function]filter pred list
[Function]filter! pred list

[R7RS list] A procedure pred is applied on each element of list, and a list of elements that
pred returned true on it is returned.

(filter odd? ’(3 1 4 5 9 2 6)) ⇒ (3 1 5 9)

filter! is the linear-update variant. It may destructively modifies list to produce the result.

[Function]filter-map f clist1 clist2 . . .
[R7RS list] Like map, but only true values are saved. At least one of the list arguments must
be finite.

(filter-map (lambda (x) (and (number? x) (* x x)))

’(a 1 b 3 c 7))

⇒ (1 9 49)

[Function]remove pred list
[Function]remove! pred list

[R7RS list] A procedure pred is applied on each element of list, and a list of elements that
pred returned false on it is returned.

(remove odd? ’(3 1 4 5 9 2 6)) ⇒ (4 2 6)

remove! is the linear-update variant. It may destructively modifies list to produce the result.

[Function]find pred clist
[R7RS list] Applies pred for each element of clist, from left to right, and returns the first
element that pred returns true on. If no element satisfies pred, #f is returned.

[Function]find-tail pred clist
[R7RS list] Applies pred for each element of clist, from left to right, and when pred returns
a true value, returns the pair whose car is the element. If no element satisfies pred, #f is
returned.

[Function]any pred clist1 clist2 . . .
[R7RS list] Applies pred across each element of clists, and returns as soon as pred returns
a non-false value. The return value of any is the non-false value pred returned. If clists are
exhausted before pred returns a non-false value, #f is returned.

[Function]every pred clist1 clist2 . . .
[R7RS list] Applies pred across each element of clists, and returns #f as soon as pred returns
#f. If all application of pred return a non-false value, every returns the last result of the
applications.

[Function]count pred clist1 clist2 . . .
[R7RS list] A procedure pred is applied to the n-th element of given lists, from n is zero to the
length of the the shortest finite list in the given lists, and the count of times pred returned
true is returned.

(count even? ’(3 1 4 1 5 9 2 5 6)) ⇒ 3

(count < ’(1 2 4 8) ’(2 4 6 8 10 12 14 16)) ⇒ 3

At least one of the argument lists must be finite:

(count < ’(3 1 4 1) (circular-list 1 10)) ⇒ 2

[Function]delete x list :optional elt=
[Function]delete! x list :optional elt=

[R7RS list] Equivalent to

(remove (lambda (y) (elt= x y)) list)

Chapter 6: Core library 125

(remove! (lambda (y) (elt= x y)) list)

The comparison procedure, elt=, defaults to equal?.

[Function]delete-duplicates list :optional elt=
[Function]delete-duplicates! list :optional elt=

[R7RS list] Removes duplicate elements from list. If there are multiple equal elements in list,
the result list only contains the first or leftmost of these elements in the result. The order of
these surviving elements is the same as in the original list. The comparison procedure, elt=,
defaults to equal?.

6.6.6 Other list procedures

[Function]append list . . .
[R7RS base] Returns a list consisting of the elements of the first list followed by the elements
of the other lists. The resulting list is always newly allocated, except that it shares structure
with the last list argument. The last argument may actually be any object; an improper list
results if the last argument is not a proper list.

[Function]append! list . . .
[R7RS list] Returns a list consisting of the elements of the first list followed by the elements
of the other lists. The cells in the lists except the last one may be reused to construct the
result. The last argument may be any object.

[Function]concatenate list-of-lists
[Function]concatenate! list-of-lists!

[R7RS list] Equivalent to (apply append list-of-lists) and (apply append! list-of-

lists), respectively, but this can be a bit efficient by skipping overhead of apply.

[Function]reverse list :optional (tail ’())
[Function]reverse! list :optional (tail ’())

[R7RS+] Returns a list consisting of the elements of list in the reverse order. While reverse
always returns a newly allocated list, reverse! may reuse the cells of list. Even list is
destructively modified by reverse!, you should use its return value, for the first cell of list
may not be the first cell of the returned list.

If an optional argument tail is given, it becomes the tail of the returned list (tail isn’t copied).
It is useful in the idiom to prepend the processed results on top of already existing results.

(reverse ’(1 2 3 4 5)) ⇒ (5 4 3 2 1)

(reverse ’(1 2 3) ’(a b)) ⇒ (3 2 1 a b)

The tail argument is Gauche’s extension, and it isn’t in the traditional Scheme’s reverse.
The rationale is the following correspondence:

(reverse xs) ≡ (fold cons xs ’())

(reverse xs tail) ≡ (fold cons xs tail)

[Function]append-reverse rev-head tail
[Function]append-reverse! rev-head tail

[R7RS list] Equivalent to the two-argument reverse and reverse!. Provided for srfi-1 (R7RS
(scheme list)) compatibility.

[Function]memq obj list
[Function]memv obj list
[Function]member obj list :optional obj=

[R7RS base] Searches obj in the list. If n-th element of list equals to obj (in the sense
of eq? for memq, eqv? for memv, and equal? for member), (list-tail list n) is returned.
Otherwise, #f is returned.

Chapter 6: Core library 126

If the optional obj= argument of member is given, it is used as a equivalence predicate instead
of equal?.

(memq ’a ’(a b c)) ⇒ (a b c)

(memq ’b ’(a b c)) ⇒ (b c)

(memq ’a ’(b c d)) ⇒ #f

(memq (list ’a) ’(b (a) c)) ⇒ #f

(memv 101 ’(100 101 102)) ⇒ (101 102)

6.6.7 Association lists

[Function]acons obj1 obj2 obj3
Returns (cons (cons obj1 obj2) obj3). Useful to put an entry at the head of an associative
list.

(This procedure is defined in SRFI-1 (R7RS (scheme list)) as alist-cons; see
Section 10.3.1 [R7RS lists], page 482).

(acons ’a ’b ’((c . d))) ⇒ ((a . b) (c . d))

[Function]alist-copy alist
[R7RS list] Returns a fresh copy of alist. The spine of alist and each cell that points a key
and a value is copied.

(define a (list (cons ’a ’b) (cons ’c ’d)))

a ⇒ ((a . b) (c . d))

(define b (alist-copy a))

b ⇒ ((a . b) (c . d))

(set-cdr! (car a) ’z)

a ⇒ ((a . z) (c . d))

b ⇒ ((a . b) (c . d))

[Function]assq obj list
[Function]assv obj list
[Function]assoc obj list :optional key=

[R7RS base] Each element in list should be a pair (Gauche ignores non-pair element in list,
but other R7RS implementation may raise an error, so be aware of it when you’re writing a
portable code). These procedures search a pair whose car matches obj (in the sense of eq?
for assq, eqv? for assv, and equal? for assoc) from left to right, and return the leftmost
matched pair if any. If no pair matches, these return #f.

If the optional argument of ascoc is given, it is called instead of equal? to check the equiv-
alence of obj and each key.

[Function]alist-delete key alist :optional key=
[Function]alist-delete! key alist :optional key=

[R7RS list] Deletes all cells in alist whose key is the same as key. Comparison is done by a
procedure key=. The default is eqv?.

The linear-update version alist-delete! may or may not modify alist.

[Function]rassoc key alist :optional eq-fn
[Function]rassq key alist
[Function]rassv key alist

Reverse associations—given key is matched to the cdr of each element in alist, instead of
the car. Handy to realize bidirectional associative list. Rassoc takes an optional comparison
function, whose default is equal?. Rassq and rassv uses eq? and eqv?.

Chapter 6: Core library 127

[Function]assoc-ref alist key :optional default eq-fn
[Function]assq-ref alist key :optional default
[Function]assv-ref alist key :optional default

These procedures provide the access to the assoc list symmetric with other *-ref procedures.
(Note that the argument order is different from assoc, assq and assv – *-ref procedures
take a container first, and an item second.)

This captures the common pattern of alist access:

(assoc-ref alist key default eq-fn)

≡
(cond [(assoc key alist eq-fn) => cdr]

[else default])))

If default is omitted, #f is used.

Assoc-ref takes an optional comparison function eq-fn, whose default is equal?. Assq-ref
and assv-ref uses eq? and eqv?, respectively.

[Function]rassoc-ref alist key :optional default eq-fn
[Function]rassq-ref alist key :optional default
[Function]rassv-ref alist key :optional default

Reverse association version of assoc-ref.

(rassoc-ref alist key default eq-fn)

≡
(cond ((rassoc key alist eq-fn) => car)

(else default))))

The meanings of optional arguments are the same as assoc-ref.

[Function]assoc-set! alist key val :optional eq-fn
[Function]assq-set! alist key val
[Function]assv-set! alist key val

Returns an alist who has (key . val) pair added to the alist. If alist already has an
element with key, the element’s cdr is destructively modified for val. If alist doesn’t have an
element with key, a new pair is created and appended in front of alist; so you should use the
return value to guarantee key-val pair is added.

Assoc-set! takes optional comparison function eq-fn, whose default is equal?. Assq-set!

and assv-set! uses eq? and eqv?, respectively.

6.7 Symbols

[Builtin Class]<symbol>
A class for symbols.

[Reader Syntax]|name|
[R7RS] Denotes a symbol that has weird name, including the characters that are not usually
allowed in symbols. It can also include hex-escaped characters.

;; A symbol with spaces in its name
’|this is a symbol| ⇒ |this is a symbol|

;; Unicode codepoint can be used following backslash-x escape,
;; and terminated by semicolon.
’|\x3bb;| ⇒ λ

If the interpreter is running in case-insensitive mode, this syntax can be used to include
uppercase characters in a symbol (see Section 2.4 [Case-sensitivity], page 11).

Chapter 6: Core library 128

[Reader Syntax]#:name
Denotes uninterned symbol. Uninterned symbols can be created by gensym or
string->uninterned-symbol.

Uninterned symbols are mainly for legacy macros to avoid variable conflicts. They are not
registered in the internal dictionary, so such symbols with the same name can’t be eq?.

(eq? ’#:foo ’#:foo) ⇒ #f

(eq? ’#:foo ’foo) ⇒ #f

When an S-expression including uninterned symbols are printed, the srfi-38 syntax is used to
indicate which uninterned symbol is the same (eq?) to which.

(let1 s ’#:foo (list s s))

⇒ prints (#0=#:foo #0#)

(let ((s ’#:foo) (t ’#:foo)) (list s t s t))

⇒ prints (#0=#:foo #1=#:foo #0# #1#)

[Function]symbol? obj
[R7RS base] Returns true if and only if obj is a symbol.

(symbol? ’abc) ⇒ #t

(symbol? 0) ⇒ #f

(symbol? ’i) ⇒ #t

(symbol? ’-i) ⇒ #f

(symbol? ’|-i|) ⇒ #t

[Function]symbol-interned? symbol
Returns #t if symbol is an interned symbol, #f if it is an uninterned symbol. An error is
signaled if symbol is not a symbol.

[Function]symbol=? a b c . . .
[R7RS base] Every argument must be a symbol. Returns #t iff every pair of arguments are
eq? to each other.

[Function]symbol->string symbol
[R7RS base] Returns the name of symbol in a string. Returned string is immutable.

(symbol->string ’foo) ⇒ foo

[Function]string->symbol string
[R7RS base] Returns a symbol whose name is a string string. String may contain weird
characters.

(string->symbol "a") ⇒ a

(string->symbol "A") ⇒ A

(string->symbol "weird symbol name") ⇒ |weird symbol name|

[Function]string->uninterned-symbol string
Like string->symbol, but the created symbol is uninterned.

(string->uninterned-symbol "a") ⇒ #:a

[Function]gensym :optional pre↓x
Returns a fresh, uninterned symbol. The returned symbol can never be eq? to other symbol
within the process. If pre↓x is given, which must be a string, it is used as a prefix of the
name of the generated symbol. It is mainly for the convenience of debugging.

Chapter 6: Core library 129

[Function]symbol-sans-prefix symbol pre↓x
Both symbol and pre↓x must be symbols. If the name of pre↓x matches the beginning part
of the name of symbol, this procedure returns a symbol whose name is the name of symbol
without the matched prefix. Otherwise, it returns #f.

(symbol-sans-prefix ’foo:bar ’foo:) ⇒ bar

(symbol-sans-prefix ’foo:bar ’baz:) ⇒ #f

[Function]symbol-append interned? objs . . .
[Function]symbol-append objs . . .

Returns a symbol with the name which is a concatenation of string representation of objs.

If the first argument is a boolean, it is recognized as the first form; the first argument specifies
whether the resulting symbol is interned or not.

Each other argument is converted to a string as follows: If it is a keyword, its name (with
the preceding :) is used. For all other objects, x->string is used. (The special treatment
of keyword is to keep the consistency before and after keyword-symbol integration. See
Section 6.8.1 [Keyword and symbol integration], page 131, for the details.)

This is upper-compatible to Bigloo’s same name procedure, which only allows symbols as the
arguments and the result is always interned.

(symbol-append ’ab ’cd) ⇒ abcd

(symbol-append ’ab ’:c 30) ⇒ ab:c30

(symbol-append #f ’g 100) ⇒ #:g100

6.8 Keywords

[Builtin Class]<keyword>
A keyword is a sort of a special symbol that is automatically quoted. It is extensively used
in pass-by-name arguments (keyword arguments), and keyword-value list.

See Section 4.3 [Making Procedures], page 40, for how Gauche supports keyword arguments,
and let-keywords macro (Section 6.18.4 [Optional argument parsing], page 178) for parsing
keyword-value list manually.

Unlike Common Lisp, keywords and symbols have been distinct types in Gauche. Since it
isn’t conformant to R7RS, in which symbols can begin with :, we’re moving on to integrate
keywords and symbols— that is, a keyword will be evaluated as an identifier, just like symbols,
but just happens to have itself as a value.

The integration may break the backward compatibility, we haven’t turned it on by default.
When you set the environment variable GAUCHE_KEYWORD_IS_SYMBOL, keywords become a
subtype of symbols;

Our plan is to make keywords as a subtype of symbols by default in near future. So we
urge developers to test their libraries and applications with GAUCHE_KEYWORD_IS_SYMBOL to
make sure the change won’t break them. See Section 6.8.1 [Keyword and symbol integration],
page 131, for the hints to keep the compatibility.

[Reader Syntax]:name
Read to a keyword whose name is name. (Note that the preceding ’:’ is not a part of the
keyword’s name.)

[Function]keyword? obj
Returns #t if obj is a keyword.

[Function]make-keyword name
Returns a keyword whose name is name, which can be can be a string or a symbol.

(make-keyword "foo") ⇒ :foo

Chapter 6: Core library 130

(make-keyword ’foo) ⇒ :foo

[Function]keyword->string keyword
Returns the name of the keyword keyword, in a string.

(keyword->string :foo) ⇒ "foo"

[Function]get-keyword key kv-list :optional fallback
A useful procedure to extract a value from key-value list. A key-value list kv-list must
contains even number of elements; the first, third, fifth . . . elements are regarded as keys,
and the second, fourth, sixth . . . elements are the values of the preceding keys.

This procedure looks for key from the keys, and if it finds one, it returns the corresponding
value. If there are more than one matching keys, the leftmost one is taken. If there is no
matching key, it returns fallback if provided, or signals an error otherwise.

It is an error if kv-list is not a proper, even-number element list.

Actually, ‘keywords’ in the keyword-value list and the key argument need not be a keyword—
it can be any Scheme object. Key comparison is done by eq?.

This procedure is taken from STk.

(get-keyword :y ’(:x 1 :y 2 :z 3))

⇒ 2

(get-keyword ’z ’(x 1 y 2 z 3))

⇒ 3

(get-keyword :t ’(:x 1 :y 2 :z 3))

⇒ #<error>

(get-keyword :t ’(:x 1 :y 2 :z 3) #f)

⇒ #f

[Macro]get-keyword* key kv-list :optional fallback
Like get-keyword, but fallback is evaluated only if kv-list does not have key.

[Function]delete-keyword key kv-list
[Function]delete-keyword! key kv-list

Removes all the keys and values from kv-list for keys that are eq? to key.

delete-keyword doesn’t change kv-list, but the returned list may share the common tail of
it.

delete-keyword! doesn’t allocate, and may destructively changes kv-list. You still have to
use the returned value, for the original list may not be changed if its first key matches key.

If there’s no key that matches key, kv-list is returned.

(delete-keyword :y ’(:x 1 :y 2 :z 3 :y 4))

⇒ (:x 1 :z 3)

[Function]delete-keywords keys kv-list
[Function]delete-keywords! keys kv-list

Similar to delete-keyword and delete-keyword!, but you can specify a list of objects in
keys; when a key in kv-list matches any of keys, the key and the following value is removed
from kv-list.

(delete-keywords ’(:x :y) ’(:x 1 :y 2 :z 3 :y 4))

⇒ (:z 3)

Chapter 6: Core library 131

6.8.1 Keyword and symbol integration

In future versions of Gauche, keywords will become symbols, automatically bound to itself by
default. On the surface it won’t make much difference; you can write a keyword :key, which
evaluates to itself; so you can pass and receive keyword arguments just like as they are now.
You will be able to use :key as variables, e.g. (define :key 3), which changes the value of
:key in your module, but that isn’t allowed in the current version of Gauche and it will be
upper-compatible change. (We assume you know what you’re doing if you redefine keywords;
still the effect stays local in your module and other module that import yours.)

However, there are several subtle points that do make difference, that would break backward
compatibility unless you code carefully. We explain here how to write code that works in the
current Gauche and will keep working after we make the change.

You can test if your library/application works after the change, by setting the environment
variable GAUCHE_KEYWORD_IS_SYMBOL.

(symbol? :key) that returns #f now, will return #t

You will still be able to distinguish keywords by keyword?; but if you need to switch behavior
depending whether an object is a symbol or a keyword, you have to test keyword-ness first.

;; will break

(cond

[(symbol? x) (x-is-symbol)]

[(keyword? x) (x-is-keyword)])

;; will work on both versions

(cond

[(keyword? x) (x-is-keyword)]

[(symbol? x) (x-is-symbol)])

Literal keywords in pattern matching

In the current version, when keywords appear in a pattern of util.match or syntax-rules,
they only match to themselves. After we make keywords as a subtype of symbols, such keywords
in a pattern are treated as pattern variables, just like symbols.

;; In the current version

(match ’(a b) [(:key z) (list :key z)] [_ "nope"])

⇒ "nope"

;; After keyword symbol integration;

;; :key is treated just as a pattern variable

(match ’(a b) [(:key z) (list :key z)] [_ "nope"])

⇒ (a b)

The same thing happens to the patterns in syntax-rules.

To make the code work in both versions, explicitly mark the keywords as literals.

• For match, quote the keywords you want to be treated as literals.

(match ’(a b) [(’:key z) (list :key z)] [_ "nope"])

⇒ "nope"

• For syntax-rules, list the keywords as literals.

(syntax-rules (:key)

[(_ :key z) (list :key z)]) ;etc.

As of Gauche 0.9.5, match warns if you have unquoted keywords in match patterns.

Chapter 6: Core library 132

Displaying keywords

Now (display :key) prints key (no colon), while it will print :key in future.

You can use (display (keyword->string :key)) which prints key in both versions.

For R7RS code, quote them or import Gauche modules

After integration, keywords (i.e. symbols that begins with :) are automatically bound to itself,
in the gauche.keyword module.

Gauche code inherits the gauche module by default, which inherits keyword, so you can see
the binding of the keyword by default.

In R7RS code, however, you don’t inherit gauche, so symbols beginning with : are just
ordinary symbols by default. Usually you do (import (gauche base)) to use Gauche built-ins,
and that makes binding of gauche.keyword available in your code, too (since gauche.base

inherits gauche.keyword). But keep this in mind just in case you want to handle keywords in
your R7RS code separate from Gauche procedures—you have to either say (import (gauche

keyword)) to get just the self-bound keywords, or quote them.

(import (scheme base))

:foo ⇒ ERROR: unbound variable: :foo

(import (gauche base))

:foo ⇒ :foo

In the following example, the R7RS library foo imports only copy-port from (gauche base);
in that case, you have to import (gacueh keyword) separately in order to use :size keyword
without quoting. (Or add :size explicitly in the imported symbol list of (gauche base).)

(define-library (foo)

(import (scheme base)

(only (gauche base) copy-port)

(gauche keyword))

(export cat)

(begin

(define (cat)

(copy-port (current-input-port)

(current-output-port)

:size 4096))))

6.9 Identifiers

[Builtin Class]<identifier>
An identifier is an internal object to keep track of binding of variables by the compiler.

Usually it is hidden from Scheme world, but the higyenic macro expander inserts identifiers
into its output, which is necessary for hygiene. But that makes reading macro expansion
result difficult.

If you bothered by all the #<identifier ...> stuff in the macro output, remember a handy
trick to pass the expansion result to unwrap-syntax; it converts all identifiers in the passed
form to bare symbols. It does lose information—two different identifiers may be converted to
a symbol with the same name—so you need some care to interpret the output, but usually
the output gives a fairly good idea of what the macro is doing.

Chapter 6: Core library 133

Currently, identifiers are disjoint from symbols. That might cause problems if you tweak
macro output. The plan is to make identifiers just a special kind of symbols eventually, so
do not assume too much about identifiers.

[Function]identifier? obj

[Function]identifier->symbol identi↓er

[Function]unwrap-syntax form

6.10 Characters

[Builtin Class]<char>

[Reader Syntax]#\charname
[R7RS] Denotes a literal character.

When the reader reads #\, it fetches a subsequent character. If it is one of ()[]{}" \|;#,
this is a character literal of itself. Otherwise, the reader reads subsequent characters until
it sees a non word-constituent character. If only one character is read, it is the character.
Otherwise, the reader matches the read characters with predefined character names. If it
doesn’t match any, an error is signaled.

The following character names are recognized. These character names are case insensitive.

space Whitespace (ASCII #x20)

newline, nl, lf

Newline (ASCII #x0a)

return, cr

Carriage return (ASCII #x0d)

tab, ht Horizontal tab (ASCII #x09)

page Form feed (ASCII #x0c)

escape, esc

Escape (ASCII #x1b)

delete, del

Delete (ASCII #x7f)

null NUL character (ASCII #x00)

xN A character whose Unicode codepoint is the integer N, when N is a hexadecimal
integer. This is R7RS lexical syntax. (See the compatibility note below).

uN A character whose Unicode codepoint is the integer N, where N is 4-digit or
8-digit hexadecimal number.

This is legacy Gauche lexical syntax. Use \xN syntax for the new code. (See the
compatibility note below).

#\newline ⇒ #\newline ; newline character
#\x0a ⇒ #\newline ; ditto
#\x41 ⇒ #\A ; ASCII letter ’A’
#\x3042 ⇒ ; Hiragana letter A
#\x2a6b2 ⇒ ; JISX0213 Kanji 2-94-86

Compatibility note: Before 0.9.4, \xNN syntax uses Gauche’s internal character encoding as
opposed to Unicode codepoint. Both are the same if Gauche is compiled with internal encoding
utf-8 or none (if it’s none, only characters up to U+00ff is supported and in this range the

Chapter 6: Core library 134

characters are the same as Unicode characters.) If Gauche is compiled with encoding euc-jp or
sjis, the meaning of \xNN beyond ASCII range differs from 0.9.3.3 or before.

If you set the reader mode to legacy (see Section 6.22.7.2 [Reader lexical mode], page 214),
#\xNN is read as before, keeping the compatibility (but it isn’t compatible to R7RS). Alterna-
tively, you can use #\uNNNN, or a character itself, to make the code work in both new and old
versions of Gauche.

[Function]char? obj
[R7RS base] Returns #t if obj is a character, #f otherwise.

[Function]char=? char1 char2 char3 . . .
[Function]char<? char1 char2 char3 . . .
[Function]char<=? char1 char2 char3 . . .
[Function]char>? char1 char2 char3 . . .
[Function]char>=? char1 char2 char3 . . .

[R7RS base] Compares characters. Character comparison is done in internal character en-
coding.

[Function]char-ci=? char1 char2 char3 . . .
[Function]char-ci<? char1 char2 char3 . . .
[Function]char-ci<=? char1 char2 char3 . . .
[Function]char-ci>? char1 char2 char3 . . .
[Function]char-ci>=? char1 char2 char3 . . .

[R7RS char] Compares characters in case-insensitive way. The comparison is done in the
internal character code of the foldcase of the each character; see char-foldcase below.

In R7RS, these procedures are in the (scheme char) library.

[Function]char-alphabetic? char
[Function]char-numeric? char
[Function]char-whitespace? char
[Function]char-upper-case? char
[Function]char-lower-case? char

[R7RS char] Returns true if a character char is an alphabetic character (Unicode charac-
ter category Lu, Ll, Lt, Lm, Lo, Nl), a numeric character (Unicode character category Nd),
a whitespace character, (Unicode character category Zs, Zp, Zl), an upper case character
(Unicode character category Lu), or a lower case character (Unicode character category Ll),
respectively.

In R7RS, these procedures are in the (scheme char) library.

[Function]char-general-category char
[R6RS] Returns one of the following symbols, representing the Unicode general category of
char.

Cc Other, Control
Cf Other, Format
Cn Other, Not Assigned
Co Other, Private Use
Cs Other, Surrogate
Ll Letter, Lowercase
Lm Letter, Modifier
Lo Letter, Other
Lt Letter, Titlecase
Lu Letter, Uppercase
Mc Mark, Spacing Combining

Chapter 6: Core library 135

Me Mark, Enclosing
Mn Mark, Nonspacing
Nd Number, Decimal Digit
Nl Number, Letter
No Number, Other
Pc Punctuation, Connector
Pd Punctuation, Dash
Pe Punctuation, Close
Pf Punctuation, Final quote
Pi Punctuation, Initial quote
Po Punctuation, Other
Ps Punctuation, Open
Sc Symbol, Currency
Sk Symbol, Modifier
Sm Symbol, Math
So Symbol, Other
Zl Separator, Line
Zp Separator, Paragraph
Zs Separator, Space

If Gauche is compiled with euc-jp or shift jis encoding, there are characters that don’t have
corresponding Unicode codepoint (each of them are represented by one unicode character
plus one unicode modifier character). A provisional category is assigned to those characters.
If future versions of Unicode incorporates these characters, the category may be reassigned.

SJIS EUC Cat Unicode
82F5 A4F7 Lo U+304B U+309A (Semi-voiced Hiragana KA)
82F6 A4F8 Lo U+304D U+309A (Semi-voiced Hiragana KI)
82F7 A4F9 Lo U+304F U+309A (Semi-voiced Hiragana KU)
82F8 A4FA Lo U+3051 U+309A (Semi-voiced Hiragana KE)
82F9 A4FB Lo U+3053 U+309A (Semi-voiced Hiragana KO)
8397 A5F7 Lo U+30AB U+309A (Semi-voiced Katakana KA)
8398 A5F8 Lo U+30AD U+309A (Semi-voiced Katakana KI)
8399 A5F9 Lo U+30AF U+309A (Semi-voiced Katakana KU)
839A A5FA Lo U+30B1 U+309A (Semi-voiced Katakana KE)
839B A5FB Lo U+30B3 U+309A (Semi-voiced Katakana KO)
839C A5FC Lo U+30BB U+309A (Semi-voiced Katakana SE)
839D A5FD Lo U+30C4 U+309A (Semi-voiced Katakana TSU)
839E A5FE Lo U+30C8 U+309A (Semi-voiced Katakana TO)
83F6 A6F8 Lo U+31F7 U+309A (Semi-voiced small Katakana FU)
8663 ABC4 Ll U+00E6 U+0300 (Accented latin small ae)
8667 ABC8 Ll U+0254 U+0300 (Accented latin small open o)
8668 ABC9 Ll U+0254 U+0301 (Accented latin small open o)
8669 ABCA Ll U+028C U+0300 (Accented latin small turned v)
866A ABCB Ll U+028C U+0301 (Accented latin small turned v)
866B ABCC Ll U+0259 U+0300 (Accented latin small schwa)
866C ABCD Ll U+0259 U+0301 (Accented latin small schwa)
866D ABCE Ll U+025A U+0300 (Accented latin small schwa w/hook)
866E ABCF Ll U+025A U+0301 (Accented latin small schwa w/hook)
8685 ABE5 Sk U+02E9 U+02E5

8686 ABE6 Sk U+02E5 U+02E9

Chapter 6: Core library 136

[Function]char->integer char
[Function]integer->char n

[R7RS base] char->integer returns an exact integer that represents internal encoding of
the character char. integer->char returns a character whose internal encoding is an exact
integer n. The following expression is always true for valid character char:

(eq? char (integer->char (char->integer char)))

Note: R7RS defines these procedures to deal with Unicode codepoints. Gauche complies
it when compiled with utf-8 or none internal encoding (for the latter, only characters up
to U+00ff are supported). If Gauche is compiled with euc-jp or sjis internal encoding,
you need to use char->ucs/ucs->char below to convert between Unicode codepoints and
characters.

The result is undefined if you pass n to integer->char that doesn’t have a corresponding
character.

[Function]char->ucs char
[Function]ucs->char n

Converts a character char to integer UCS codepoint, and integer UCS codepoint n to a
character, respectively.

If Gauche is compiled with UTF-8 encoding, these procedures are the same as char->integer
and integer->char.

When Gauche’s internal encoding differs from UTF-8, these procedures implicitly loads
gauche.charconv module to convert internal character code to UCS or vice versa (see
Section 9.4 [Character code conversion], page 318). If char doesn’t have corresponding UCS
codepoint, char->ucs returns #f. If UCS codepoint n can’t be represented in the internal
character encoding, ucs->char returns #f, unless the conversion routine provides a substitu-
tion character.

[Function]char-upcase char
[Function]char-downcase char
[Function]char-titlecase char
[Function]char-foldcase char

[R7RS char] Returns the upper case, lower case, title case and folded case of char, respectively.

The mapping is done according to Unicode-defined character-by-character case mapping
whenever possible. If the native encoding doesn’t support the mapped character defined
in Unicode, the operation becomes no-op. If the native encoding is ’none’, we treat the char-
acters as if they are Latin-1 (ISO-8859-1) characters. So, upcasing Latin-1 character small y
with diaresis (U+00ff) maps to capital y with diaeresis (U+0178) if the internal encoding is
utf-8, but it is no-op if the internal encoding is none.

R7RS doesn’t have char-titlecase; other three procedures are defined in the (scheme

char) library. R6RS defines all of them.

The character-by-character case mapping doesn’t consider a character that may map to more
than one characters; a notable example is eszett (latin small letter sharp S, U+00df), which
is is mapped to two capital S’s in string context, but char-upcase #\ß returns #\ß. To get
a full mapping, use string-upcase etc. in gauche.unicode module (see Section 9.34.3 [Full
string case conversion], page 446).

[Function]digit->integer char :optional (radix 10) (extended-range? #f)
If given character char is a valid digit character in radix radix number, the corresponding
integer is returned. Otherwise #f is returned.

(digit->integer #\4) ⇒ 4

(digit->integer #\e 16) ⇒ 14

Chapter 6: Core library 137

(digit->integer #\9 8) ⇒ #f

If the optional extended-range? argument is true, this procedure recognizes not only ASCII
digits, but also all characters with Nd general category—such as FULLWIDTH DIGIT ZERO
to NINE (U+ff10 - U+ff19).

R7RS has digit-value, which is equivalent to (digit->integer char 10 #t).

Note: CommonLisp has a similar function in rather confusing name, digit-char-p.

[Function]integer->digit integer :optional (radix 10) (basechar1 #\0) (basechar2
#\a)

Reverse operation of digit->integer. Returns a character that represents the number
integer in the radix radix system. If integer is out of the valid range, #f is returned.

(integer->digit 13 16) ⇒ #\d

(integer->digit 10) ⇒ #f

The optional basechar1 argument specifies the character that stands for zero; by default,
it’s #\0. You can give alternative character, for example, U+0660 (ARABIC-INDIC DIGIT
ZERO) to convert an integer to a arabic-indic digit character.

Another optional basechar2 argument is used for integers over 10. The default value is #\a.
You can pass #\A to get upper-case hex digits, for example.

Note: CommonLisp’s digit-char.

[Function]gauche-character-encoding
Returns a symbol designates the native character encoding, selected at the compile time. The
possible return values are those:

euc-jp EUC-JP

utf-8 UTF-8

sjis Shift JIS

none No multibyte character support (8-bit fixed-length character).

To switch code at compile time according to the internal encoding, you can use feature
identifiers gauche.ces.*–see Section 3.5 [Platform-dependent features], page 27.

[Function]supported-character-encodings
Returns a list of string names of character encoding schemes that are supported in the native
multibyte encoding scheme.

6.11 Character Set

[Builtin Class]<char-set>
Character set class. Character set object represents a set of characters. Gauche provides
built-in support of character set creation and a predicate that tests whether a character is in
the set or not.

The class implements the collection protocol (see Section 9.5 [Collection framework],
page 322), so that the standard collection methods provided in the gauche.collection

module can be used.

An instance of <char-set> is applicable to a character, and works as a membership predicate;
see char-set-contains? below.

Further operations, such as set algebra, is defined in SRFI-14 module (see Section 11.6
[Character-set library], page 527).

Chapter 6: Core library 138

[Reader Syntax]#[char-set-spec]
You can write a literal character set in this syntax. char-set-spec is a sequence of characters
to be included in the set. You can include the following special sequences:

x-y Characters between x and y, inclusive. x must be smaller than y in the internal
encoding.

^ If char-set-spec begins with caret, the actual character set is a complement of
what the rest of char-set-spec indicates.

\xN; A character whose Unicode codepoint is a hexadecimal number N.

\uXXXX

\UXXXXXXXX

This is a legacy Gauche syntax, for a unicode character whose Unicode codepoint
is represented by 4-digit and 8-digit hexadecimal numbers, respectively.

\s Whitespace characters.

\S Complement of whitespace characters.

\d Decimal digit characters.

\D Complement of decimal digit characters.

\w Word constituent characters. Currently, it is alphanumeric characters and un-
derscore.

\W Complement of word constituent characters.

\\ A backslash character.

\- A minus character.

\^ A caret character.

[:alnum:] ...

Character set a la POSIX. The following character set name is recognized: alnum,
alpha, blank, cntrl, digit, graph, lower, print, punct, space, upper and
xdigit.

#[aeiou] ; a character set consists of vowels
#[a-zA-Z] ; alphabet
#[[:alpha:]] ; alphabet (using POSIX notation)
#[\\\-] ; backslash and minus
#[] ; empty charset
#[\x0d;\x0a;\x3000;] ; carriage return, newline, and ideographic space

Literal character sets are immutable, as other literal data. An error is signalled when you
attempt to modify an immutable character set.

Note for the compatibility: We used to recognize a syntax \xNN (two-digit hexadecimal
number, without semicolon terminator) as a character; for example, #[\x0d\x0a] as a return
and a newline. We still support it when we don’t see the terminating semicolon, for the
compatibility. There are ambiguous cases: #[\x0a;] means only a newline in the current
syntax, but a newline and a semicolon in legacy syntax.

Setting the reader mode to legacy restores the old behavior. Setting the reader mode to
warn-legacy makes it work like the default behavior, but prints warning when it finds legacy
syntax. See Section 6.22.7.2 [Reader lexical mode], page 214, for the details.

To write code that can work both in new and old syntax, use \u escape.

[Function]char-set? obj
[SRFI-14] Returns true if and only if obj is a character set object.

Chapter 6: Core library 139

[Function]char-set-immutable? char-set
Returns #t if char-set is an immutable char-set, #f if it’s a mutable char-set.

[Function]char-set-contains? char-set char
[SRFI-14] Returns true if and only if a character set object char-set contains a character char.

(char-set-contains? #[a-z] #\y) ⇒ #t

(char-set-contains? #[a-z] #\3) ⇒ #f

(char-set-contains? #[^ABC] #\A) ⇒ #f

(char-set-contains? #[^ABC] #\D) ⇒ #t

[Generic application]char-set char
A char-set object can be applied to a character, and it works just like (char-set-contains?
char-set char).

(#[a-z] #\a) ⇒ #t

(#[a-z] #\A) ⇒ #f

(use gauche.collection)

(filter #[a-z] "CharSet") ⇒ (#\h #\a #\r #\e #\t)

[Function]char-set char . . .
[SRFI-14] Creates a character set that contains char

(char-set #\a #\b #\c) ⇒ #[a-c]

[Function]char-set-size char-set
[SRFI-14] Returns a number of characters in the given charset.

gosh> (char-set-size #[])

0

gosh> (char-set-size #[[:alnum:]])

62

[Function]char-set-copy char-set
[SRFI-14] Copies a character set char-set.

[Function]char-set-complement char-set
[Function]char-set-complement! char-set

[SRFI-14] Returns a complement set of char-set. The former always returns a new set, while
the latter may reuse the given charset.

6.12 Strings

[Builtin Class]<string>
A string class. In Gauche, a string can be viewed in two ways: a sequence of characters, or
a sequence of bytes.

It should be emphasized that Gauche’s internal string object, string body, is immutable. To
comply R7RS in which strings are mutable, a Scheme-level string object is an indirect pointer
to a string body. Mutating a string means that Gauche creates a new immutable string body
that reflects the changes, then swap the pointer in the Scheme-level string object.

This may affect some assumptions on the cost of string operations.

• Copying string is O(1), no matter how long the string is, since the same string body is
shared.

Chapter 6: Core library 140

• Taking substring usually is also O(1), for the resulting string shares the substring of the
original string body. Gauche may copy a part of the string for better memory management,
but the visible cost should stay pretty close to O(1). (However, note that accessing to a
specific point by index within the original string may cost O(N) because of multibyte string;
which is a different story).

• On the other hand, mutating a string cost O(N) where N is the length of string, even for
replacing a character.

Gauche does not attempt to make string mutation faster; (string-set! s k c) is exactly as
slow as to take two substrings, before and after of k-th character, and concatenate them with
a single-character string inbetween. So, just avoid string mutations; we believe it’s a better
practice. See also Section 6.12.3 [String Constructors], page 141.

R7RS string operations are very minimal. Gauche supports some extra built-in operations,
and also a rich string library defined in SRFI-13. See Section 11.5 [String library], page 518, for
details about SRFI-13.

6.12.1 String syntax

[Reader Syntax]"..."
[R7RS+] Denotes a literal string. Inside the double quotes, the following backslash escape
sequences are recognized.

\" [R7RS] Double-quote character

\\ [R7RS] Backslash character

\n [R7RS] Newline character (ASCII 0x0a).

\r [R7RS] Return character (ASCII 0x0d).

\f Form-feed character (ASCII 0x0c).

\t [R7RS] Tab character (ASCII 0x09)

\a [R7RS] Alarm character (ASCII 0x07).

\b [R7RS] Backspace character (ASCII 0x08).

\0 ASCII NUL character (ASCII 0x00).

\<whitespace>*<newline><whitespace>*

[R7RS] Ignored. This can be used to break a long string literal for readability.
This escape sequence is introduced in R6RS.

\xN; [R7RS] A character whose Unicode codepoint is represented by hexadecimal num-
ber N, which is any number of hexadecimal digits. (See the compatibility notes
below.)

\uNNNN A character whose UCS2 code is represented by four-digit hexadecimal number
NNNN.

\UNNNNNNNN

A character whose UCS4 code is represented by eight-digit hexadecimal number
NNNNNNNN.

The following code is an example of backslash-newline escape sequence:

(define *message* "\

This is a long message \

in a literal string.")

Chapter 6: Core library 141

message

⇒ "This is a long message in a literal string."

Note the whitespace just after ‘message’. Since any whitespaces before ‘in’ is eaten by the
reader, you have to put a whitespace between ‘message’ and the following backslash. If you
want to include an actual newline character in a string, and any indentation after it, you can
put ’\n’ in the next line like this:

(define *message/newline* "\

This is a long message, \

\n with a line break.")

Note for the compatibility: We used to recognize a syntax \xNN (two-digit hexadecimal
number, without semicolon terminator) as a character in a string; for example, "\x0d\x0a"
was the same as "\r\n". We still support it when we don’t see the terminating semicolon, for
the compatibility. There are ambiguous cases: "\0x0a;" means "\n" in the current syntax,
while "\n;" in the legacy syntax.

Setting the reader mode to legacy restores the old behavior. Setting the reader mode to
warn-legacy makes it work like the default behavior, but prints warning when it finds legacy
syntax. See Section 6.22.7.2 [Reader lexical mode], page 214, for the details.

[Reader Syntax]#*"..."
Denotes incomplete string. The same escape sequences as the complete string syntax are
recognized.

Rationale of the syntax: ’#*’ is used for bit vector in Common Lisp. Since an incomplete
strings is really a byte vector, it has similarity. (Bit vector can be added later, if necessary,
and two can coexist).

6.12.2 String Predicates

[Function]string? obj
[R7RS base] Returns #t if obj is a string, #f otherwise.

[Function]string-immutable? obj
Returns #t if obj is an immutable string, #f otherwise

[Function]string-incomplete? obj
Returns #t if obj is an incomplete string, #f otherwise

6.12.3 String Constructors

[Function]make-string k :optional char
[R7RS base] Returns a string of length k. If optional char is given, the new string is filled
with it. Otherwise, the string is filled with a whitespace. The result string is always complete.

(make-string 5 #\x) ⇒ "xxxxx"

Note that the algorithm to allocate a string by make-string and then fills it one character
at a time is extremely inefficient in Gauche, and should be avoided.

In Gauche, a string is simply a pointer to an immutable string content. If you mutate a
string by, e.g. string-set!, Gauche allocates whole new immutable string content, copies
the original content with modification, then swap the pointer of the original string. It is no
more efficient than making a new copy.

You can use an output string port for a string construction (see Section 6.22.5 [String ports],
page 210). Even creating a list of characters and using list->string is faster than using
make-string and string-set!.

Chapter 6: Core library 142

[Function]make-byte-string k :optional byte
Creates and returns an incomplete string o size k. If byte is given, which must be an exact
integer, and its lower 8 bits are used to initialize every byte in the created string.

[Function]string char . . .
[R7RS base] Returns a string consisted by char

[Generic Function]x->string obj
A generic coercion function. Returns a string representation of obj. The default methods
are defined as follows: strings are returned as is, numbers are converted by number->string,
symbols are converted by symbol->string, and other objects are converted by display.

Other class may provide a method to customize the behavior.

6.12.4 String interpolation

The term "string interpolation" is used in various scripting languages such as Perl and Python
to refer to the feature to embed expressions in a string literal, which are evaluated and then
their results are inserted into the string literal at run time.

Scheme doesn’t define such a feature, but Gauche implements it as a reader macro.

[Reader Syntax]#string-literal
Evaluates to a string. If string-literal contains the character sequence ~expr, where expr is
a valid external representation of a Scheme expression, expr is evaluated and its result is
inserted in the original place (by using x->string, see Section 6.12.3 [String Constructors],
page 141).

The tilde and the following expression must be adjacent (without containing any whitespace
characters), or it is not recognized as a special sequence.

To include a tilde itself immediately followed by non-delimiting character, use ~~.

Other characters in the string-literal are copied as is.

If you use a variable as expr and need to delimit it from the subsequent string, you can use
the symbol escape syntax using ‘|’ character, as shown in the last two examples below.

#"This is Gauche, version ~(gauche-version)."

⇒ "This is Gauche, version 0.9.6."

#"Date: ~(sys-strftime \"%Y/%m/%d\" (sys-localtime (sys-time)))"

⇒ "Date: 2002/02/18"

(let ((a "AAA")

(b "BBB"))

#"xxx ~a ~b zzz")

⇒ "xxx AAA BBB zzz"

#"123~~456~~789"

⇒ "123~456~789"

(let ((n 7)) #"R~|n|RS")

⇒ "R7RS"

(let ((x "bar")) #"foo~|x|.")

⇒ "foobar"

In fact, the reader expands this syntax into a macro call, which is then expanded into a call
of string-append as follows:

#"This is Gauche, version ~(gauche-version)."

Chapter 6: Core library 143

≡
(string-interpolate* ("This is Gauche, version "

(gauche-version)

"."))

;; then, it expands to...

(string-append "This is Gauche, version "

(x->string (gauche-version))

".")

(NB: The exact spec of string-interpolate* might change in future, so do not rely on the
current behavior.)

Since the #"..." syntax is eqivalent to a macro call of string-interpolate*, which is
provided in the Gauche module, it must be visible from where you use the interpolation
syntax. When you write Gauche code, typically you implicitly inherit the Gauche module
so you don’t need to worry; however, if you start from R7RS code, make sure you import
string-interpolate* (by (import (gauche base)), for example) whenever you use string
interpolation syntax. Also be careful not to shadow string-interpolate* locally.

[Reader Syntax]#‘string-literal
This is the old style of string-interpolation. It is still recognized, but discouraged for the new
code.

Inside string-literal, you can use ,expr (instead of ~expr) to evaluate expr. If comma isn’t
immediately followed by a character starting an expression, it loses special meaning.

#‘"This is Gauche, version ,(gauche-version)"

Rationale of the syntax: There are wide variation of string interpolation syntax among script-
ing languages. They are usually linked with other syntax of the language (e.g. prefixing $ to
mark evaluating place is in sync with variable reference syntax in some languages).

The old style of string interpolation syntax was taken from quasiquote syntax, because those
two are conceptually similar operations (see Section 4.9 [Quasiquotation], page 57). However,
since comma character is frequently used in string literals, it was rather awkward.

We decided that tilde is more suitable as the unquote character for the following reasons.

• Traditionally, Lisp’s string formatter format uses ~ to introduce format directives (see
Section 6.22.8.4 [Formatting output], page 221). Lispers are used to scan ~’s in a string as
variable portions.

• Gauche’s ~ is a universal accessor, and the operator has a nuance of “taking something out
of it” (see Section 6.18.2 [Universal accessor], page 175).

• Clojure, a new Lisp dialect, adopted ~ as the unquote character in the quasiquote syntax,
instead of commas.

Note that Scheme allows wider range of characters for valid identifier names than usual
scripting languages. Consequently, you will almost always need to use ‘|’ delimiters when you
interpolate the value of a variable. For example, while you can write "$year/$month/$day

$hour:$minutes:$seconds" in Perl, you should write #"~|year|/~|month|/~day

~|hour|:~|minutes|:~seconds". It may be better always to delimit direct variable references
in this syntax to avoid confusion.

6.12.5 String Accessors & Modifiers

[Function]string-length string
[R7RS base] Returns a length of (possibly incomplete) string string.

Chapter 6: Core library 144

[Function]string-size string
Returns a size of (possibly incomplete) string. A size of string is a number of bytes string
occupies on memory. The same string may have different sizes if the native encoding scheme
differs.

For incomplete string, its length and its size always match.

[Function]string-ref cstring k :optional fallback
[R7RS+] Returns k-th character of a complete string cstring. It is an error to pass an incom-
plete string.

By default, an error is signaled if k is out of range (negative, or greater than or equal to the
length of cstring). However, if an optional argument fallback is given, it is returned in such
case. This is Gauche’s extension.

[Function]string-byte-ref string k
Returns k-th byte of a (possibly incomplete) string string. Returned value is an integer
in the range between 0 and 255. k must be greater than or equal to zero, and less than
(string-size string).

[Function]string-set! string k char
[R7RS base] Substitute string ’s k-th character by char. k must be greater than or equal to
zero, and less than (string-length string). Return value is undefined.

If string is an incomplete string, integer value of the lower 8 bits of char is used to set string ’s
k-th byte.

See the notes in make-string about performance consideration.

[Function]string-byte-set! string k byte
Substitute string ’s k-th byte by integer byte. byte must be in the range between 0 to 255,
inclusive. k must be greater than or equal to zero, and less than (string-size string). If
string is a complete string, it is turned to incomplete string by this operation. Return value
is undefined.

6.12.6 String Comparison

[Function]string=? string1 string2 string3 . . .
[R7RS base] Returns #t iff all arguments are strings with the same content.

If any of arguments is incomplete string, it returns #t iff all argumnets are incomplete and
have exactly the same content. In other words, a complete string and an incomplete string
never equal to each other.

[Function]string<? string1 string2 string3 . . .
[Function]string<=? string1 string2 string3 . . .
[Function]string>? string1 string2 string3 . . .
[Function]string>=? string1 string2 string3 . . .

[R7RS base] Compares strings in codepoint order. Returns #t iff all the arguments are
ordered.

Comparison between an incomplete string and a complete string, or between two incomplete
strings, are done by octet-to-octet comparison. If a complete string and an incomplete string
have exactly the same binary representation of the content, a complete string is smaller.

[Function]string-ci=? string1 string2 string3 . . .
[Function]string-ci<? string1 string2 string3 . . .
[Function]string-ci<=? string1 string2 string3 . . .
[Function]string-ci>? string1 string2 string3 . . .

Chapter 6: Core library 145

[Function]string-ci>=? string1 string2 string3 . . .
Case-insensitive string comparison.

These procedures fold argument character-wise, according to Unicode-defined character-by-
character case mapping. See char-foldcase for the details (Section 6.10 [Characters],
page 133). Character-wise case folding doesn’t handles the case like German eszett:

(string-ci=? "\u00df" "SS") ⇒ #f

R7RS requires string-ci* procedures to use string case folding. Gauche provides R7RS-
conformant case insensitive comparison procedures in gauche.unicode (see Section 9.34.3
[Full string case conversion], page 446). If you write in R7RS, importing (scheme char)

library, you’ll use gauche.unicode’s string-ci* procedures.

6.12.7 String utilities

[Function]substring string start end
[R7RS base] Returns a substring of string, starting from start-th character (inclusive) and
ending at end-th character (exclusive). The start and end arguments must satisfy 0 <= start

< N, 0 <= end <= N, and start <= end, where N is the length of the string.

When start is zero and end is N, this procedure returns a copy of string.

Actually, extended string-copy explained below is a superset of substring. This procedure
is kept mostly for compatibility of R7RS programs. See also subseq in Section 9.28 [Sequence
framework], page 412, for the generic version.

[Function]string-append string . . .
[R7RS base] Returns a newly allocated string whose content is concatenation of string

See also string-concatenate in Section 11.5.9 [SRFI-13 String reverse & append], page 524.

[Function]string->list string :optional start end
[Function]list->string list

[R7RS base] Converts a string to a list of characters or vice versa.

You can give an optional start/end indexes to string->list.

For list->string, every elements of list must be a character, or an error is signaled. If you
want to build a string out of a mixed list of strings and characters, you may want to use
tree->string in Section 12.59 [Lazy text construction], page 730.

[Function]string-copy string :optional start end
[R7RS base] Returns a copy of string. You can give start and/or end index to extract the
part of the original string (it makes string-copy a superset of substring effectively).

If only start argument is given, a substring beginning from start-th character (inclusive) to
the end of string is returned. If both start and end argument are given, a substring from
start-th character (inclusive) to end-th character (exclusive) is returned. See substring

above for the condition that start and end should satisfy.

Node: R7RS’s destructive version string-copy! is provided by srfi-13 module (see
Section 11.5 [String library], page 518).

[Function]string-fill! string char :optional start end
[R7RS base] Fills string by char. Optional start and end limits the effective area.

(string-fill! "orange" #\X)

⇒ "XXXXXX"

(string-fill! "orange" #\X 2 4)

⇒ "orXXge"

See the notes in make-string about performance consideration.

Chapter 6: Core library 146

[Function]string-join strs :optional delim grammer
[SRFI-13] Concatenate strings in the list strs, with a string delim as ‘glue’.

The argument grammer may be one of the following symbol to specify how the strings are
concatenated.

infix Use delim between each string. This mode is default. Note that this mode
introduce ambiguity when strs is an empty string or a list with a null string.

(string-join ’("apple" "mango" "banana") ", ")

⇒ "apple, mango, banana"

(string-join ’() ":")

⇒ ""

(string-join ’("") ":")

⇒ ""

strict-infix

Works like infix, but empty list is not allowed to strs, thus avoiding ambiguity.

prefix Use delim before each string.

(string-join ’("usr" "local" "bin") "/" ’prefix)

⇒ "/usr/local/bin"

(string-join ’() "/" ’prefix)

⇒ ""

(string-join ’("") "/" ’prefix)

⇒ "/"

suffix Use delim after each string.

(string-join ’("a" "b" "c") "&" ’suffix)

⇒ "a&b&c&"

(string-join ’() "&" ’suffix)

⇒ ""

(string-join ’("") "&" ’suffix)

⇒ "&"

[Function]string-scan string item :optional return
[Function]string-scan-right string item :optional return

Scan item (either a string or a character) in string. While string-scan finds the leftmost
match, string-scan-right finds the rightmost match.

The return argument specifies what value should be returned when item is found in string.
It must be one of the following symbols.

index Returns the index in string if item is found, or #f. This is the default behavior.

(string-scan "abracadabra" "ada") ⇒ 5

(string-scan "abracadabra" #\c) ⇒ 4

(string-scan "abracadabra" "aba") ⇒ #f

before Returns a substring of string before item, or #f if item is not found.

(string-scan "abracadabra" "ada" ’before) ⇒ "abrac"

(string-scan "abracadabra" #\c ’before) ⇒ "abra"

after Returns a substring of string after item, or #f if item is not found.

(string-scan "abracadabra" "ada" ’after) ⇒ "bra"

(string-scan "abracadabra" #\c ’after) ⇒ "adabra"

before* Returns a substring of string before item, and the substring after it. If item is
not found, returns (values #f #f).

(string-scan "abracadabra" "ada" ’before*)

Chapter 6: Core library 147

⇒ "abrac" and "adabra"

(string-scan "abracadabra" #\c ’before*)

⇒ "abra" and "cadabra"

after* Returns a substring of string up to the end of item, and the rest. If item is not
found, returns (values #f #f).

(string-scan "abracadabra" "ada" ’after*)

⇒ "abracada" and "bra"

(string-scan "abracadabra" #\c ’after*)

⇒ "abrac" and "adabra"

both Returns a substring of string before item and after item. If item is not found,
returns (values #f #f).

(string-scan "abracadabra" "ada" ’both)

⇒ "abrac" and "bra"

(string-scan "abracadabra" #\c ’both)

⇒ "abra" and "adabra"

[Function]string-split string splitter :optional grammar limit start end
[Function]string-split string splitter :optional limit start end

[SRFI-152+] Splits string by splitter and returns a list of strings. splitter can be a character,
a character set, a string, a regexp, or a procedure.

If splitter is a character or a string, it is used as a delimiter. Note that srfi-152’s string-split
only allows strings for delimiter (it also interprets the first optional argument as a grammer;
see below for the compatibility note.)

If splitter is a character set, any consecutive characters that are member of the character set
are used as a delimiter.

If a procedure is given to splitter, it is called for each character in string, and the consecutive
characters that caused splitter to return a true value are used as a delimiter.

(string-split "/aa/bb//cc" #\/) ⇒ ("" "aa" "bb" "" "cc")

(string-split "/aa/bb//cc" "/") ⇒ ("" "aa" "bb" "" "cc")

(string-split "/aa/bb//cc" "//") ⇒ ("/aa/bb" "cc")

(string-split "/aa/bb//cc" #[/]) ⇒ ("" "aa" "bb" "cc")

(string-split "/aa/bb//cc" #/\/+/) ⇒ ("" "aa" "bb" "cc")

(string-split "/aa/bb//cc" #[\w]) ⇒ ("/" "/" "//" "")

(string-split "/aa/bb//cc" char-alphabetic?) ⇒ ("/" "/" "//" "")

;; some boundary cases

(string-split "abc" #\/) ⇒ ("abc")

(string-split "" #\/) ⇒ ("")

The grammar argument is the same as string-join above; it must be one of symbols infix,
strict-infix, prefix or suffix. When ommitted, infix is assumed.

(string-split "/a/b/c/" "/" ’infix) ⇒ ("" "a" "b" "c" "")

(string-split "/a/b/c/" "/" ’prefix) ⇒ ("a" "b" "c" "")

(string-split "/a/b/c/" "/" ’suffix) ⇒ ("" "a" "b" "c")

In general, the following relationship holds:

(string-join XS DELIM GRAMMAR) ⇒ S

(string-split S DELIM GRAMMAR) ⇒ XS

If limit is given and not #f, it must be a nonnegative integer and specifies the maximum
number of match to the splitter. Once the limit is reached, the rest of string is included in
the result as is.

(string-split "a.b..c" "." ’infix 0) ⇒ ("a.b..c")

Chapter 6: Core library 148

(string-split "a.b..c" "." ’infix 1) ⇒ ("a" "b..c")

(string-split "a.b..c" "." ’infix 2) ⇒ ("a" "b" ".c")

Compatibility note: The grammar argument is added for the consistency of srfis (srfi-130,
srfi-152, see Section 11.33 [String library (reduced)], page 576). However, for the backward
compatibility and the covenience, it also accepts limit without grammar argument; it is
distinguishable since grammar is a symbol and limit is an integer. For the code that’s
compatible to srfi-152, use the first form that takes grammar argument.

(string-split "a.b..c" "." 2) ⇒ ("a" "b" ".c")

The start and end arguments limits input string in the given range before splitting.

See also string-tokenize in (see Section 11.5.12 [SRFI-13 other string operations],
page 526).

6.12.8 Incomplete strings

A string can be flagged as "incomplete" if it may contain byte sequences that do not consist of
a valid multibyte character in the Gauche’s native encoding.

Incomplete strings may be generated in several circumstances; reading binary data as a
string, reading a string data that has been ’chopped’ in middle of a multibyte character, or
concatenating a string with other incomplete strings, for example.

Incomplete strings should be regarded as an exceptional case. It used to be a way to handle
byte strings, but now we have u8vector (see Section 9.35 [Uniform vectors], page 447) for that
purpose. In fact, we’re planning to remove it in the future releases.

Just in case, if you happen to get an incomplete string, you can convert it to a complete
string by the following procedure:

[Function]string-incomplete->complete str :optional handling ↓ller
Reinterpret the content of an incomplete string str and returns a newly created complete
string from it. The handling argument specifies how to handle the illegal byte sequences in
str.

#f If str contains an illegal byte sequence, give up the conversion and returns #f.
This is the default behavior.

:omit Omit any illegal byte sequences.

:replace Replace each byte in illegal byte sequences by a character given in ↓ller argument,
defaulted to ?.

:escape Replace each byte in illegal byte sequences by a sequence of ↓ller <hexdigit>

<hexdigit>. Besides, the ↓ller characters in the original string is replaced with
↓ller ↓ller.

If str is already a complete string, its copy is returned.

The procedure always returns a complete string, except when the handling argument is #f
(default) and the input is an incomplete string, in which case #f is returned.

When Gauche’s internal encoding is utf-8, the procedure works as follows:

(string-incomplete->complete #*"_abc")

⇒ "_abc" ; can be represented as a complete string

(string-incomplete->complete #*"_ab\x80;c")

⇒ #f ; can’t be represetend as a complete string

(string-incomplete->complete #*"_ab\x80;c" :omit)

⇒ "_abc" ; omit the illegal bytes

Chapter 6: Core library 149

(string-incomplete->complete #*"_ab\x80;c" :replace #_)

⇒ "_ab_c" ; replace the illegal bytes

(string-incomplete->complete #*"_ab\x80;c" :escape #_)

⇒ "__ab_80c" ; escape the illegal bytes and escape char itself

6.13 Regular expressions

Gauche has a built-in regular expression engine which is mostly upper-compatible of POSIX
extended regular expression, plus some extensions from Perl 5 regexp.

A special syntax is provided for literal regular expressions. Also regular expressions are
applicable, that is, it works like procedures that match the given string to itself. Combining
with these two features enables writing some string matching idioms compact.

(find #/pattern/ list-of-strings)

⇒ match object or #f

6.13.1 Regular expression syntax

[Reader Syntax]#/regexp-spec/
[Reader Syntax]#/regexp-spec/i

Denotes literal regular expression object. When read, it becomes an instance of <regexp>.

If a letter ’i’ is given at the end, the created regexp becomes case-folding regexp, i.e. it
matches in the case-insensitive way.

The advantage of using this syntax over string->regexp is that the regexp is compiled only
once. You can use literal regexp inside loop without worrying about regexp compilation
overhead. If you want to construct regexp on-the-fly, however, use string->regexp.

Gauche’s built-in regexp syntax follows POSIX extended regular expression, with a bit of
extensions taken from Perl.

Note that the syntax described here is just a surface syntax. Gauche’s regexp compiler works
on the abstract syntax tree, and alternative syntax such as SRE will be supported in the future
versions.

re* Matches zero or more repetition of re.

re+ Matches one or more repetition of re.

re? Matches zero or one occurrence of re.

re{n}

re{n,m} Bounded repetition. re{n} matches exactly n occurrences of re. re{n,m} matches
at least n and at most m occurrences of re, where n <= m. In the latter form,
either n or m can be omitted; omitted n is assumed as 0, and omitted m is assumed
infinity.

re*?

re+?

re??

re{n,m}? Same as the above repetition construct, but these syntaxes use "non-greedy" or
"lazy" match strategy. That is, they try to match the minimum number of occur-
rences of re first, then retry longer ones only if it fails. In the last form either n or
m can be omitted. Compare the following examples:

(rxmatch-substring (#/<.*>/ "<tag1><tag2><tag3>") 0)

Chapter 6: Core library 150

⇒ "<tag1><tag2><tag3>"

(rxmatch-substring (#/<.*?>/ "<tag1><tag2><tag3>") 0)

⇒ "<tag1>"

(re...) Clustering with capturing. The regular expression enclosed by parenthesis works as
a single re. Besides, the string that matches re . . . is saved as a submatch.

(?:re...)

Clustering without capturing. re ... works as a single re, but the matched string
isn’t saved.

(?<name>re...)

Named capture and clustering. Like (re...), but adds the name name to the
matched substring. You can refer to the matched substring by both index number
and the name.

When the same name appears more than once in a regular expression, it is undefined
which matched substring is returned as the submatch of the named capture.

(?i:re...)

(?-i:re...)

Lexical case sensitivity control. (?i:re...) makes re . . . matches case-insensitively,
while (?-i:re...) makes re . . . matches case-sensitively.

Perl’s regexp allows several more flags to appear between ’?’ and ’:’. Gauche only
supports above two, for now.

pattern1|pattern2|...

Alternation. Matches either one of patterns, where each pattern is re

\n Backreference. n is an integer. Matches the substring captured by the n-th cap-
turing group. (counting from 1). When capturing groups are nested, groups are
counted by their beginnings. If the n-th capturing group is in a repetition and has
matched more than once, the last matched substring is used.

\k<name> Named backreference. Matches the substring captured by the capturing group with
the name name. If the named capturing group is in a repetition and has matched
more than once, the last matched substring is used. If there are more than one
capturing group with name, matching will succeed if the input matches either one
of the substrings captured by those groups.

. Matches any character (including newline).

[char-set-spec]

Matches any of the character set specified by char-set-spec. See Section 6.11 [Char-
acter set], page 137, for the details of char-set-spec.

\s, \d, \w

Matches a whitespace character (#[[:space:]]), a digit character (#[[:digit:]]),
or a word-constituent character (#[[:alpha:][:digit:]_]), respectively.

Can be used both inside and outside of character set.

\S, \D, \W

Matches the complement character set of \s, \d and \w, respectively.

^, $ Beginning and end of string assertion, when appears at the beginning or end of the
pattern.

These characters loses special meanings and matches the characters themselves if
they appear in the position other than the beginning of the pattern (for ^) or the

Chapter 6: Core library 151

end (for $). For the sake of recognizing those characters, lookahead/lookbehind as-
sertions ((?=...), (?!...), (?<=...), (?<!...)) and atomic clustering ((?>...))
are treated as if they are a whole pattern. That is, ^ at the beginning of those
groupings are beginning-of-string assertion no matter where these group appear in
the containing regexp. So as $ at the end of these groupings.

\b, \B Word boundary and non word boundary assertion, respectively. That is, \b matches
an empty string between word-constituent character and non-word-constituent char-
acter, and \B matches an empty string elsewhere.

\;

\"

\# These are the same as ;, ", and #, respectively, and can be used to avoid confusing
Emacs or other syntax-aware editors that are not familiar with Gauche’s extension.

(?=pattern)

(?!pattern)

Positive/negative lookahead assertion. Match succeeds if pattern matches (or does
not match) the input string from the current position, but this doesn’t move the
current position itself, so that the following regular expression is applied again from
the current position.

For example, the following expression matches strings that might be a phone num-
ber, except the numbers in Japan (i.e. ones that begin with "81").

\+(?!81)\d{9,}

(?<=pattern)

(?<!pattern)

Positive/negative lookbehind assertion. If the input string immediately before the
current input position matches pattern, this pattern succeeds or fails, respectively.
Like lookahead assertion, the input position isn’t changed.

Internally, this match is tried by reversing pattern and applies it to the backward
of input character sequence. So you can write any regexp in pattern, but if the
submatches depend on the matching order, you may get different submatches from
when you match pattern from left to right.

(?>pattern)

Atomic clustering. Once pattern matches, the match is fixed; even if the following
pattern fails, the engine won’t backtrack to try the alternative match in pattern.

re*+

re++

re?+ They are the same as (?>re*), (?>re+), (?>re?), respectively.

(?test-pattern then-pattern)

(?test-pattern then-pattern|else-pattern)

Conditional matching. If test-pattern counts true, then-pattern is tried; otherwise
else-pattern is tried when provided.

test-pattern can be either one of the following:

(integer)

Backreference. If integer-th capturing group has a match, this test
counts true.

Chapter 6: Core library 152

(?=pattern)

(?!pattern)

Positive/negative lookahead assertion. It tries pattern from the current
input position without consuming input, and if the match succeeds or
fails, respectively, this test counts true.

(?<=pattern)

(?<!pattern)

Positive/negative lookbehind assertion. It tries pattern backward from
the left size of the current input position, and if the match succeeds or
fails, respectively, this test counts true.

6.13.2 Using regular expressions

Regexp object and rxmatch object

[Builtin Class]<regexp>
Regular expression object. You can construct a regexp object from a string by
string->regexp at run time. Gauche also has a special syntax to denote regexp literals,
which construct regexp object at loading time.

Gauche’s regexp engine is fully aware of multibyte characters.

[Builtin Class]<regmatch>
Regexp match object. A regexp matcher rxmatch returns this object if match. This object
contains all the information about the match, including submatches.

The advantage of using match object, rather than substrings or list of indices, is efficiency.
The regmatch object keeps internal state of match, and computes indices and/or substrings
only when requested. This is particularly effective for mutibyte strings, for index access is
slow on them.

[Function]string->regexp string :key case-fold
Takes string as a regexp specification, and constructs an instance of <regexp> object.

If a true value is given to the keyword argument case-fold, the created regexp object becomes
case-folding regexp. (See the above explanation about case-folding regexp).

[Function]regexp? obj
Returns true iff obj is a regexp object.

[Function]regexp->string regexp
Returns a source string describing the regexp regexp. The returned string is immutable.

[Function]regexp-num-groups regexp
[Function]regexp-named-groups regexp

Queries the number of capturing groups, and an alist of named capturing groups, in the given
regexp, respectively.

The number of capturing groups corresponds to the number of matches returned by
rxmatch-num-matches. Note that the entire regexp forms a group, so the number is al-
ways positive.

The alist returned from regexp-named-groups has the group name (symbol) in car, and its
subgroup number in cdr. Note that the order of groups in the alist isn’t fixed.

(regexp-num-groups #/abc(?<foo>def)(ghi(?<bar>jkl)(mno))/)

⇒ 5

(regexp-named-groups #/abc(?<foo>def)(ghi(?<bar>jkl)(mno))/)

⇒ ((bar . 3) (foo . 1))

Chapter 6: Core library 153

Trying a match

[Function]rxmatch regexp string
Regexp is a regular expression object. A string string is matched by regexp. If it matches,
the function returns a <regmatch> object. Otherwise it returns #f.

This is called match, regexp-search or string-match in some other Scheme implementa-
tions.

To apply the match repeatedly on the input string, or to match from the input stream (such
as the data from the port), you may want to check grxmatch in gauche.generator (see
Section 9.10.2 [Generator operations], page 348).

[Generic application]regexp string
A regular expression object can be applied directly to the string. This works the same
as (rxmatch regexp string), but allows shorter notation. See Section 6.18.6 [Applicable
objects], page 180, for generic mechanism used to implement this.

Accessing the match result

[Function]rxmatch-start match :optional (i 0)
[Function]rxmatch-end match :optional (i 0)
[Function]rxmatch-substring match :optional (i 0)

Match is a match object returned by rxmatch. If i equals to zero, the functions return start,
end or the substring of entire match, respectively. With positive integer I, it returns those of
I -th submatches. It is an error to pass other values to I.

It is allowed to pass #f to match for convenience. The functions return #f in such case.

These functions correspond to scsh’s match:start, match:end and match:substring.

[Function]rxmatch-after match :optional (i 0)
[Function]rxmatch-before match :optional (i 0)

Returns substring of the input string after or before match. If optional argument is given,
the i-th submatch is used (0-th submatch is the entire match).

(define match (rxmatch #/(\d+)\.(\d+)/ "pi=3.14..."))

(rxmatch-after match) ⇒ "..."

(rxmatch-after match 1) ⇒ ".14..."

(rxmatch-before match) ⇒ "pi="

(rxmatch-before match 2) ⇒ "pi=3."

[Function]rxmatch-substrings match :optional start end
[Function]rxmatch-positions match :optional start end

Retrieves multiple submatches (again, 0-th match is the entire match), in substrings and in
a cons of start and end position, respectively.

(rxmatch-substrings (#/(\d+):(\d+):(\d+)/ "12:34:56"))

⇒ ("12:34:56" "12" "34" "56")

(rxmatch-positions (#/(\d+):(\d+):(\d+)/ "12:34:56"))

⇒ ((0 . 8) (0 . 2) (3 . 5) (6 . 8))

For the convenience, you can pass #f to match; those procedures returns () in that case.

The optional start and end arguments specify the range of submatch index. If omitted, start
defaults to 0 and end defaults to (rxmatch-num-matches match). For example, if you don’t
need the whole match, you can give 1 to start as follows:

(rxmatch-substrings (#/(\d+):(\d+):(\d+)/ "12:34:56") 1)

Chapter 6: Core library 154

⇒ ("12" "34" "56")

[Function]rxmatch->string regexp string :optional selector . . .
A convenience procedure to match a string to the given regexp, then returns the matched
substring, or #f if it doesn’t match.

If no selector is given, it is the same as this:

(rxmatch-substring (rxmatch regexp string))

If an integer is given as a selector, it returns the substring of the numbered submatch.

If a symbol after or before is given, it returns the substring after or before the match. You
can give these symbols and an integer to extract a substring before or after the numbered
submatch.

gosh> (rxmatch->string #/\d+/ "foo314bar")

"314"

gosh> (rxmatch->string #/(\w+)@([\w.]+)/ "foo@example.com" 2)

"example.com"

gosh> (rxmatch->string #/(\w+)@([\w.]+)/ "foo@example.com" ’before 2)

"foo@"

[Generic application]regmatch :optional index
[Generic application]regmatch ’before :optional index
[Generic application]regmatch ’after :optional index

A regmatch object can be applied directly to the integer index, or a symbol before or
after. They works the same as (rxmatch-substring regmatch index), (rxmatch-before
regmatch), and (rxmatch-after regmatch), respectively. This allows shorter notation. See
Section 6.18.6 [Applicable objects], page 180, for generic mechanism used to implement this.

(define match (#/(\d+)\.(\d+)/ "pi=3.14..."))

(match) ⇒ "3.14"

(match 1) ⇒ "3"

(match 2) ⇒ "14"

(match ’after) ⇒ "..."

(match ’after 1) ⇒ ".14..."

(match ’before) ⇒ "pi="

(match ’before 2) ⇒ "pi=3."

(define match (#/(?<integer>\d+)\.(?<fraction>\d+)/ "pi=3.14..."))

(match 1) ⇒ "3"

(match 2) ⇒ "14"

(match ’integer) ⇒ "3"

(match ’fraction) ⇒ "14"

(match ’after ’integer) ⇒ ".14..."

(match ’before ’fraction) ⇒ "pi=3."

[Function]rxmatch-num-matches match
[Function]rxmatch-named-groups match

Returns the number of matches, and an alist of named groups and whose indices, in match.
This corresponds regexp-num-groups and regexp-named-groups on a regular expression

Chapter 6: Core library 155

that has been used to generate match. These procedures are useful to inspect match object
without having the original regexp object.

The number of matches includes the "whole match", so it is always a positive integer for a
<regmatch> object. The number also includes the submatches that don’t have value (see the
examples below). The result of rxmatch-named-matches also includes all the named groups
in the original regexp, not only the matched ones.

For the convenience, rxmatch-num-matches returns 0 and rxmatch-named-groups returns
() if match is #f.

(rxmatch-num-matches (rxmatch #/abc/ "abc")) ⇒ 1

(rxmatch-num-matches (rxmatch #/(a(.))|(b(.))/ "ba")) ⇒ 5

(rxmatch-num-matches #f) ⇒ 0

(rxmatch-named-groups

(rxmatch #/(?<h>\d\d):(?<m>\d\d)(:(?<s>\d\d))?/ "12:34"))

⇒ ((s . 4) (m . 2) (h . 1))

Convenience utilities

[Function]regexp-replace regexp string substitution
[Function]regexp-replace-all regexp string substitution

Replaces the part of string that matched to regexp for substitution. regexp-replace just re-
places the first match of regexp, while regexp-replace-all repeats the replacing throughout
entire string.

substitution may be a string or a procedure. If it is a string, it can contain references to the
submatches by digits preceded by a backslash (e.g. \2) or the named submatch reference
(e.g. \k<name>. \0 refers to the entire match. Note that you need two backslashes to include
backslash character in the literal string; if you want to include a backslash character itself in
the substitution, you need four backslashes.

(regexp-replace #/def|DEF/ "abcdefghi" "...")

⇒ "abc...ghi"

(regexp-replace #/def|DEF/ "abcdefghi" "|\\0|")

⇒ "abc|def|ghi"

(regexp-replace #/def|DEF/ "abcdefghi" "|\\\\0|")

⇒ "abc|\\0|ghi"

(regexp-replace #/c(.*)g/ "abcdefghi" "|\\1|")

⇒ "ab|def|hi"

(regexp-replace #/c(?<match>.*)g/ "abcdefghi" "|\\k<match>|")

⇒ "ab|def|hi"

If substitution is a procedure, for every match in string it is called with one argument, regexp-
match object. The returned value from the procedure is inserted to the output string using
display.

(regexp-replace #/c(.*)g/ "abcdefghi"

(lambda (m)

(list->string

(reverse

(string->list (rxmatch-substring m 1))))))

⇒ "abfedhi"

Note: regexp-replace-all applies itself recursively to the remaining of the string after
match. So the beginning of string assertion in regexp doesn’t only mean the beginning of
input string.

Chapter 6: Core library 156

Note: If you want to operate on multiple matches in the string instead of replacing it, you
can use lrxmatch in gauche.lazy module or grxmatch in gauche.generator module. Both
can match a regexp repeatedly and lazily to the given string, and lrxmatch returns a lazy
sequence of regmatches, while grxmatch returns a generator that yields regmatches.

(map rxmatch-substring (lrxmatch #/\w+/ "a quick brown fox!?"))

⇒ ("a" "quick" "brown" "fox")

[Function]regexp-replace* string rx1 sub1 rx2 sub2 . . .
[Function]regexp-replace-all* string rx1 sub1 rx2 sub2 . . .

First applies regexp-replace or regexp-replace-all to string with a regular expression rx1
substituting for sub1, then applies the function on the result string with a regular expression
rx2 substituting for sub2, and so on. These functions are handy when you want to apply
multiple substitutions sequentially on a string.

[Function]regexp-quote string
Returns a string with the characters that are special to regexp escaped.

(regexp-quote "[2002/10/12] touched foo.h and *.c")

⇒ "\\[2002/10/12\\] touched foo\\.h and *\\.c"

In the following macros, match-expr is an expression which produces a match object or #f.
Typically it is a call of rxmatch, but it can be any expression.

[Macro]rxmatch-let match-expr (var . . .) form . . .
Evaluates match-expr, and if matched, binds var . . . to the matched strings, then evaluates
forms. The first var receives the entire match, and subsequent variables receive submatches.
If the number of submatches are smaller than the number of variables to receive them, the
rest of variables will get #f.

It is possible to put #f in variable position, which says you don’t care that match.

(rxmatch-let (rxmatch #/(\d+):(\d+):(\d+)/

"Jan 1 23:59:58, 2001")

(time hh mm ss)

(list time hh mm ss))

⇒ ("23:59:58" "23" "59" "58")

(rxmatch-let (rxmatch #/(\d+):(\d+):(\d+)/

"Jan 1 23:59:58, 2001")

(#f hh mm)

(list hh mm))

⇒ ("23" "59")

This macro corresponds to scsh’s let-match.

[Macro]rxmatch-if match-expr (var . . .) then-form else-form
Evaluates match-expr, and if matched, binds var . . . to the matched strings and evalu-
ate then-form. Otherwise evaluates else-form. The rule of binding vars is the same as
rxmatch-let.

(rxmatch-if (rxmatch #/(\d+:\d+)/ "Jan 1 11:22:33")

(time)

(format #f "time is ~a" time)

"unknown time")

⇒ "time is 11:22"

(rxmatch-if (rxmatch #/(\d+:\d+)/ "Jan 1 11-22-33")

Chapter 6: Core library 157

(time)

(format #f "time is ~a" time)

"unknown time")

⇒ "unknown time"

This macro corresponds to scsh’s if-match.

[Macro]rxmatch-cond clause . . .
Evaluate condition in clauses one by one. If a condition of a clause satisfies, rest portion of
the clause is evaluated and becomes the result of rxmatch-cond. Clause may be one of the
following pattern.

(match-expr (var ...) form ...)

Evaluate match-expr, which may return a regexp match object or #f. If it returns
a match object, the matches are bound to vars, like rxmatch-let, and forms are
evaluated.

(test expr form ...)

Evaluates expr. If it yields true, evaluates forms.

(test expr => proc)

Evaluates expr and if it is true, calls proc with the result of expr as the only
argument.

(else form ...)

If this clause exists, it must be the last clause. If other clauses fail, forms are
evaluated.

If no else clause exists, and all the other clause fail, an undefined value is returned.

;; parses several possible date format
(define (parse-date str)

(rxmatch-cond

((rxmatch #/^(\d\d?)\/(\d\d?)\/(\d\d\d\d)$/ str)

(#f mm dd yyyy)

(map string->number (list yyyy mm dd)))

((rxmatch #/^(\d\d\d\d)\/(\d\d?)\/(\d\d?)$/ str)

(#f yyyy mm dd)

(map string->number (list yyyy mm dd)))

((rxmatch #/^\d+\/\d+\/\d+$/ str)

(#f)

(errorf "ambiguous: ~s" str))

(else (errorf "bogus: ~s" str))))

(parse-date "2001/2/3") ⇒ (2001 2 3)

(parse-date "12/25/1999") ⇒ (1999 12 25)

This macro corresponds to scsh’s match-cond.

[Macro]rxmatch-case string-expr clause . . .
String-expr is evaluated, and clauses are interpreted one by one. A clause may be one of the
following pattern.

(re (var ...) form ...)

Re must be a literal regexp object (see Section 6.13 [Regular expressions],
page 149). If the result of string-expr matches re, the match result is bound
to vars and forms are evaluated, and rxmatch-case returns the result of the last
form.

Chapter 6: Core library 158

If re doesn’t match the result of string-expr, string-expr yields non-string value,
the interpretation proceeds to the next clause.

(test proc form ...)

A procedure proc is applied on the result of string-expr. If it yields true value,
forms are evaluated, and rxmatch-case returns the result of the last form.

If proc yields #f, the interpretation proceeds to the next clause.

(test proc => proc2)

A procedure proc is applied on the result of string-expr. If it yields true
value, proc2 is applied on the result, and its result is returned as the result
of rxmatch-case.

If proc yields #f, the interpretation proceeds to the next clause.

(else form ...)

This form must appear at the end of clauses, if any. If other clauses fail, forms are
evaluated, and the result of the last form becomes the result of rxmatch-case.

(else => proc)

This form must appear at the end of clauses, if any. If other clauses fail, proc
is evaluated, which should yield a procedure taking one argument. The value of
string-expr is passed to proc, and its return values become the return values of
rxmatch-case. rx

If no else clause exists, and all other clause fail, an undefined value is returned.

The parse-date example above becomes simpler if you use rxmatch-case

(define (parse-date2 str)

(rxmatch-case str

(test (lambda (s) (not (string? s))) #f)

(#/^(\d\d?)\/(\d\d?)\/(\d\d\d\d)$/ (#f mm dd yyyy)

(map string->number (list yyyy mm dd)))

(#/^(\d\d\d\d)\/(\d\d?)\/(\d\d?)$/ (#f yyyy mm dd)

(map string->number (list yyyy mm dd)))

(#/^\d+\/\d+\/\d+$/ (#f)

(errorf "ambiguous: ~s" str))

(else (errorf "bogus: ~s" str))))

6.13.3 Inspecting and assembling regular expressions

When Gauche reads a string representation of regexp, first it parses the string and construct
an abstract syntax tree (AST), performs some optimizations on it, then compiles it into an
instruction sequence to be executed by the regexp engine.

The following procedures expose this process to user programs. It may be easier for programs
to manipulate an AST than a string representation.

[Function]regexp-parse string :key case-fold
Parses a string specification of regexp in string and returns its AST, represented in S-
expression. See below for the spec of AST.

When a true value is given to the keyword argument case-fold, returned AST will match
case-insensitively. (Case insensitive regexp is handled in parser level, not by the engine).

[Function]regexp-optimize ast
Performs some rudimental optimization on the regexp AST, returning regexp AST.

Currently it only optimizes some trivial cases. The plan is to make it cleverer in future.

Chapter 6: Core library 159

[Function]regexp-compile ast
Takes a regexp AST and returns a regexp object. Currently the outermost form of ast must
be the zero-th capturing group. (That is, ast should have the form (0 #f x ...).) The outer
grouping is always added by regexp-parse to capture the entire regexp.

Note: The function does some basic check to see the given AST is valid, but it may not
reject invalid ASTs. In such case, the returned regexp object doesn’t work properly. It is
caller’s responsibility to provide a properly constructed AST. (Even if it rejects an AST,
error messages are often incomprehensible. So, don’t use this procedure as a AST validness
checker.)

[Function]regexp-ast regexp
Returns AST used for the regexp object regexp.

[Function]regexp-unparse ast :key (on-error :error)
From the regexp’s ast, reconstruct the string representation of the regexp. The keyword
argument on-error can be a keyword :error (default) or #f. If it’s the former, an error is
signaled when ast isn’t valid regexp AST. If it’s the latter, regexp-unparse just returns #f.

This is the structure of AST. Note that this is originally developed only for internal use, and
not very convenient to manipulate from the code (e.g. if you insert or delete a subtree, you have
to renumber capturing groups to make them consistent.) There’s a plan to provide a better
representation, such as SRE, and a tool to convert it to this AST back and forth. Contributions
are welcome.

<ast> : <clause> ; special clause

| <item> ; matches <item>

<item> : <char> ; matches char

| <char-set> ; matches char set

| (comp . <char-set>) ; matches complement of char set

| any ; matches any char

| bol | eol ; beginning/end of line assertion

| wb | nwb ; word-boundary/negative word boundary assertion

<clause> : (seq <ast> ...) ; sequence

| (seq-uncase <ast> ...) ; sequence (case insensitive match)

| (seq-case <ast> ...) ; sequence (case sensitive match)

| (alt <ast> ...) ; alternative

| (rep <m> <n> <ast> ...) ; repetition at least <m> up to <n> (greedy)

; <n> may be ‘#f’

| (rep-min <m> <n> <ast> ...)

; repetition at least <m> up to <n> (lazy)

; <n> may be ‘#f’

| (rep-while <m> <n> <ast> ...)

; like rep, but no backtrack

| (<integer> <symbol> <ast> ...)

; capturing group. <symbol> may be #f.

| (cpat <condition> <ast> <ast>)

; conditional expression

| (backref . <integer>) ; backreference

| (once <ast> ...) ; standalone pattern. no backtrack

| (assert . <asst>) ; positive lookahead assertion

| (nassert . <asst>) ; negative lookahead assertion

<condition> : <integer> ; (?(1)yes|no) style conditional expression

| (assert . <asst>) ; (?(?=condition)...) or (?(?<=condition)...)

| (nassert . <asst>) ; (?(?!condition)...) or (?(?<!condition)...)

<asst> : <ast> ...

| ((lookbehind <ast> ...))

Chapter 6: Core library 160

6.14 Vectors

[Builtin Class]<vector>
A vector is a simple 1-dimensional array of Scheme objects. You can access its element by
index in constant time. Once created, a vector can’t be resized.

Class <vector> inherits <sequence> and you can use various generic functions such as map
and fold on it. See Section 9.5 [Collection framework], page 322, and See Section 9.28
[Sequence framework], page 412.

If you keep only a homogeneous numeric type, you may be able to use SRFI-4 homogeneous
vectors (see Section 11.2 [Homogeneous vectors], page 517).

R7RS defines bytevectors; in Gauche, they’re just u8vectors in gauche.uvector module
(r7rs modules defines aliases. see Section 10.2.2 [R7RS base library], page 473).

See Section 11.28 [Vector library], page 559, for additional operations on vectors.

[Function]vector? obj
[R7RS base] Returns #t if obj is a vector, #f otherwise.

[Function]make-vector k :optional ↓ll
[R7RS base] Creates and returns a vector with length k. If optional argument ↓ll is given,
each element of the vector is initialized by it. Otherwise, the initial value of each element is
undefined.

[Function]vector obj . . .
[R7RS base] Creates a vector whose elements are obj

[Function]vector-tabulate len proc
Creates a vector of length len, initializing i-th element of which by (proc i) for all i between
0 and len

(vector-tabulate 5 (^x (* x x)))

⇒ #(0 1 4 9 16)

[Function]vector-length vector
[R7RS base] Returns the length of a vector vector.

With gauche.collection module, you can also use a method size-of.

[Function]vector-ref vector k :optional fallback
[R7RS+] Returns k-th element of vector vector.

By default, vector-ref signals an error if k is negative, or greater than or equal to the length
of vector. However, if an optional argument fallback is given, it is returned for such case.
This is an extension of Gauche.

With gauche.sequence module, you can also use a method ref.

[Function]vector-set! vector k obj
[R7RS base] Sets k-th element of the vector vector to obj. It is an error if k is negative or
greater than or equal to the length of vector.

With gauche.sequence module, you can also use a setter method of ref.

[Function]vector->list vector :optional start end
[Function]list->vector list :optional start end

[R7RS+] Converts a vector to a list, or vice versa.

The optional start and end arguments limit the range of the source. (R7RS don’t define start
and end arguments for list->vector.)

(vector->list ’#(1 2 3 4 5)) ⇒ (1 2 3 4 5)

Chapter 6: Core library 161

(list->vector ’(1 2 3 4 5)) ⇒ #(1 2 3 4 5)

(vector->list ’#(1 2 3 4 5) 2 4) ⇒ (3 4)

(list->vector (circular-list ’a ’b ’c) 1 6)

⇒ #(b c a b c)

With gauche.collection module, you can use (coerce-to <list> vector) and (coerce-to

<vector> list) as well.

[Function]reverse-list->vector list :optional start end
[R7RS vector] Without optional arguments, it returns the same thing as (list->vector

(reverse list)), but does not allocate the intermediate list. The optional start and end
argument limits the range of the input list.

(reverse-list->vector ’(a b c d e f g) 1 5)

⇒ #(e d c b)

[Function]vector->string vector :optional start end
[Function]string->vector string :optional start end

[R7RS base] Converts a vector of characters to a string, or vice versa. It is an error to pass
a vector that contains other than characters to vector->string.

The optional start and end arguments limit the range of the source.

(vector->string ’#(#\a #\b #\c #\d #\e)) ⇒ "abcde"

(string->vector "abcde") ⇒ #(#\a #\b #\c #\d #\e)

(vector->string ’#(#\a #\b #\c #\d #\e) 2 4) ⇒ ("cd")

With gauche.collection module, you can use (coerce-to <string> vector) and (coerce-to

<vector> string) as well.

[Function]vector-fill! vector ↓ll :optional start end
[R7RS base] Sets all elements in a vector vector to ↓ll.

Optional start and end limits the range of effect between start-th index (inclusive) to end-th
index (exclusive). Start defaults to zero, and end defaults to the length of vector.

[Function]vector-copy vector :optional start end ↓ll
[R7RS base] Copies a vector vector. Optional start and end arguments can be used to limit
the range of vector to be copied. If the range specified by start and end falls outside of the
original vector, the ↓ll value is used to fill the result vector.

(vector-copy ’#(1 2 3 4 5)) ⇒ #(1 2 3 4 5)

(vector-copy ’#(1 2 3 4 5) 2 4) ⇒ #(3 4)

(vector-copy ’#(1 2 3 4 5) 3 7 #f) ⇒ #(4 5 #f #f)

[Function]vector-copy! target tstart source :optional sstart send
[R7RS base] Copies the content of source vector into the target vector starting from tstart
in the target. The target vector must be mutable. Optional sstart and send limits the range
of source vector.

(rlet1 v (vector ’a ’b ’c ’d ’e)

(vector-copy! v 2 ’#(1 2)))

⇒ #(a b 1 2 e)

(rlet1 v (vector ’a ’b ’c ’d ’e)

(vector-copy! v 2 ’#(1 2 3 4) 1 3))

⇒ #(a b 2 3 e)

An error is raised if the portion to be copied is greater than the room in the target (that is,
between tstart to the end).

It is ok to pass the same vector to target and source; it always works even if the regions of
source and destination are overlapping.

Chapter 6: Core library 162

[Function]vector-append vec . . .
[R7RS base] Returns a newly allocated vector whose contents are concatenation of elements
of vec in order.

(vector-append ’#(1 2 3) ’#(a b)) ⇒ #(1 2 3 a b)

(vector-append) ⇒ #()

[Function]vector-map proc vec1 vec2 . . .
[R7RS base] Returns a new vector, i-th of which is calculated by applying proc on the list of
each i-th element of vec1 vec2 The length of the result vector is the same as the shortest
vector of the arguments.

(vector-map + ’#(1 2 3) ’#(4 5 6 7))

⇒ #(5 7 9)

The actual order proc is called is undefined, and may change in the future versions, so proc
shouldn’t use side effects affected by the order.

Note: If you use gauche.collection, you can get the same function by (map-to <vector>

proc vec1 vec2 ...).

[Function]vector-map-with-index proc vec1 vec2 . . .
Like vector-map, but proc receives the current index as the first argument.

(vector-map-with-index list ’#(a b c d e) ’#(A B C))

⇒ #((0 a A) (1 b B) (2 c C))

This is what SRFI-43 calls vector-map. See Section 11.12 [Vector library (Legacy)], page 542.

Note: If you use gauche.collection, you can get the same function by (map-to-with-index
<vector> proc vec1 vec2 ...).

[Function]vector-map! proc vec1 vec2 . . .
[R7RS vector] For each index i, calls proc with i-th index of vec1 vec2 . . . , and set the result
back to vec1. The value is calculated up to the minimum length of input vectors.

(rlet1 v (vector 1 2 3)

(vector-map! ($ + 1 $) v))

⇒ #(2 3 4)

(rlet1 v (vector 1 2 3 4)

(vector-map! + v ’#(10 20)))

⇒ #(11 22 3 4)

[Function]vector-map-with-index! proc vec1 vec2 . . .
Like vector-map!, but proc receives the current index as the first argument. This is equiv-
alent to SRFI-43’s vector-map! (see Section 11.12 [Vector library (Legacy)], page 542).

(rlet1 v (vector ’a ’b ’c)

(vector-map-with-index! list v))

⇒ #((0 a) (1 b) (2 c))

[Function]vector-for-each proc vec1 vec2 . . .
[R7RS base] For all i below the minimum length of input vectors, calls proc with i-th elements
of vec1 vec2 . . . , in increasing order of i.

(vector-for-each print ’#(a b c))

⇒ prints a, b and c.

[Function]vector-for-each-with-index proc vec1 vec2 . . .
Like vector-for-each, but proc receives the current index in the first argument.

This is equivalent to SRFI-43’s vector-for-each. See Section 11.12 [Vector library
(Legacy)], page 542.

Chapter 6: Core library 163

6.15 Hashtables

R7RS-large defines hashtable (scheme.hash-table module, see Section 10.3.6 [R7RS hash ta-
bles], page 505) but its API is not completely consistent with Gauche’s original hashtables and
other native APIs.

Rather than mixing different flavor of APIs, we keep Gauche’s native API consistent, and
provide R7RS procedures that are inconsitent with aliases—specifically, those procedures are
suffixed with -r7 in gauchemodule. For portable programs, you can import scheme.hash-table
to get R7RS names.

[Builtin Class]<hash-table>
Hash table class. Inherits <collection> and <dictionary>.

Gauche doesn’t provide immutable hash tables for now. (If you need immutable maps, see
Section 12.10 [Immutable map], page 597).

Hash table properties

[Function]hash-table? obj
[R7RS hash-table] Returns #t iff obj is a hash table.

[Function]hash-table-mutable? ht
[R7RS hash-table] Returns #t iff a hash table ht is mutable. Gauche doesn’t have immutable
hash tables, so this procedure always returns #t for any hash tables.

[Function]hash-table-comparator ht
Returns a comparator used in the hashtable ht.

[Function]hash-table-type ht
This is an old API, superseded by hash-table-comparator.

Returns one of symbols eq?, eqv?, equal?, string=?, general, indicating the type of the
hash table ht.

[Function]hash-table-num-entries ht
[Function]hash-table-size ht

[R7RS hash-table] Return the number of entries in the hash table ht. R7RS name is
hash-table-size.

Hash table constructors and converters

[Function]make-hash-table :optional comparator
[R7RS+ hash-table] Creates a hash table. The comparator argument specifies key equality
and hash function using a comparator (see Section 6.2.4 [Basic comparators], page 95). If
omitted, eq-comparator is used. Note that in R7RS, comparator argument can’t be omitted.

As Gauche’s extension, the comparator argument can also be one of the symbols eq?,
eqv?, equal? or string=?. If it is one of those symbols, eq-comparator, eqv-comparator,
equal-comparator and string-comparator will be used, respectively.

The comparator must have hash function, of course. See Section 6.2.3 [Hashing], page 92, for
the built-in hash functions. In general, comparators derived from other comparators having
hash functions also have appropriate hash functions.

[Function]hash-table-from-pairs comparator key&value . . .
Constructs and returns a hash table from given list of arguments. The comparator argument
is the same as of make-hash-table. Each key&value must be a pair, and its car is used as
a key and its cdr is used as a value.

Chapter 6: Core library 164

Note: This is called hash-table by 0.9.5. R7RS introduced a procedure with the same
name, but different interface. We see R7RS version makes more sense, so we’ll eventually
switch to it, but the transition will take long time. The R7RS interface is available as
hash-table-r7, and we urge you to use it in the new code, and replace existing hash-table

with hash-table-from-pairs.

(hash-table-from-pairs ’eq? ’(a . 1) ’(b . 2))

≡
(rlet1 h (make-hash-table ’eq?)

(hash-table-put! h ’a 1)

(hash-table-put! h ’b 2))

[Function]hash-table comparator key&value . . .
An alias of hash-table-from-pairs above. R7RS introduced the same name procedure with
different interface (see hash-table-r7 below), and we’d like to switch to it in future. For
now, use either hash-table-from-pairs or hash-table-r7, or import scheme.hash-table
and write in R7RS.

[Function]hash-table-r7 comparator args . . .
Create and returns a hash table using comparator. The args . . . are the contents, alternating
keys and values.

This is defined as hash-table in R7RS scheme.hash-table (see Section 10.3.6 [R7RS hash
tables], page 505).

(hash-table-r7 ’eq? ’a 1 ’b 2)

≡
(rlet1 h (make-hash-table ’eq?)

(hash-table-put! h ’a 1)

(hash-table-put! h ’b 2))

Note: An R7RS compliant implementation of hash-table may return an immutable hash
table. Since Gauche doesn’t have immutable hash tables (we have immutable maps instead;
see Section 12.10 [Immutable map], page 597), we return mutable hash tables. However, the
portable program should refrain from mutating the returned hash tables.

[Function]hash-talbe-unfold p f g seed comparator :rest args
[R7RS hash-table] Constructs and returns a new hash table with those repetitive steps. Each
iteration keeps the current seed value, whose initial value is seed.

1. Apply a stop predicate p to the current seed value. If it returns a true value, stop.

2. Apply a value producer f to the current seed value. It must return two values, which
are used as a key and the corresponding value, of the hash table.

3. Apply a next procedure g to the current seed value. The value it returns becomes the
next seed value.

[Function]hash-table-copy ht :optional mutable?
[R7RS hash-table] Returns a new copy of a hash table ht.

R7RS defines this procedure to return an immutable hash table if the implementation sup-
ports one, unless the optional mutable? argument is provided and not false. Gauche doesn’t
have immutable hash tables so it ignores the optional argument and always returns a mutable
hash table. But when you write a portable programs, keep it in mynd.

[Function]hash-table-empty-copy ht
[R7RS hash-table] Returns a new mutable empty hash table that has the same properties as
the given hash table ht.

Chapter 6: Core library 165

[Function]alist->hash-table alist :optional comparator
[R7RS+ hash-table] Creates and returns a hash table that has entries of each element in alist,
using its car as the key and its cdr as the value. The comparator argument is the same as in
make-hash-table. The default value of comparator is eq-comparator.

R7RS doesn’t allow to omit comparator.

[Function]hash-table->alist hash-table
[R7RS hash-table]

(hash-table-map h cons)

Hash table lookup and mutation

[Function]hash-table-get ht key :optional default
Search key from a hash table ht, and returns its value if found. If the key is not found in the
table and default is given, it is returned. Otherwise an error is signaled.

[Function]hash-table-put! ht key value
Puts a key key with a value value to the hash table ht.

[Method]ref (ht <hash-table>) key :optional default
[Method](setter ref) (ht <hash-table>) key value

Method versions of hash-table-get and hash-table-put!.

[Function]hash-table-ref ht key :optional failure success
[R7RS hash-table] This is R7RS way to look up a hash table.

Look up a value associated to the key in the table ht, then pass it to a procedure success,
and returns its value. If success is omitted, an identity function is used.

If there’s no association for key in ht, a thunk failure is called and its result is returned. The
default value of failure throws an error.

It is more general than Gauche’s hash-table-get, but if you need to simply return a fallback
value in case of failure, you need to wrap it with a clojure, which is annoying. In R7RS, you
can use hash-table-ref/default below.

[Function]hash-table-ref/default ht key default
[R7RS hash-table] Looks up key in a hash table ht and returns the associated value. If there’s
no key in the table, returns default.

This is same as Gauche’s hash-table-get, except that default is not optional. We provide
both, for hash-table-get is short and handy.

[Function]hash-table-set! ht args . . .
[R7RS hash-table] This is R7RS version to put associations into a hash table. The args . . .
is a list of alternating keys and values; so, unlike Gauche’s hash-table-put!, you can insert
more than one associations at once. It is an error if args . . . have odd number of arguments.

(hash-table-set! ht ’a 1 ’b 2)

≡
(begin (hash-table-put! ht ’a 1)

(hash-table-put! ht ’b 2))

[Function]hash-table-intern!-r7 ht key failure
This is defined in R7RS as hash-table-intern!. We add -r7 suffix to remind that it takes
a failure thunk, which is consistent with R7RS hash-table interface but not Gauche’s way.

Lookup key in ht. If there’s already an entry, it just returns the value. Otherwise, it calls a
thunk failure, and insert the association of key and the return value of failure into ht, and
returns the value.

Chapter 6: Core library 166

[Function]hash-table-exists? ht key
[Function]hash-table-contains? ht key

[R7RS hash-table] Returns #t if a hash table ht has a key key.

R7RS name is hash-table-contains?.

[Function]hash-table-delete! ht key
Deletes an entry that has a key key from the hash table ht. Returns #t if the entry has exist,
or #f if the entry hasn’t exist. The same function is called hash-table-remove! in STk
(except that it returns an undefined value); I use ‘delete’ for consistency to SRFI-1, SRFI-13
and other parts of the libraries.

Note: This is different from R7RS hash-table-delete!, so we provide R7RS interface with
an alias hash-table-delete!-r7.

[Function]hash-table-delete!-r7 ht key . . .
Delets entries that have key . . . from the hash table ht. The key which isn’t in ht has no
effect. Returns the number of entries actually deleted.

This is called hash-table-delete! in R7RS, and so as in scheme.hash-table. We provide
this under different name, for Gauche’s hash-table-delete! returns a boolean value.

[Function]hash-table-clear! ht
[R7RS hash-table] Removes all entries in the hash table ht.

[Function]hash-table-push! ht key value
Conses value to the existing value for the key key in the hash table ht and makes it the new
value for key. If there’s no entry for key, an entry is created with the value (list value).

Works the same as the following code, except that this function only looks up the key once,
thus it’s more efficient.

(hash-table-put! ht key

(cons value (hash-table-get ht key ’())))

[Function]hash-table-pop! ht key :optional default
Looks for the value for the key key in the hash table ht. If found and it is a pair, replaces the
value for its cdr and returns car of the original value. If no entry for key is in the table, or
the value is not a pair, the table is not modified and the procedure returns default if given,
or signals an error otherwise.

During the operation the key is looked for only once, thus runs efficiently.

Note: R7RS has hash-table-pop! but its totally different. We provide R7RS version as an
alias hash-table-pop!-r7

[Function]hash-table-pop!-r7 ht
Removes one arbitrary entry from ht, and returns the removed entry’s key and value as two
values. If ht is empty, an error is thrown.

This is called hash-table-pop! in R7RS, and so as in scheme.hash-table. A more general
version of hash-table-push! etc. It works basically as the following code piece, except that
the lookup of key is only done once.

(let ((tmp (proc (hash-table-get ht key default))))

(hash-table-put! ht key tmp)

tmp)

For example, when you use a hash table to count the occurrences of items, the following
line is suffice to increment the counter of the item, regardless of whether item has already
appeared or not.

(hash-table-update! ht item (cut + 1 <>) 0))

Chapter 6: Core library 167

R7RS provides hash-table-update! with different interface, so we provide R7RS version as
an alias hash-table-update!-r7.

[Function]hash-table-update!-r7 ht key updater :optional failure success
This is R7RS version of hash-table-update!. With no optional arguments, it works like
Gauche’s hash-table-update!. But in practice you often needs to specify the behavior when
key hasn’t been in ht, in which case R7RS differs from Gauche.

The R7RS version works like this but potentially more efficiently:

(hash-table-put! ht key (updater (hash-table-ref-r7 ht key failure success)))

[Function]hash-table-update!/default ht key updater default
[R7RS hash-table] This is the same as Gauche’s hash-table-default!, except that the
default value can’t be omitted.

Hash table scanners

[Function]hash-table-for-each ht proc
[Function]hash-table-map ht proc

A procedure proc is called with two arguments, a key and its associated value, over all the
entries in the hash table ht.

[Function]hash-table-fold ht kons knil
For all entries in the hash table ht, a procedure kons is called with three arguments; a key, its
associated value, and the previous return value of kons. The first call of kons receives knil as
the third argument. The return value of the last call of kons is returned from hash-table-

fold.

[Function]hash-table-find ht pred :optional failure
Apply pred with each key and value in the hash table ht. Once pred returns a true value,
that return value is immediately returned from hash-table-find. If no key-value satisfies
pred, a thunk failure is invoked and its result is returned. If failure is omitted, (lambda ()

#f) is assumed.

Note: The convention starting from srfi-1 is that *-find returns an item in the collection
that satisfy the predicate, while *-any returns a non-false value the predicate returns. SRFI-
125 broke the convention. The justification given in SRFI-125 discussion was that the “any”
semantics is strictly upper-compatible to the “find” semantics so we can combine two. So
far, though, SRFI-125 is the only exception of this convention.

;; Find if hash tables ha and hb has a common key.

(hash-table-find ha (^[k v] (hash-table-exists? hb k)))

[Function]hash-table-keys ht
[Function]hash-table-values ht

Returns all the keys or values of hash table ht in a list, respectively.

Hash table as sets

[Function]hash-table-compare-as-sets ht1 ht2 :optional value=? fallback
A hash table can be viewed as a set of pairs of key and value. This procedure compares two
hash tables ht1 and ht2 as such sets.

The key comparators of two tables must match (in terms of equal? of the comparators).
Otherwise, an error is signaled.

Two elements of the set are equal to each other iff their keys match with the equality predicate
of the key comparator, and their values match with value=? procedure. If omitted, equal?
is used for value=?

Chapter 6: Core library 168

There can be four cases.

• If ht1 is a pure subset of ht2, returns -1 (ht1 is smaller than ht2).

• If ht2 is a pure subset of ht1, returns 1 (ht1 is greater than ht2).

• If ht1 and ht2 contains exactly the same elements, returns 0 (ht1 equals to ht2).

• Neither ht1 nor ht2 is a subset of another. In this case, fallback is returned if it is given,
or an error is thrown.

[Function]hash-table=? value-cmpr ht1 ht2
[R7RS hash-table] This also compares two hash tables ht1 and ht2 as sets, and returns true
iff two are the same. That is, every element in ht1 is also in ht2 and vice versa.

Two element are the same iff their keys are the same in terms of the equality predicate of
the tables’ key comparator, and their values are the same in terms of the equality predicate
of a comparator value-cmpr.

It is an error if ht1 and ht2 has different key comparators. See also hash-table-compare-

as-sets above.

[Function]hash-table-union! ht1 ht2
[Function]hash-table-intersection! ht1 ht2
[Function]hash-table-difference! ht1 ht2
[Function]hash-table-xor! ht1 ht2

[R7RS hash-table] Perform set operations on two hashtables ht1 and ht2, and modify ht1 to
store the result. Note that these procedures only look at the keys for operation; if the values
of the same key differ between ht1 and ht2, the value in ht1 is taken.

• The union operation picks each entry that is in at least one of ht1 or ht2.

• The intersection operation picks each entry that is both in ht1 and ht2.

• The difference operation picks each entry that is in ht1 but not in ht2.

• The xor operation picks each entry that is in only one of ht1 or ht2, but not in both.

6.16 Treemaps

[Builtin Class]<tree-map>
Tree map class. Tree maps are a data structure that maps key objects to value objects. It’s
like hash tables except tree maps uses balanced tree internally. Insertion and lookup is O(log
n).

Unlike hashtables, a tree map keeps the order of the keys, so it is easy to traverse entries
in the order of keys, to find minimum/maximum keys, or to find a key closest to the given
value.

The <tree-map> class inherits <sequence> and <ordered-dictionary>.

[Function]make-tree-map :optional comparator
[Function]make-tree-map key=? key<?

Creates and returns an instance of <tree-map>. The keys are compared by comparator,
whose default is default-comparator. The comparator must have a comparison procedure,
for we need a total order in the keys. See Section 6.2.4 [Basic comparators], page 95, for the
details.

For the backward compatibility, make-tree-map also accepts a procedure as a comparator;
the procedure must take two keys and returns either -1, 0, or 1, depending on whether the
first key is less than, equal to, or greater than the second key, respectively. In other words,
it is a comparison procedure of a comparator.

Chapter 6: Core library 169

The second form of make-tree-map is also for the backward compatibility; it takes two
procedures, each must be a procedure that takes two keys; the first one returns #t iff two
keys are equal, and the second one returns #t iff the first key is strictly smaller than the
second.

[Function]tree-map-comparator tree-map
Returns the comparator used in the tree map.

[Function]tree-map-copy tree-map
Copies and returns tree-map. Modification on the returned tree doesn’t affect the original
tree.

[Function]tree-map-empty? tree-map
Returns #t if tree-map doesn’t have any elements, or #f otherwise.

[Function]tree-map-num-entries tree-map
Returns the number of elements in tree-map.

[Function]tree-map-exists? tree-map key
Returns #t if tree-map has an entry with key, or #f otherwise.

[Function]tree-map-get tree-map key :optional fallback
Looks for key in tree-map. If the entry is found, returns a value corresponding to the key.
Otherwise, returns fallback if it is provided, or signals an error.

[Function]tree-map-put! tree-map key value
Inserts an entry with a key and corresponding value into tree-map. If there already exists
an entry with a key which is equivalent (under key=?), the entry is modified to have value.

[Function]tree-map-delete! tree-map key
Deletes an entry with key from tree-map if such an entry exists, and returns #t. If tree-map
doesn’t have such an entry, #f is returned.

[Function]tree-map-clear! tree-map
Removes all entries in tree-map.

[Function]tree-map-update! tree-map key proc :optional fallback
A generalized version of tree-map-push! etc. It works like the following code, except that
searching for the key is done only once.

(let ((tmp (proc (tree-map-get tree-map key fallback))))

(tree-map-put! tree-map key tmp)

tmp)

[Function]tree-map-push! tree-map key value
Looks for an entry with key in tree-map. If it exists, the procedure conses value to the
original value and makes it as a new value. Otherwise, the procedure creates a new entry for
the key and makes (list value) its value.

[Function]tree-map-pop! tree-map key :optional fallback
Looks for an entry with key in tree-map. If it exists and its value is a pair, then the procedure
updates its value with cdr of the original value, and returns car of the original entry. If such
an entry does not exist, or has a non-pair value, the procedure doesn’t modify tree-map and
returns fallback if it is given, otherwise reports an error.

[Function]tree-map-min tree-map
[Function]tree-map-max tree-map

Returns a pair of a key and its value with the minimum or maximum key, respectively. If
tree-map is empty, #f is returned.

Chapter 6: Core library 170

[Function]tree-map-pop-min! tree-map
[Function]tree-map-pop-max! tree-map

Looks for an entry with minimum or maximum key, respectively, then deletes the entry from
tree-map and returns a pair of the key and its value of the original entry. If tree-map is
empty, #f is returned.

[Function]tree-map-fold tree-map proc seed
[Function]tree-map-fold-right tree-map proc seed

Iterate over elements in tree-map, applying proc which has a type (key, value, seed) ->

seed. The difference of tree-map-fold and tree-map-fold-right is the associative order
of applying proc, just like the difference between fold and fold-right.

tree-map-fold:

(proc Kn Vn (proc Kn-1 Vn-1 ... (proc K0 V0 seed)))

tree-map-fold-right

(proc K0 V0 (proc K1 V1 ... (proc Kn Vn seed)))

Some examples:

(define tree (alist->tree-map ’((3 . a) (7 . b) (5 . c)) = <))

(tree-map-fold tree list* ’())

⇒ (7 b 5 c 3 a)

(tree-map-fold-right tree list* ’())

⇒ (3 a 5 c 7 b)

[Function]tree-map-map tree-map proc
Calls proc, which must take two arguments, with each key/value pair in tree-map, and collect
the results into a list and returns it. The order of results corresponds to the order of keys—
that is, the first element of the result list is what proc returns with minimum key and its
value, and the last element of the result list is what proc returns with the maximum key and
its value. (Note: Like map, the order that proc is actually called is unspecified; proc is better
to be side-effect free.)

[Function]tree-map-for-each tree-map proc
Calls proc, which must take two arguments, with each key/value pair in tree-map, in the
increasing order of the keys. proc is called purely for side effects; the returned values are
discarded.

[Function]tree-map-floor tree-map probe :optional fallback-key fallback-value
[Function]tree-map-ceiling tree-map probe :optional fallback-key fallback-value
[Function]tree-map-predecessor tree-map probe :optional fallback-key

fallback-value
[Function]tree-map-successor tree-map probe :optional fallback-key fallback-value

These procedures search the entry which has the closest key to the given probe. If such
an entry is found, returns two values, its key and its value. Otherwise, returns two values,
fallback-key and fallback-value, both defaulted to #f.

The criteria of “closest” differ slightly among these procedures; tree-map-floor finds the
maximum key which is no greater than probe; tree-map-ceiling finds the minimum key
which is no less than probe; tree-map-predecessor finds the maximum key which is strictly
less than probe; and tree-map-successor finds the minimum key which is strictly greater
than probe.

[Function]tree-map-floor-key tree-map probe optional fallback-key
[Function]tree-map-ceiling-key tree-map probe optional fallback-key

Chapter 6: Core library 171

[Function]tree-map-predecessor-key tree-map probe optional fallback-key
[Function]tree-map-successor-key tree-map probe optional fallback-key

Like tree-map-floor etc., but only returns the key of the found entry (or fallback-key if
there’s no entry which satisfies the criteria).

[Function]tree-map-floor-value tree-map probe optional fallback-value
[Function]tree-map-ceiling-value tree-map probe optional fallback-value
[Function]tree-map-predecessor-value tree-map probe optional fallback-value
[Function]tree-map-successor-value tree-map probe optional fallback-value

Like tree-map-floor etc., but only returns the value of the found entry (or fallback-value if
there’s no entry which satisfies the criteria).

[Function]tree-map-keys tree-map
[Function]tree-map-values tree-map

Returns a list of all keys and all values, respectively. The keys and values are in ascending
order of the keys.

[Function]tree-map->alist tree-map
Returns a list of pairs of keys and values for all entries. The pairs are in ascending order of
the keys.

[Function]alist->tree-map alist :optional comparator
[Function]alist->tree-map alist key=? key<?

Creates a new tree map with the comparator or key=?/key<? procedures, then populates it
with alist, each pair in which are interpreted as a cons of a key and its value. The meaning
of comparator, key=? and key<? are the same as make-tree-map.

The following two procedures compares two tree maps with slightly different views.

[Function]tree-map-compare-as-sets tree-map1 tree-map2 :optional value=?
fallback

Compares two tree maps as sets of entries. If we look at tree maps as sets of entries, we can
define a partial order between two maps; they are equal to each other if they have exactly
the same entries, and tree-map A is smaller than tree-map B if A us a strict subset of B.

If tree-map1 and tree-map2 are the same, 0 is returned. If tree-map1 is smaller than tree-
map2, -1 is returned. If tree-map1 is greater than tree-map2, 1 is returned.

If one argument isn’t subset of the other, we can’t determine the order. In such a case, if
fallback is given, it is returned. Otherwise, an error is signalled.

The comparators of tree-map1 and tree-map2 must be the same (equal?), otherwise an error
is signalled. See Section 6.2.4 [Basic comparators], page 95, about the comparators.

An entry is equal to another entry if their keys match in terms of the comparator of the tree-
map, and also their values match with the provided value=? predicate, which is defaulted to
equal?.

(tree-map-compare-as-sets

(alist->tree-map ’((1 . a) (2 . b) (3 . c)) default-comparator)

(alist->tree-map ’((3 . c) (1 . a) (2 . b)) default-comparator))

⇒ 0

(tree-map-compare-as-sets

(alist->tree-map ’((1 . a) (3 . c)) default-comparator)

(alist->tree-map ’((3 . c) (1 . a) (2 . b)) default-comparator))

⇒ -1

Chapter 6: Core library 172

(tree-map-compare-as-sets

(alist->tree-map ’((1 . a) (3 . c) (4 . d) (2 . b)) default-comparator)

(alist->tree-map ’((3 . c) (1 . a) (2 . b)) default-comparator))

⇒ 1

(tree-map-compare-as-sets

(alist->tree-map ’((1 . a) (3 . c) (4 . d)) default-comparator)

(alist->tree-map ’((3 . c) (1 . a) (2 . b)) default-comparator))

⇒ ERROR: tree-maps can’t be ordered

(tree-map-compare-as-sets

(alist->tree-map ’((1 . a) (3 . c) (4 . d)) default-comparator)

(alist->tree-map ’((3 . c) (1 . a) (2 . b)) default-comparator)

eq?

#f)

⇒ #f

[Function]tree-map-compare-as-sequences tree-map1 tree-map2 :optional
value-cmp

Compares two tree maps as sequence of entries, ordered by keys. If both maps have entries
with the same key, we use a comparator value-cmp to break the tie (naturally, value-cmp
must have ordering predicate.) If value-cmp is omitted, default-comparator is used.

The comparators of tree-map1 and tree-map2 must be the same (equal?), otherwise an error
is signalled. See Section 6.2.4 [Basic comparators], page 95, about the comparators.

If tree-map1 and tree-map2 are the same, 0 is returned. If tree-map1 is smaller than tree-
map2, -1 is returned. If tree-map1 is greater than tree-map2, 1 is returned.

Unlike tree-map-compare-as-sets, this procedure defines total order of tree maps which
share the same comparator.

(tree-map-compare-as-sequences

(alist->tree-map ’((1 . a) (3 . c)) default-comparator)

(alist->tree-map ’((3 . c) (2 . b)) default-comparator))

⇒ -1

(tree-map-compare-as-sequences

(alist->tree-map ’((2 . b) (3 . d)) default-comparator)

(alist->tree-map ’((3 . c) (2 . b)) default-comparator))

⇒ 1

6.17 Weak pointers

A weak pointer is a reference to an object that doesn’t prevent the object from being garbage-
collected. Gauche provides weak pointers as a weak vector object. A weak vector is like a vector
of objects, except each object can be garbage collected if it is not referenced from objects other
than weak vectors. If the object is collected, the entry of the weak vector is replaced for #f.

gosh> (define v (make-weak-vector 1))

v

gosh> (weak-vector-ref v 0)

#f

gosh> (weak-vector-set! v 0 (cons 1 1))

#<undef>

Chapter 6: Core library 173

gosh> (weak-vector-ref v 0)

(1 . 1)

gosh> (gc)

#<undef>

gosh> (gc)

#<undef>

gosh> (weak-vector-ref v 0)

#f

[Builtin Class]<weak-vector>
The weak vector class. Inherits <sequence> and <collection>, so you can
use gauche.collection (see Section 9.5 [Collection framework], page 322) and
gauche.sequence (see Section 9.28 [Sequence framework], page 412).

(coerce-to <weak-vector> ’(1 2 3 4))

⇒ a weak vector with four elements

[Function]make-weak-vector size
Creates and returns a weak vector of size size.

[Function]weak-vector-length wvec
Returns the length of a weak vector wvec.

[Function]weak-vector-ref wvec k :optional fallback
Returns k-th element of a weak vector wvec.

By default, weak-vector-ref signals an error if k is negative, or greater than or equal to the
size of wvec. However, if an optional argument fallback is given, it is returned for such case.

If the element has been garbage collected, this procedure returns fallback if it is provided, #f
otherwise.

With gauche.sequence module, you can also use a method ref.

[Function]weak-vector-set! wvec k obj
Sets k-th element of the weak vector wvec to obj. It is an error if k is negative or greater
than or equal to the size of wec.

6.18 Procedures and continuations

In Scheme, procedures are fundamental blocks to build a program (see Section 4.3 [Making
Procedures], page 40). A procedure represents a certain computation, possibly parameterized,
and can be applied to the actual arguments to execute the computation. Scheme also provides
the means to extract the continuation of the current computation and wraps it in a procedure
(see Section 6.18.7 [Continuations], page 181).

Gauche extends the concept of procedure application, allowing you to apply any object as
if it’s a procedure; for example, you can set up Gauche to accept ("abc" 2) can be a valid
application syntax. See Section 6.18.6 [Applicable objects], page 180, for the details.

6.18.1 Procedure class and applicability

[Builtin Class]<procedure>
Represents a procedure. Ordinary Scheme procedures created by lambda is an instance of
this class, as well as built-in primitive procedures written in C. Note that, in Gauche, other
type of objects can behave as a procedure; so checking whether an object is a procedure or
not doesn’t mean much unless you want to mess around with Gauche internals.

Chapter 6: Core library 174

[Function]procedure? obj
[R7RS base] Returns #t if obj is inherently applicable objects, #f otherwise. By inherently
applicable we mean Gauche unconditionally understands that obj can be called as a proce-
dure; an instance of <procedure> is so, as well as generic functions (<generic>) and methods
(<method>). See Section 7.4 [Generic function and method], page 285, for the details.

Since you can make any type of objects applicable at any time (see Section 6.18.6 [Applicable
objects], page 180), the fact that procedure? returned #f doesn’t mean that the object
cannot be applied. To check if an object can be applied or not, use applicable? below.

[Function]apply proc arg1 . . . args
[R7RS base] Calls a procedure proc with a list of arguments, (arg1 args). The last
argument args must be a proper list. Returns (a) value(s) proc returns.

(apply list ’a ’b ’(c d e)) ⇒ (a b c d e)

(apply + 1 2 ’(3 4 5)) ⇒ 15

[Function]applicable? obj class . . .
Checks if obj can be called with the types of arguments listed in class That is, when
(applicable? foo <string> <integer>) returns #t, then you can call foo as (foo "x" -2),
for example. (It doesn’t mean you won’t get an error; foo may be accept only nonnegative
integers, which you cannot tell from the result of applicable?. But if applicable? returns
#t, Gauche won’t complain “foo is not applicable” when you call foo.

This procedure takes applicable objects into account. So, for example, (applicable? #/a/

<string>) returns #t, for the regular expressions are applicable to a string (see Section 6.13
[Regular expressions], page 149).

For generic functions, applicable? returns #t if it has at least one method such that each
of its specifiers is a superclass of the corresponding class argument given to applicable?.

(define-method foo ((x <sequence>) (y <integer>)) #f)

(applicable? foo <sequence> <integer>) ⇒ #t

(applicable? foo <string> <integer>) ⇒ #t

(applicable? foo <hash-table> <integer>) ⇒ #f

(applicable? foo <string> <real>) ⇒ #f

The second example returns #t since <string> is a subclass of <sequence>, while the third
example returns #f since <hash-table> isn’t a subclass of <sequence>. The fourth example
returns #f since <real> isn’t a subclass of <integer>.

Traditional Scheme procedures (such as ones created by lambda) only cares the number of
arguments but not their types; it accepts any type as far as the number of arguments matches.
To check such a condition, pass <top> as the argument class. (<top> is a superclass of all
classes.)

(applicable? cons <top> <top>) ⇒ #t

If you want to check an object is applicable to a certain number of some class of arguments,
you can pass <bottom> as the argument class instead. (<bottom> is a subclass of all classes.)

(define-method foo ((x <sequence>) (y <integer>)) #f)

(applicable? foo <top> <top>) ⇒ #f

(applicable? foo <bottom> <bottom>) ⇒ #t

See Section 6.1 [Types and classes], page 88, for the details of <top>, <bottom> and Gauche’s
type handling.

Chapter 6: Core library 175

6.18.2 Universal accessor

[Function]~ obj key keys . . .
[Function](setter ~) obj key keys . . .

The procedure ~ can be used to access a part of various aggregate types.

;; Access to an element of a sequence by index

(~ ’(a b c) 0) ⇒ a

(~ ’#(a b c) 2) ⇒ c

(~ "abc" 1) ⇒ #\b

(~ ’#u8(10 20 30) 1) ⇒ 20

;; Access to an element of a collection by key

(~ (hash-table ’eq? ’(a . 1) ’(b . 2)) ’a)

⇒ 1

;; Access to a slot of an object by slot name

(~ (sys-localtime (sys-time)) ’hour)

⇒ 20

The access can be chained:

(~ ’#((a b c) (d e f) (g h i)) 1 2) ⇒ f

(~ (hash-table ’eq? ’(a . "abc") ’(d . "def")) ’a 2)

⇒ #\c

You can think ~ as left-associative, that is,

(~ x k j) ≡ (~ (~ x k) j)

and so on.

The generalized setter set! can be used with ~ to replace the specified element.

(define z (vector ’a ’b ’c))

(set! (~ z 1) ’Z)

z ⇒ #(a Z c)

(define z (vector (list (vector ’a ’b ’c)

(vector ’d ’e ’f)

(vector ’g ’h ’i))

(list (vector ’a ’b ’c)

(vector ’d ’e ’f)

(vector ’g ’h ’i))))

z ⇒ #((#(a b c) #(d e f) #(g h i))

(#(a b c) #(d e f) #(g h i)))

(set! (~ z 1 2 0) ’Z)

z ⇒ #((#(a b c) #(d e f) #(g h i))

(#(a b c) #(d e f) #(Z h i)))

Internally, a call to ~ is implemented by a generic function ref. See Chapter 7 [Object
system], page 265, for more about generic functions.

Chapter 6: Core library 176

[Generic function]ref object key :optional args . . .
[Generic function](setter ref) object key value

Many aggregate types defines a specialized method of these to provide uniform access and
mutation. Meaning of optional arguments args of ref depends on each specialized method,
but it is common that the first optional argument of ref is a fallback value, which is to be
returned when object doesn’t have a meaningful association with key.

The manual entry of each aggregate type shows the specialized method and its semantics in
detail.

Conceptually, ~ can be understood as follows:

(define ~

(getter-with-setter

(case-lambda

[(obj selector) (ref obj selector)]

[(obj selector . more) (apply ~ (ref obj selector) more)])

(case-lambda

[(obj selector val) ((setter ref) obj selector val)]

[(obj selector selector2 . rest)

(apply (setter ~) (ref obj selector) selector2 rest)])))

(Gauche may use some short-cut for optimization, though, so this code may not reflect the
actual implementation.)

6.18.3 Combinators

Gauche has some primitive procedures that allows combinatory programming.

[Function]pa$ proc arg . . .
Partial application. Returns a procedure, and when it is called with arguments m . . . , it is
equivalent to call (proc arg ... m ...).

(define add3 (pa$ + 3))

(add3 4) ⇒ 7

(map (pa$ * 2) ’(1 2 3)) ⇒ (2 4 6)

Macros cut and cute defined in SRFI-26 provide a similar abstraction, with a bit more
flexible but less compact notation. See Section 4.3 [Making Procedures], page 40.

[Function]apply$ proc
[Function]map$ proc
[Function]for-each$ proc

Partial application versions of apply, map and for-each.

(define map2* (map$ (pa$ * 2)))

(map2* ’(1 2 3)) ⇒ (2 4 6)

[Function]count$ pred
[Function]fold$ kons :optional knil
[Function]fold-right$ kons :optional knil
[Function]reduce$ f :optional ridentity
[Function]reduce-right$ f :optional ridentity
[Function]filter$ pred
[Function]remove$ pred
[Function]partition$ pred
[Function]member$ item
[Function]find$ pred

Chapter 6: Core library 177

[Function]find-tail$ pred
[Function]any$ pred
[Function]every$ pred
[Function]delete$ pred
[Function]assoc$ item

Partial application versions of some srfi-1 (R7RS (scheme list)) procedures (see
Section 10.3.1 [R7RS lists], page 482).

[Function].$ f . . .
[Function]compose f . . .

Combine procedures. All arguments must be procedures. When two procedures are given,
(.$ f g) is equivalent to the following code:

(lambda args (call-with-values (lambda () (apply g args)) f))

When more than two arguments are passed, they are composed as follows:

(.$ f g h ...) ≡ (.$ (.$ f g) h ...)

Some examples:

(define not-zero? (.$ not zero?))

(not-zero? 3) ⇒ #t

(not-zero? 0) ⇒ #f

(define dot-product (.$ (apply$ +) (map$ *)))

(dot-product ’(1 2 3) ’(4 5 6)) ⇒ 32

A couple of edge cases: if only one argument is given, the argument itself is returned. If no
arguments are given, the procedure values is returned.

Note: The name .$ comes from the fact that . is commonly used for function composition
in literatures and some programming languages, and that Gauche uses suffix $ to indicate
combinators. However, since it is not a valid R7RS identifier, portable programs may want
to use the alias compose, with which you can easily add a portable definition using srfi-0,
for example.

[Function]complement pred
Returns a procedure that reverses the meaning of the predicate pred. That is, for the argu-
ments for which pred returns true return false, and vice versa.

(map (complement even?) ’(1 2 3)) ⇒ ’(#t #f #t)

(map (complement =) ’(1 2 3) ’(1 1 3)) ⇒ ’(#f #t #f)

((complement (lambda () #f))) ⇒ #t

[Function]any-pred pred . . .
Returns a procedure which applies given argument(s) to each predicate pred. If any pred
returns a non-#f value, the value is returned. If all the preds return #f, #f is returned.

(define string-or-symbol? (any-pred string? symbol?))

(string-or-symbol? "abc") ⇒ #t

(string-or-symbol? ’abc) ⇒ #t

(string-or-symbol? 3) ⇒ #f

(define <> (any-pred < >))

(<> 3 4) ⇒ #t

(<> 3 3) ⇒ #f

((any-pred (cut memq <> ’(a b c))

(cut memq <> ’(1 2 3)))

’b) ⇒ ’(b c)

Chapter 6: Core library 178

[Function]every-pred pred . . .
Returns a procedure which applies given argument(s) to each predicate pred. If every pred
returns a non-#f value, the value returned by the last pred is returned. If any pred returns
#f, every-pred returns #f without calling further preds.

((every-pred odd? positive?) 3) ⇒ #t

((every-pred odd? positive?) 4) ⇒ #f

((every-pred odd? positive?) -3) ⇒ #f

(define safe-length (every-pred list? length))

(safe-length ’(a b c)) ⇒ 3

(safe-length "aaa") ⇒ #f

6.18.4 Optional argument parsing

Gauche supports optional and keyword arguments in extended lambda syntax (see Section 4.3
[Making Procedures], page 40). However, you can also use the following macros to parse optional
and keyword arguments, without relying Gauche’s extension.

(define (foo a b :optional (c #f) (d ’none))

body ...)

;; is roughly equivalent to ...

(define (foo a b . args)

(let-optionals* args ((c #f) (d ’none))

body ...))

Explicitly parsing the extended arguments may be useful for portable programs, since it is
rather straightforward to implement those macros rather than extend lambda syntax.

Those macros can also be useful to factor out common argument parsing routines.

[Macro]let-optionals* restargs (var-spec . . .) body . . .
[Macro]let-optionals* restargs (var-spec restvar) body . . .

Given a list of values restargs, binds variables according to var-spec, then evaluates body.

Var-spec can be either a symbol, or a list of two elements and its car is a symbol. The symbol
is the bound variable name. The values in restargs are bound to the symbol in order. If there
are not as many values in restargs as var-spec, the rest of symbols are bound to the default
values, determined as follows: If var-spec is just a symbol, the default value is undefined.
If var-spec is a list, the default value is the result of evaluation of the second element of
the list. In the latter case the second element is only evaluated when there are not enough
arguments. The binding proceeds in the order of var-spec, so the second element may refer
to the bindings of previous var-spec.

In the second form, restvar must be a symbol and bound to the list of values whatever left
from restargs after binding to var-spec.

It is not an error if restarg has more values than var-specs. The extra values are simply
ignored in the first form.

(define (proc x . args)

(let-optionals* args ((a ’a)

(b ’b)

(c ’c))

(list x a b c)))

(proc 0) ⇒ (0 a b c)

Chapter 6: Core library 179

(proc 0 1) ⇒ (0 1 b c)

(proc 0 1 2) ⇒ (0 1 2 c)

(proc 0 1 2 3) ⇒ (0 1 2 3)

(define (proc2 . args)

(let-optionals* args ((a ’a) . b)

(list a b)))

(proc2) ⇒ (a ())

(proc2 0) ⇒ (0 ())

(proc2 0 1) ⇒ (0 (1))

(proc2 0 1 2) ⇒ (0 (1 2))

(define (proc3 . args)

(let-optionals* args ((a 0)

(b (+ a 1))

(c (+ b 1)))

(list a b c)))

(proc3) ⇒ (0 1 2)

(proc3 8) ⇒ (8 9 10)

(proc3 8 2) ⇒ (8 2 3)

(proc3 8 2 -1) ⇒ (8 2 -1)

[Macro]get-optional restargs default
This is a short version of let-optionals* where you have only one optional argument. Given
the optional argument list restargs, this macro returns the value of optional argument if one
is given, or the result of default otherwise. Default is not evaluated unless restargs is an
empty list.

(define (proc x . maybe-opt)

(let ((option (get-optional maybe-opt #f)))

(list x option)))

(proc 0) ⇒ (0 #f)

(proc 0 1) ⇒ (0 1)

[Macro]let-keywords restarg (var-spec . . .) body . . .
[Macro]let-keywords restarg (var-spec restvar) body . . .

This macro is for keyword arguments. Var-spec can be one of the following forms:

(symbol expr)

If the restarg contains keyword which has the same name as symbol, binds symbol
to the corresponding value. If such a keyword doesn’t appear in restarg, binds
symbol to the result of expr.

(symbol keyword expr)

If the restarg contains keyword keyword, binds symbol to the corresponding
value. If such a keyword doesn’t appear in restarg, binds symbol to the result of
expr.

The default value expr is only evaluated when the keyword is not given to the restarg.

If you use the first form, let-keyword throws an error when restarg contains a keyword
argument that is not listed in var-specs. When you want to allow keyword arguments other
than listed in var-specs, use the second form.

Chapter 6: Core library 180

In the second form, restvar must be either a symbol or #f. If it is a symbol, it is bound to
a list of keyword arguments that are not processed by var-specs. If it is #f, such keyword
arguments are just ignored.

(define (proc x . options)

(let-keywords options ((a ’a)

(b :beta ’b)

(c ’c)

. rest)

(list x a b c rest)))

(proc 0) ⇒ (0 a b c ())

(proc 0 :a 1) ⇒ (0 1 b c ())

(proc 0 :beta 1) ⇒ (0 a 1 c ())

(proc 0 :beta 1 :c 3 :unknown 4) ⇒ (0 a 1 3 (:unknown 4))

[Macro]let-keywords* restarg (var-spec . . .) body . . .
[Macro]let-keywords* restarg (var-spec restvar) body . . .

Like let-keywords, but the binding is done in the order of var-specs. So each expr can refer
to the variables bound by preceding var-specs.

6.18.5 Procedure arity

Interface to query procedure’s arity. The API is taken from MzScheme (PLT Scheme).

[Function]arity proc
Given procedure proc, returns an integer, an arity-at-least object, or a list of integer(s) and
arity-at-least objects.

An integer result indicates proc takes exactly that number of arguments. An arity-at-least
indicates proc takes at least (arity-at-least-value arity-at-least) arguments. The list
indicates there are multiple procedures with different arities.

Since one can add methods to an existing procedure or generic function at any moment in
Gauche, the value returned by arity only indicates the current state of the procedure. It
will change if new method is added to the procedure/generic-function.

(arity cons) ⇒ 2

(arity list) ⇒ #<arity-at-least 0>

(arity make) ⇒ (#<arity-at-least 1>)

[Function]arity-at-least? obj
Returns true if obj is an arity-at-least object.

[Function]arity-at-least-value arity-at-least
Returns the number of required arguments the arity-at-least object indicates.

[Function]procedure-arity-includes? proc k
If a procedure proc can take k arguments, returns #t. Otherwise returns #f.

6.18.6 Applicable objects

Gauche has a special hook to make an arbitrary object applicable.

[Generic Function]object-apply object arg . . .
If an object that is neither a procedure nor a generic function is applied to some arguments,
the object and the arguments are passed to a generic function object-apply.

This can be explained better by examples.

Chapter 6: Core library 181

For example, suppose you try to evaluate the following expression:

("abcde" 2)

The operator evaluates to a string, which is neither a procedure nor a generic function. So
Gauche interprets the expression as if it were like this:

(object-apply "abcde" 2)

Gauche doesn’t define a method of object-apply that takes <string> and <integer> by
default, so this signals an error. However, if you define such a method:

(define-method object-apply ((s <string>) (i <integer>))

(string-ref s i))

Then the first expression works as if a string is applied on the integer:

("abcde" 2) ⇒ #\c

This mechanism works on almost all occasions where a procedure is allowed.

(apply "abcde" ’(1)) ⇒ (#\b)

(map "abcde" ’(3 2 1)) ⇒ (#\d #\c #\b)

Among Gauche built-in objects, <regexp> object and <regmatch> object have object-apply
defined. See Section 6.13 [Regular expressions], page 149.

[Generic Function](setter object-apply) object arg . . . value
If a form of applying an applicable object appears in the first position of set! form, this
method is called, that is:

(set! (object arg ...) value)

⇒ ((setter object-apply) object arg ... value)

6.18.7 Continuations

[Function]call-with-current-continuation proc
[Function]call/cc proc

[R7RS base] Encapsulates the current continuation to a procedure (“continuation proce-
dure”), and calls proc with it. When proc returns, its value becomes call/cc’s value. When
the continuation procedure is invoked with zero or more arguments somewhere, the further
calculation is abandoned and call/cc returns with the arguments given to the continuation
procedure.

First class continuation is one of the most distinct feature of Scheme, but this margin is too
small to contain explanation. Please consult to the appropriate documents.

There’s a nontrivial interaction between C language runtime and Scheme continuation. Sup-
pose the following scenario:

1. An application’s C runtime calls back a Scheme routine. For example, GUI framework
calls back a draw routine written in Scheme.

2. A continuation is captured in the Scheme routine.

3. The Scheme routine returns to the C runtime.

4. The continuation captured in 2 is invoked.

It is no problem to invoke the continuation, but if the control is about to return to the Scheme
routine to the C runtime (that is, to execute step 3 again), an error is signaled as follows.

*** ERROR: attempt to return from a ghost continuation.

This is because C routines don’t expect the calling function to return more than once. The
C stack frame on which the Scheme callback was originally called is likely to be deallocated
or modified at the time the continuation is invoked.

Chapter 6: Core library 182

If you think of a continuation as a chain of control frames, growing from root towards upward,
you can imagine that, once a control returns to the C world, the chain is cut at the boundary.
You can still execute such rootless continuations, but you have to move the control away from
it before it tries to return to its root that no longer exists. You can call another continuation,
or raise an exception, for example.

Using partial continuations (or delimited continuations) is another way to avoid such com-
plications. See Section 9.23 [Partial continuations], page 389.

[Macro]let/cc var body . . .
This macro expands to : (call/cc (lambda (var) body ...)). The API is taken from PLT
Scheme.

[Function]dynamic-wind before body after
[R7RS base] This is a primitive to manage dynamic environment. Dynamic environment is
a set of states which are kept during execution of a certain expression. For example, the
current output ports are switched during execution of with-output-to-port. They can be
nested dynamically, as opposed to the lexical environment, in which nesting is determined
statically from the program source.

Before, body and after are all procedures with no arguments. In normal situation,
dynamic-wind calls before, then body, then after, then returns whatever value(s) body re-
turned.

The intention is that the before thunk sets up the dynamic environment for execution of
body, and the after thunk restores it to the previous state.

If a control flow goes out from body by invoking a continuation captured outside of the
dynamic scope of dynamic-wind (for example, an error is signaled in body), after is called.

If a control flow goes into body by invoking a continuation captured inside body from outside
of the dynamic scope of dynamic-wind, before is called.

(letrec ((paths ’())

(c #f)

(add (lambda (s) (push! paths s))))

(dynamic-wind

(lambda () (add ’connect))

(lambda ()

(add (call/cc (lambda (c0) (set! c c0) ’talk1))))

(lambda () (add ’disconnect)))

(if (< (length paths) 4)

(c ’talk2)

(reverse paths)))

⇒ (connect talk1 disconnect connect talk2 disconnect)

Note: Since after is guaranteed to be called when an error causes body to abort, it may
appear tempting to use dynamic-wind to use resource clean-up, just like try-catch construct
in Java. It’s not for that. Since the control may return to body, the situation dynamic-wind

handles should be considered more like a context switch.

For resource clean-up, you can use exception handling mechanism such as guard and
unwind-protect (see Section 6.20.3 [Handling exceptions], page 194), which is built on top
of dynamic-wind.

As a rule of thumb, after should do things that can be reverted by before, such as manipulating
error handler stack (instead of actually handling errors).

Chapter 6: Core library 183

6.18.8 Multiple values

[Function]values obj . . .
[R7RS base] Returns obj . . . as multiple values. Caller can capture multiple values by a
built-in syntax receive or let-values (Section 4.6 [Binding constructs], page 50), or the
R5Rs procedure call-with-values described below.

(values 1 2) ⇒ 1 and 2

[Function]call-with-values producer consumer
[R7RS base] Call a procedure producer with no argument. Then applies a procedure con-
sumer on the value(s) producer returned. Returns the value(s) consumer returns.

(call-with-values (lambda () (values 1 2)) cons)

⇒ (1 . 2)

[Macro]values-ref mv-expr k
Returns k-th value of what mv-expr returns. Conceptually, it is the same as the following
code.

(call-with-values (lambda () mv-expr) (lambda r (list-ref r k)))

This macro uses shortcuts for the typical cases like k is zero.

Similar to Common Lisp’s nth-value, but the argument order is flipped to match other
Scheme’s *-ref procedures.

[Macro]values->list mv-expr
Evaluates mv-expr, puts all the results into a list and returns it. It is called multiple-value-

list in Common Lisp.

(values->list (div-and-mod 10 3)) ⇒ (3 1)

(values->list 1) ⇒ (1)

6.18.9 Folding generated values

Sometimes a procedure is used as a generator of a series of values, by yielding one value at a
time. Customary an EOF object is used to mark the end of the series. For example, read-char
is such a procedure that yields a series of characters, terminated by EOF.

Since it is such a handy abstraction, Gauche provides a set of utilities (see Section 9.10
[Generators], page 344) to construct and generators out of various sources, including other
generators.

The generated values needs to be consumed eventually. Here we provide several procedures
to do that. These are useful when combined with input procedures like read, so we have them
built-in instead of putting them in a separate module.

[Function]generator-fold proc seed gen gen2 . . .
[R7RS generator] Works like fold on the generated values by generator procedures gen gen2
. . . (See Section 6.6.5 [Walking over lists], page 121, for the details of fold).

When one generator is given, for each value v generated by gen, proc is called as (proc v r),
where r is the current accumulated result; the initial value of the accumulated result is seed,
and the return value from proc becomes the next accumulated result. When gen returns
EOF, the accumulated result at that time is returned from generator-fold.

When more than one generator is given, proc is called as (proc v1 v2 ... r), where v1, v2
. . . are the values yielded from gen, gen2, . . . , respectively, and r is the current accumulated
result. The iteration terminates when any one of the generators returns EOF.

(with-input-from-string "a b c d e"

Chapter 6: Core library 184

(cut generator-fold cons ’z read))

⇒ (e d c b a . z)

[Function]generator-fold-right proc seed gen gen2 . . .
Works like fold-right on the generated values by generator procedures gen gen2 . . . (see
Section 6.6.5 [Walking over lists], page 121, for the details of fold-right).

This is provided for completeness, but it isn’t a good way to handle generators; in order to
combine values right-associatively, we should read all the values from the generators (until
any one of the generator returns EOF), then start calling proc as

(proc v0_0 v1_0 ... (proc v0_1 v1_1 ... (proc v0_n v1_n ... seed) ...))

where vn m is the m-th value yielded by n-th generator.

(with-input-from-string "a b c d e"

(cut generator-fold-right cons ’z read))

⇒ (a b c d e . z)

As you see, keeping all intermediate values kind of defeats the benefit of generators.

[Function]generator-for-each proc gen gen2 . . .
[R7RS generator] A generator version of for-each. Repeatedly applies proc on the values
yielded by gen, gen2 . . . until any one of the generators yields EOF. The values returned
from proc are discarded.

This is a handy procedure to consume generated values with side effects.

[Function]generator-map proc gen gen2 . . .
A generator version of map. Repeatedly applies proc on the values yielded by gen, gen2 . . .
until any one of the generators yields EOF. The values returned from proc are collected into
a list and returned.

(with-input-from-string "a b c d e"

(cut generator-map symbol->string read))

⇒ ("a" "b" "c" "d" "e")

The same effects can be achieved by combining generator->list and gmap (see Section 9.10.2
[Generator operations], page 348). This procedure is provided for the backward compatibility.

(generator->list (gmap proc gen gen2 ...))

[Function]generator-find pred gen
[R7RS generator] Returns the first item from the generator gen that satisfies the predicate
pred.

The following example returns the first line matching the regexp #/XYZ/ from the file foo.txt.

(with-input-from-file "foo.txt"

(cut generator-find #/XYZ/ read-line))

Note: If you want to pick all the lines matching the regexp, like the grep command, you can
use gfilter and generator->list.

6.19 Lazy evaluation

Gauche has two primitive lazy evaluation mechanisms.

The first one is an explicit mechanism, defined in the Scheme standard: You mark an expres-
sion to be evaluated lazily by delay, and you use force to make the evaluation happen when
needed. Gauche also support another primitive lazy, as defined in srfi-45, for space-efficient
tail-recursive lazy algorithms.

The second one is a lazy sequence, in which evaluation happens implicitly. From a Scheme
program, a lazy sequence just looks as a list—you can take its car and cdr, and you can apply

Chapter 6: Core library 185

map or other list procedures on it. However, internally, its element isn’t calculated until it is
required.

6.19.1 Delay, force and lazy

Scheme has traditionally provided an explicit delayed evaluation mechanism using delay and
force. After R5RS, however, it is found that it didn’t mix well with tail-recursive algorithms:
It required unbound memory, despite that the body of the algorithm could be expressed in
iterative manner. Srfi-45 showed that introducing another primitive syntax lazy addresses the
issue. For the detailed explanation please look at the srfi-45 document. Here we explain how to
use those primitives.

[Special Form]delay expression
[Special Form]lazy expression

[R7RS lazy][SRFI-45] These forms creates a promise that delays the evaluation of expression.
Expression will be evaluated when the promise is passed to force.

If expression itself is expected to yield a promise, you should use lazy. Otherwise, you should
use delay. If you can think in types, the difference may be clearer.

lazy : Promise a -> Promise a

delay : a -> Promise a

Since we don’t have static typing, we can’t enforce this usage. The programmer has to choose
appropriate one from the context. Generally, lazy appears only to surround the entire body
of function that express a lazy algorithm.

NB: In R7RS, lazy is called delay-force, for the operation is conceptually similar to (delay
(force expr)) (note that the type of force is Promise a -> a).

For the real-world example of use of lazy, you may want to check the implementation of
util.stream (see Section 12.69 [Stream library], page 746).

[Function]force promise
[R7RS lazy] If promise is not a promise, it is just returned.

Otherwise, if promise’s value hasn’t been computed, force makes promise’s encapsulated
expression be evaluated, and returns the result.

Once promise’s value is computed, it is memorized in it so that subsequent force on it won’t
cause the computation.

[Function]promise? obj
[R7RS lazy] Returns #t iff obj is a promise object.

6.19.2 Lazy sequences

Introduction

A lazy sequence is a list-like structure whose elements are calculated lazily. Internally we have a
special type of pairs, whose cdr is evaluated on demand. However, in Scheme level, you’ll never
see a distinct “lazy-pair” type. As soon as you try to access the lazy pair, Gauche automatically
force the delayed calculation, and the lazy pair turns into an ordinary pair.

It means you can pass lazy sequences to ordinary list-processing procedures such as car, cdr
or map.

Look at the following example; generator->lseq takes a procedure that generates one value
at a time, and returns a lazy sequence consists of those values.

(with-input-from-file "file"

(^[] (let loop ([cs (generator->lseq read-char)] [i 0])

Chapter 6: Core library 186

(match cs

[() #f]

[(#\c (or #\a #\d) #\r . _) i]

[(c . cs) (loop cs (+ i 1))]))))

It returns the position of the first occurrence of character sequence “car” or “cdr” in the file
file. Characters are read as needed, so once the sequence is found, the rest of the files won’t be
read. If we do it eagerly, we would have to read entire file first no matter how big it is, or to give
up using the mighty match macro and to write a basic state machine that reads one character
one at a time.

Other than implicit forcing, Gauche’s lazy sequences are slightly different than the typical
lazy stream implementations in Scheme in the following ways:

1. When you construct a lazy sequence in an iterative lazy algorithm, only cdr side of the lazy
pair is lazily evaluated; the car side is evaluated immediately. On the other hand, with
stream-cons in util.stream (see Section 12.69 [Stream library], page 746), both car and
cdr sides won’t be evaluated until it is absolutely needed.

2. Gauche’s lazy sequence always evaluates one item ahead. Once you get a lazy pair, its
car part is already calculated, even if you don’t use it. In most cases you don’t need to
care, for calculating one item more is a negligible overhead. However, when you create a
self-referential lazy structure, in which the earlier elements of a sequence is used to calculate
the latter elements of itself, a bit of caution is needed; a valid code for fully lazy circular
structure may not terminate in Gauche’s lazy sequences. We’ll show a concrete example
later. This bit of eagerness is also visible when side effects are involved; for example, lazy
character sequence reading from a port may read one character ahead.

Note: Srfi-127 provides a portable alternative of lazy sequence (see Section 11.26 [Lazy
sequence (srfi)], page 559). It uses dedicated APIs (e.g. lseq-cdr) to operate on lazy sequences
so that portable implementation is possible. In Gauche, we just use our built-in lazy sequence
as srfi-127 lazy sequence; if you want your code to be portable, consider using srfi-127, but be
careful not to mix lazy sequences and ordinary lists; Gauche won’t complain, but other Scheme
implementation may choke on it.

Primitives

[Function]generator->lseq generator
[Function]generator->lseq item . . . generator

Creates a lazy sequence that consists of items produced by generator, which is just a procedure
with zero arguments that yields an item at a time. Returning EOF marks the end of the
sequence (EOF itself isn’t included in the sequence). For example, read-char can work as a
generator. Gauche has a set of convenient utilities to deal with generators (see Section 9.10
[Generators], page 344).

In the second form, the returned lazy sequence is prepended by item Since there’s
no way to distinguish lazy pairs and ordinary pairs, you can write it as (cons* item ...

(generator->lseq generator)), but that’s more verbose.

Internally, Gauche’s lazy sequence is optimized to be built on top of generators, so this
procedure is the most efficient way to build lazy sequences.

Note: Srfi-127 also has generator->lseq, which is exactly the same as this in Gauche.

[Macro]lcons car cdr
Returns a lazy pair consists of car and cdr. The expression car is evaluated at the call of
lcons, but evaluation of cdr is delayed.

You can’t distinguish a lazy pair from an ordinary pair. If you access either its car or cdr,
or even you ask pair? to it, its cdr part is implicitly forced and you get an ordinary pair.

Chapter 6: Core library 187

Unlike cons, cdr should be an expression that yields a (lazy or ordinary) list, including an
empty list. In other words, lazy sequences can always be a null-terminated list when entirely
forced; there are no “improper lazy sequences”. (Since Scheme isn’t statically typed, we can’t
force the cdr expression to be a proper list before actually evaluating it. Currently if cdr
expression yields non-list, we just ignore it and treat as if it yielded an empty list.)

(define z (lcons (begin (print 1) ’a) (begin (print 2) ’())))

⇒ ; prints ’1’, since the car part is evaluated eagerly.

(cdr z) ⇒ () ;; and prints ’2’

;; This also prints ’2’, for accessing car of a lazy pair forces

;; its cdr, even the cdr part isn’t used.

(car (lcons ’a (begin (print 2) ’()))) ⇒ a

;; So as this; asking pair? to a lazy pair causes forcing its cdr.

(pair? (lcons ’a (begin (print 2) ’()))) ⇒ #t

;; To clarify: This doesn’t print ’2’, because the second lazy

;; pair never be accessed, so its cdr isn’t evaluated.

(pair? (lcons ’a (lcons ’b (begin (print 2) ’())))) ⇒ #t

Now, let me show you a case where “one item ahead” evaluation becomes an issue. The
following is an elegant definition of infinite Fibonacci sequence using self-referential lazy
structure (lmap is a lazy map, defined in gauche.lazy module):

(use gauche.lazy) ;; for lmap

(define *fibs* (lcons* 0 1 (lmap + *fibs* (cdr *fibs*)))) ;; BUGGY

Unfortunately, Gauche can’t handle it well.

(car *fibs*)

⇒ 0

(cadr *fibs*)

⇒ *** ERROR: Attempt to recursively force a lazy pair.

When we want to access the second argument (cadr) of *fibs*, we take the car of the second
pair, which is a lazy pair of 1 and (lmap ...). The lazy pair is forced and its cdr part needs
to be calculated. The first thing lmap returns needs to see the first and second element of
fibs, but the second element of *fibs* is what we’re calculating now!

We can workaround this issue by avoiding accessing the immediately preceding value. Fi-
bonacci numbers F(n) = F(n-1) + F(n-2) = 2*F(n-2) + F(n-3), so we can write our sequence
as follows.

(define *fibs*

(lcons* 0 1 1 (lmap (^[a b] (+ a (* b 2))) *fibs* (cdr *fibs*))))

And this works!

(take *fibs* 20)

⇒ (0 1 1 2 3 5 8 13 21 34 55 89 144 233

377 610 987 1597 2584 4181)

Many lazy algorithms are defined in terms of fully-lazy cons at the bottom. When you port
such algorithms to Gauche using lcons, keep this bit of eagerness in mind.

Note also that lcons needs to create a thunk to delay the evaluation. So the algorithm
to construct lazy list using lcons has an overhead of making closure for each item. For
performance-critical part, you want to use generator->lseq whenever possible.

Chapter 6: Core library 188

Utilities

[Macro]lcons* x . . . tail
[Macro]llist* x . . . tail

A lazy version of cons* (see Section 6.6.3 [List constructors], page 117). Both lcons* and
llist* do the same thing; both names are provided for the symmetry to cons*/list*.

The tail argument should be an expression that yields a (possibly lazy) list. It is evalu-
ated lazily. Note that the preceding elements x . . . are evaluated eagerly. The following
equivalences hold.

(lcons* a) ≡ a

(lcons* a b) ≡ (lcons a b)

(lcons* a b ... y z) ≡ (cons* a b ... (lcons y z))

[Function]lrange start :optional end step
Creates a lazy sequence of numbers starting from start, increasing by step (default 1), to
the maximum value that doesn’t exceed end. The default of end is +inf.0, so it creates an
infinite list. (Don’t type just (lrange 0) in REPL, or it won’t terminate!)

If any of start or step is inexact, the resulting sequence has inexact numbers.

(take (lrange -1) 3) ⇒ (-1 0 1)

(lrange 0.0 5 0.5)

⇒ (0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5)

(lrange 1/4 1 1/8)

⇒ (1/4 3/8 1/2 5/8 3/4 7/8)

[Function]liota :optional (count +inf.0) (start 0) (step 1)
A lazy version of iota (see Section 6.6.3 [List constructors], page 117); returns a lazy sequence
of count integers (default: positive infinity), starting from start (default: 0), stepping by step
(default: 1).

Just like iota, the result consists of exact numbers if and only if both start and step are
exact; otherwise the result consists of inexact numbers.

[Function]port->char-lseq :optional port
[Function]port->byte-lseq :optional port
[Function]port->string-lseq :optional port
[Function]port->sexp-lseq :optional port

These are the same as the following expressions, respectively. They are provided for the
convenience, since this pattern appears frequently.

(generator->lseq (cut read-char port))

(generator->lseq (cut read-byte port))

(generator->lseq (cut read-line port))

(generator->lseq (cut read port))

If port is omitted, the current input port is used.

Note that the lazy sequence may buffer some items, so once you make an lseq from a port,
only use the resulting lseq and don’t ever read from port directly.

Note that the lazy sequence terminates when EOF is read from the port, but the port isn’t
closed. The port should be managed in larger dynamic extent where the lazy sequence is
used. You can also convert input data into various lists by the following expressions (see
Section 6.22.7.4 [Input utility functions], page 216). Those procedures read the port eagerly
until EOF and returns the whole data in a list, while lseq versions read the port lazily.

(port->list read-char port)

Chapter 6: Core library 189

(port->list read-byte port)

(port->string-list port)

(port->sexp-list port)

Those procedures make (lazy) lists out of ports. The opposite can be done by open-input-

char-list and open-input-byte-list; See Section 9.37 [Virtual ports], page 461, for the
details.

See also Section 9.13 [Lazy sequence utilities], page 358, for more utility procedures that
creates lazy sequences.

Examples

Let’s consider calculating an infinite sequence of prime numbers. (Note: If you need prime
numbers in your application, you don’t need to write one; just use math.prime. see Section 12.26
[Prime numbers], page 647).

Just pretend we already have some prime numbers calculated in a variable *primes*, and
you need to find a prime number equal to or grater than n (for simplicity, we assume n is an
odd number).

(define (next-prime n)

(let loop ([ps *primes*])

(let1 p (car ps)

(cond [(> (* p p) n) n]

[(zero? (modulo n p)) (next-prime (+ n 2))]

[else (loop (cdr ps))]))))

This procedure loops over the list of prime numbers, and if no prime number p less than
or equal to (sqrt n) divides n, we can say n is prime. (Actual test is done by (> (* p p) n)

instead of (> p (sqrt n)), for the former is faster.) If we find some p divides n, we try a new
value (+ n 2) with next-prime.

Using next-prime, we can make a generator that keeps generating prime numbers. The
following procedure returns a generator that returns primes above last.

(define (gen-primes-above last)

(^[] (set! last (next-prime (+ last 2))) last))

Using generator->lseq, we can turn the generator returned by gen-primes-above into a
lazy list, which can be used as the value of *prime*. The only caveat is that we need to have
some pre-calculated prime numbers:

(define *primes* (generator->lseq 2 3 5 (gen-primes-above 5)))

Be careful not to evaluate *primes* directly on REPL, since it contains an infinite list and
it’ll blow up your REPL. You can look the first 20 prime numbers instead:

(take *primes* 20)

⇒ (2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71)

Or find what the 10000-th prime number is:

(~ *primes* 10000)

⇒ 104743

Or count how many prime numbers there are below 1000000:

(any (^[p i] (and (>= p 1000000) i)) *primes* (lrange 0))

⇒ 78498

Note: If you’re familiar with the lazy functional approach, this example may look strange.
Why do we use side-effecting generators while we can define a sequence of prime numbers in
pure functional way, as follows?

(use gauche.lazy)

Chapter 6: Core library 190

(define (prime? n)

(not (any (^p (zero? (mod n p)))

(ltake-while (^k (<= (* k k) n)) *primes*))))

(define (primes-from k)

(if (prime? k)

(lcons k (primes-from (+ k 2)))

(primes-from (+ k 2))))

(define *primes* (llist* 2 3 5 (primes-from 7)))

(The module gauche.lazy provides ltake-while, which is a lazy version of take-while.
We don’t need lazy version of any, since it immediately stops when the predicate returns a true
value.)

The use of lcons and co-recursion in primes-from is a typical idiom in functional program-
ming. It’s perfectly ok to do so in Gauche; except that the generator version is much faster
(when you take first 5000 primes, generator version ran 17 times faster than co-recursion version
on the author’s machine).

It doesn’t mean you should avoid co-recursive code; if an algorithm can be expressed nicely
in co-recursion, it’s perfectly ok. However, watch out the subtle semantic difference from lazy
functional languages—straightforward porting may or may not work.

6.20 Exceptions

Gauche’s exception system consists of three components; (1) the way to signal an exceptional
case has occurred, (2) the way to specify how to handle such a case, and (3) the standard objects
(conditions) to communicate the code that signals an exceptional case and the code that handles
it.

Those three components are typically used together, so first we explain the typical usage
patterns using examples. Then we describe each feature in detail.

Note for terminology: some languages use the word exception to refer to an object used to
communicate the code that encountered an exceptional situation with a handler that deals with
it. Gauche uses a term condition to refer to such objects, following SRFI-35. Exception is the
situation, and condition is a runtime object that describes it.

6.20.1 Exception handling overview

Catching specific errors

One of the most typical exception handling is to catch a specific error raised by some built-in
or library procedures. A macro guard can be used for such a purpose. The code looks like this:

(guard (exc [(condition-has-type? exc <read-error>)

(format #t "read error!")

’read-error]

[else ’other-error])

(read-from-string "(abc"))

The cadr of guard clause is a form of (variable clause ...). In this example, the variable
is exc, and it has two clauses. Each clause has the form like the one in cond.

The cddr of guard is the body, a list of expressions. This example has only one expression,
(read-from-string "(abc").

guard starts executing its body. read-from-string raises an error of type <read-error>

when it encounters syntactic errors. The form guard intercepts the error, and binds the condition

Chapter 6: Core library 191

object to the variable exc, then checks the clauses following exc in a similar manner to cond—in
this case, the thrown condition is of type <read-error>, so the test of the first clause is satisfied,
and the rest of clause is executed, i.e. "read error!" is printed and a symbol read-error is
returned.

If you’re familiar with other languages, you may recognize the pattern. The cddr of guard
form is like try clause of C++/Java or the cadr of handler-case of Common Lisp; and the cdadr
of guard form is like catch clauses or the cddr of handler-case.

In the test expressions it is common to check the type of thrown condition. The function
condition-has-type? is defined in SRFI-35 but it’s rather lengthy. Gauche’s condition classes
can also work like a predicate, so you can write the above expression like this.

(guard (exc [(<read-error> exc)

(format #t "read error!")

’read-error]

[else ’other-error])

(read-from-string "(abc"))

Note: Generally you can’t use is-a? to test if the thrown condition is of a specific type,
since a condition may be compound. See Section 6.20.4 [Conditions], page 198, about compound
conditions.

If no tests of clauses satisfy and no else clause is given, the exception ‘falls off’ the guard

construct, i.e. it will be handled by the outer level of guard form or top-level. For example,
the following guard form only handles <read-error> and <system-error>; if the body throws
other type of conditions, it must be handled by outer level.

(guard (exc [(<read-error> exc) (handle-read-error)]

[(<system-error> exc) (handle-system-error)])

body ...)

See Section 6.20.3 [Handling exceptions], page 194, for more details on guard and other
lower-level exception handling constructs.

Signaling exceptions from your code

The generic way to signal an exception is to use raise procedure.

(raise condition)

You can pass any object to condition; its interpretation solely depends on the exception
handler. If you know the code raises an integer as a condition, you can catch it by guard as
this:

(guard (exc [(integer? exc) ’raised])

(raise 3))

However, as a convention, it is preferable to use an instance of <condition> or one of its
subclasses. A macro condition can be used to create a condition object. The following examples
show how to create a condition with some slot values and then raise it.

;; create and raise an error condition

(raise (condition

(<error> (message "An error occurred."))))

;; create and raise a system error condition

(raise (condition

(<system-error> (message "A system error occurred.")

(errno EINTR))))

See Section 6.20.4 [Conditions], page 198, for the details of condition macro and what kind
of condition classes are provided.

Chapter 6: Core library 192

The most common type of condition is an error condition, so a convenience procedure error
and errorf are provided. They create an error condition with a message and raise it.

;; ‘error’ concatenates the arguments into a message.

(unless (integer? obj)

(error "Integer expected, but got:" obj))

;; ‘errorf’ uses format to create a message.

(unless (equal? x y)

(errorf "~s and ~s don’t match" x y))

Unlike the exception throwing constructs in some languages, such as throw of C++/Java,
which abandons its continuation, Scheme’s raise may return to its caller. If you don’t want
raise to return, a rule of thumb is always to pass one of error conditions to it; then Gauche guar-
antees raise wont return. See the description of raise in Section 6.20.2 [Signaling exceptions],
page 193, for more details.

Note: R7RS adopted slightly different semantics; it splits raise and raise-continuable,
the former is for noncontinuable exception (if the exception handler returns, it raises another
error), and the latter is for continuable exception. When you’re in R7RS environment, R7RS-
compatible raise will be used instead of this raise.

Defining your own condition

You can also define your own condition classes to pass application-specific information from the
point of raising exception to the handlers.

To fit to Gauche’s framework (SRFI-35), it is desirable that the new condition class inherits
a built-in <condition> class or one of its descendants, and also is an instance of a metaclass
<condition-meta>.

One way of ensuring the above convention as well as increasing portability is to use
define-condition-type macro, defined in SRFI-35.

(define-condition-type <myapp-error> <error>

myapp-error?

(debug-info myapp-error-debug-info)

(reason myapp-error-reason))

This defines a condition type (which is a class in Gauche) <myapp-error>, with a predicate
myapp-error? and slots with accessors. Then you can use the new condition type like the
following code:

(guard (exc

[(myapp-error? exc)

(let ([debug-info (myapp-error-debug-info exc)]

[reason (myapp-error-reason exc)])

... handle myapp-error ...)])

...

...

(if (something-went-wrong)

(raise (condition

(<myapp-error> (debug-info "during processing xxx")

(reason "something went wrong")))))

...

...

)

If you don’t mind to lose srfi compatibility, you can use Gauche’s extended error and errorf

procedures to write more concise code to raise a condition of subtype of <error>:

Chapter 6: Core library 193

(if (something-went-wrong)

(error <myapp-error>

:debug-info "during processing xxx"

:reason "something went wrong"))

See the description of define-condition-type macro for how the condition type is imple-
mented in Gauche’s object system.

6.20.2 Signaling exceptions

Signaling errors

The most common case of exceptions is an error. Two convenience functions to signal an error
condition in simple cases are provided. To signal a compound condition, you can use raise as
explained below.

[Function]error string arg . . .
[Function]error condition-type keyword-arg . . . string arg . . .

[R7RS+][SRFI-23+] Signals an error. The first form creates an <error> condition, with a
message consists of string and arg . . . , and raises it. It is compatible to R7RS and SRFI-23’s
error behavior.

gosh> (define (check-integer x)

(unless (integer? x)

(error "Integer required, but got:" x)))

check-integer

gosh> (check-integer "a")

*** ERROR: Integer required, but got: "a"

Stack Trace:

The second form can be used to raise an error other than the <error> condition. condition-
type must be a condition type (see Section 6.20.4 [Conditions], page 198, for more explanation
of condition types). It may be followed by keyword-value list to initialize the condition slots,
and then optionally followed by a string and other objects that becomes an error message.

(define-condition-type <my-error> <error> #f

(reason)

(priority))

...

(unless (memq operation *supported-operations*)

(error <my-error>

:reason ’not-supported :priority ’urgent

"Operation not supported:" operation))

...

[Function]errorf fmt-string arg . . .
[Function]errorf condition-type keyword-arg . . . fmt-string arg . . .

Similar to error, but the error message is formatted by format, i.e. the first form is equivalent
to:

(define (errorf fmt . args)

(error (apply format #f fmt args)))

The second form can be used to raise an error other than an <error> condition. Meaning of
condition-type and keyword-args are the same as error.

Chapter 6: Core library 194

Signaling generic conditions

[Function]raise condition
[SRFI-18][R7RS base] This is the base mechanism of signaling exceptions.

The procedure invokes the current exception handler. The argument condition represents the
nature of the exception, and passed to the exception handler. Gauche’s built-in and library
functions always use an instance of <condition> or one of its subclasses as condition, but you
can pass any Scheme object to raise. The interpretation of condition is up to the exception
handler.

Note: Unlike some of the mainstream languages in which "throwing" an exception never
returns, you can set up an exception handler in the way that raise may return. The details
are explained in Section 6.20.3 [Handling exceptions], page 194.

If you don’t want raise to return, the best way is to pass a condition which is an instance
of <serious-condition> or one of its subclasses. Gauche’s internal mechanism guarantees
raising such an exception won’t return. See Section 6.20.4 [Conditions], page 198, for the
hierarchy of built-in conditions.

R7RS adopted slightly different semantics regarding returning from raise; in R7RS, raise
never returns—if the exception handler returns, another exception is raised. R7RS has
raise-continuable to explicitly allow returning from the exception handler. For portable
programs, always pass <serious-condition> or its subclasses to raise.

6.20.3 Handling exceptions

High-level exception handling mechanism

[Macro]guard (var clause . . .) body . . .
[R7RS base] This is the high-level form to handle errors in Gauche.

var is a symbol, and clauses are the same form as cond’s clauses, i.e. each clause can be
either one of the following forms:

1. (test expr ...)

2. (test => proc)

The last clause may be (else expr ...).

This form evaluates body . . . and returns the value(s) of the last body expression in normal
case. If an exception is raised during the evaluation of body expressions, the raised exception
is bound to a variable var, then evaluates test expression of each clause. If one of test
expressions returns true value, then the corresponding exprs are evaluated if the clause is
the first form above, or an proc is evaluated and the result of test is passed to the procedure
proc if the clause is the second form.

When the test(s) and expr(s) in the clauses are evaluated, the exception handler that is in
effect of the caller of guard are installed; that is, if an exception is raised again within clauses,
it is handled by the outer exception handler or guard form.

If no test returns true value and the last clause is else clause, then the associated exprs
are evaluated. If no test returns true value and there’s no else clause, the raised exception
is re-raised, to be handled by the outer exception handler.

When the exception is handled by one of clauses, guard returns the value(s) of the last expr
in the handling clause.

The clauses are evaluated in the same dynamic environment as the guard form, i.e. any
dynamic-winds inside body are unwound before evaluation of the clauses. It is different from

Chapter 6: Core library 195

the lower level forms with-error-handler and with-exception-handler, whose handler is
evaluated before the dynamic environment are unwound.

(let ([z ’()])

(guard (e [else (push! z ’caught)])

(dynamic-wind (lambda () (push! z ’pre))

(lambda () (error "foo"))

(lambda () (push! z ’post))))

(reverse z))

⇒ (pre post caught)

(guard (e [else (print ’OUTER) #f])

(with-output-to-string

(lambda ()

(print ’INNER)

(error "foo"))))

⇒ prints OUTER to the current output port of guard,

not to the string port.

[Macro]unwind-protect expr cleanup . . .
Executes expr, then executes cleanups, and returns the result(s) of expr. If an uncontinuable
exception is raised within expr, cleanups are executed before the exception escapes from the
unwind-protect form. For example, the following code calls start-motor, drill-a-hole,
and stop-motor in order if everything goes ok, and if anything goes wrong in start-motor

or drill-a-hole, stop-motor is still called before the exception escapes unwind-protect.

(unwind-protect

(begin (start-motor)

(drill-a-hole))

(stop-motor))

The cleanup forms are evaluated in the same dynamic environment as unwind-protect. If
an exception is thrown within cleanup, it will be handled outside of the unwind-protect

form.

Although this form looks similar to dynamic-wind, they work at different layers and should
not be confused. dynamic-wind is the bottom-level building block and used to manage
current exception handlers, current i/o ports, parameters, etc. dynamic-wind’s before and
after thunks are called whenever any of those control flow transition occurs. On the other
hand, unwind-protect only cares about the Gauche’s exception system. unwind-protect’s
cleanup is called only when expr exits normally or throws Gauche’s exception. In the above
example, if control escapes from drill-a-hole by calling a continuation captured outside
of unwind-protect, cleanup is not called; because the control may return to drill-a-hole

again. It can happen if user-level thread system is implemented by call/cc, for example.

You can go back to the body expr from outside of unwind-protect as long as cleanup
hasn’t been executed. Once cleanup is executed (more precisely, once execution of cleanup is
started), returning back to the body is prohibited—attempting to do so will raise an error.
In the above example, once you stop a motor, you can’t restart drill-a-hole. Reasonable,
right?

The following example shows what happens if you try to reenter the body after cleanup is
executed:

gosh> (define k #f)

k

gosh> (unwind-protect

(begin (let/cc c (set! k c))

Chapter 6: Core library 196

(print "body"))

(print "cleanup"))

body

cleanup

#<undef>

gosh> (k 0)

*** ERROR: Attempt to reenter obsoleted dynamic environment

Stack Trace:

0 (error "Attempt to reenter obsoleted dynamic environment")

[unknown location]

1 (eval expr env)

at "../lib/gauche/interactive.scm":282

The name of this form is taken from Common Lisp. Some Scheme systems have similar
macros in different names, such as try-finally.

[Function]with-error-handler handler thunk
Makes handler the active error handler and executes thunk. If thunk returns normally,
the result(s) will be returned. If an error is signaled during execution of thunk, handler is
called with one argument, an exception object representing the error, with the continuation
of with-error-handler. That is, with-error-handler returns whatever value(s) handler
returns.

If handler signals an error, it will be handled by the handler installed when with-error-

handler called.

The dynamic environment where handler is executed is the same as the error occurs. If
dynamic-wind is used in thunk, its after method is called after handler has returned, and
before with-error-handler returns.

Note: Using this procedure directly is no longer recommended, since guard is more safe and
portable. We’ll keep this for a while for the backward compatibility, but we recommend to
rewrite code to use guard instead of this. The common idiom of "cleanup on error" code:

(with-error-handler (lambda (e) (cleanup) (raise e))

(lambda () body ...))

should be written like this:

(guard (e [else (cleanup) (raise e)])

body ...)

Behavior of unhandled exception

If an exception is raised where no program-defined exception handler is installed, the following
action is taken.

If an unhandled exception occurs within a thread other than the primordial one, it termi-
nates the thread, and the thrown condition is wrapped by <uncaught-exception> condition
and stored in the thread object. If other thread calls thread-join! to retrieve result, the
the <uncaught-exception> is thrown in that thread. Note that no messages are displayed
when the original uncaught exception is thrown. See Section 9.32.1 [Thread programming
tips], page 429, for the details.

1. Otherwise, if the program is running interactively (in repl), the information of the thrown
exception and stack trace are displayed, and the program returns to the toplevel prompt.

2. If the program is running non-interactively, the information of the thrown exception and
stack trace are displayed, then the program exits with an exit status EX_SOFTWARE (70).

Chapter 6: Core library 197

The default error message and stack trace in the above case 2 and case 3 is printed by
report-error procedure. You can use it in your error handler if you need the same information.

[Function]report-error exn :optional sink
Prints type and message of a thrown condition object exn, then print the current stack trace.
This is the procedure the system calls when you see an error reported on REPL.

Since you can raise any object, exn can be any object; it’s not needed to be an instance of
<condition>. A suitable message is chosen by report-error.

You can specify where the output goes by the optional sink argument: If it is an output port,
the output goes there; you can also pass #t for the current output port and #f for the output
string port, just like format. That is, when you pass #f, the message goes to a temporary
output string port, and gathered string is returned. For all the other cases, an undefined
value is returned. If sink is omitted or any other object listed above, the current error port
is used.

Note: As of 0.9.5, this procedure prints stack trace of the context where report-error is
called, rather than the context where exn is thrown. It doesn’t matter much as far as you
call report-error directly inside the error handler, but in general what you want to print is
the latter, and we have a plan to attach stack trace info to <condition> object in future.

Low-level exception handling mechanism

This layer provides SRFI-18 compatible simple exception mechanism. You can override the
behavior of higher-level constructs such as with-error-handler by using with-exception-

handler.

Note that it is a double-edged sword. You’ll get a freedom to construct your own exception
handling semantics, but the Gauche system won’t save if something goes wrong. Use these
primitives when you want to customize the system’s higher-level semantics or you are porting
from other SRFI-18 code.

[Function]current-exception-handler
[SRFI-18] Returns the current exception handler.

[Function]with-exception-handler handler thunk
[SRFI-18] A procedure handler must take one argument. This procedure sets handler to
the current exception handler and calls thunk. (Note that this slightly differs from R7RS
with-exception-handler; we’ll explain it below.)

When an exception is raised by raise or error, handler is called with the thrown condition
in the exactly same dynamic environment of raise or error. It means the exception handler
is also the same, so calling raise in handler reinvokes handler again. It also means that when
handler returns, it returns from raise.

The behavior is specified in SRFI-18, intending this procedure to be the most primitive
building block of exception handling mechanism. If you need to switch handlers, you can do it
by yourself.

If you need the typical semantics where raising exception in the exception handler is handled
by outer handler, you should use guard. Use this procedure only when you want to play with
the most primitive layer of exception handling.

R7RS has a procedure with the same name, but has one difference—it changes the active
exception handler to the “outer” handler before calling handler. See Section 10.2.2 [R7RS base
library], page 473, for the description of R7RS’s with-exception-handler.

If an exception is raised by error, or the thrown condition inherits <serious-condition>,
it is prohibited to return from handler. If handler ever returns in such cases, another error is

Chapter 6: Core library 198

signaled, with replacing the current exception handler to the outer handler. So the caller of
error, or the caller of raise with <serious-condition>, can assume it never returns.

The behavior of those procedures can be explained in the following conceptual Scheme code.

;; Conceptual implementation of low-level exception mechanism.
;; Suppose %xh is a list of exception handlers

(define (current-exception-handler) (car %xh))

(define (raise exn)

(receive r ((car %xh) exn)

(when (uncontinuable-exception? exn)

(set! %xh (cdr %xh))

(raise (make-error "returned from uncontinuable exception")))

(apply values r)))

(define (with-exception-handler handler thunk)

(let ((prev %xh))

(dynamic-wind

(lambda () (set! %xh (cons handler %xh)))

thunk

(lambda () (set! %xh prev)))))

6.20.4 Conditions

Built-in Condition classes

Gauche currently has the following hierarchy of built-in condition classes. It approximately
reflects SRFI-35 and SRFI-36 condition hierarchy, although they have Gauche-style class names.
If there’s a corresponding SRFI condition type, the class has the SRFI name as well.

<condition>

+- <compound-condition>

+- <serious-condition>

| +- <serious-compound-condition> ; also inherits <compound-condition>

+- <message-condition>

+- <error> ; also inherits <serious-condition>

+- <system-error>

+- <unhandled-signal-error>

+- <read-error>

+- <io-error>

+- <port-error>

+- <io-read-error>

+- <io-write-error>

+- <io-closed-error>

+- <io-unit-error>

Note that some conditions may occur simultaneously; for example, error during reading from
a file because of device failure may consist both <system-error> and <io-read-error>. In
such cases, a compound condition is raised. So you can’t just use, for instance, (is-a? obj

<io-read-error>) to check if <io-read-error> is thrown. See the "Condition API" section
below.

[Metaclass]<condition-meta>
Every condition class is an instance of this class. This class defines object-apply so that
you can use a condition class as a predicate, e.g.:

Chapter 6: Core library 199

(<error> obj) ≡ (condition-has-type? obj <error>)

[Class]<condition>
[Condition Type]&condition

[SRFI-35] The root class of the condition hierarchy.

[Class]<compound-condition>
Represents a compound condition. A compound condition can be created from one or more
conditions by make-compound-condition. Don’t use this class directly.

A compound condition returns #t for condition-has-type? if any of the original conditions
has the given type.

[Class]<serious-condition>
[Condition Type]&serious

[SRFI-35] Conditions of this class are for the situations that are too serious to ignore or
continue. Particularly, you can safely assume that if you raise this type of condition, it
never returns.

[Class]<serious-compound-condition>
This is an internal class to represent a compound condition with any of its component
condition is serious. Inherits both <compound-condition> and <serious-condition>.
make-compound-condition uses this class if the passed conditions includes a serious one.
Don’t use this class directly.

[Class]<message-condition>
[Condition Type]&message

[SRFI-35] This class represents a condition with a message. It has one slot.

[Instance Variable of <message-condition>]message
A message.

[Class]<error>
[Condition Type]&error

[SRFI-35] Indicates an error. Inherits <serious-condition> and <message-condition>,
thus has message slot.

Note: SRFI-35 &error condition only inherits &serious and not &message, so you have to
use compound condition to attach a message to the error condition. Gauche uses multiple
inheritance here, largely because of backward compatibility. To write a portable code, an
error condition should be used with a message condition, like this:

(condition

(&message (message "Error message"))

(&error))

[Class]<system-error>
A subclass of <error>. When a system call returns an error, this type of exception is
thrown. The message slot usually contains the description of the error (like the one from
strerror(3)). Besides that, this class has one more instance slot:

[Instance Variable of <system-error>]errno
Contains an integer value of system’s error number.

Error numbers may differ among systems. Gauche defines constants for typical Unix error
values (e.g. EACCES, EBADF, etc), so it is desirable to use them instead of literal numbers.
See the description of sys-strerror in Section 6.25.8 [System inquiry], page 251, for
available constants.

Chapter 6: Core library 200

This class doesn’t have corresponding SRFI condition type, but important to obtain OS’s
raw error code. In some cases, this type of condition is compounded with other condition
types, like <io-read-error>.

[Class]<unhandled-signal-error>
A subclass of <error>. The default handler of most of signals raises this condition. See
Section 6.25.7.3 [Handling signals], page 247, for the details.

[Instance Variable of <unhandled-signal-error>]signal
An integer indicating the received signal number. There are constants defined for typical
signal numbers; see Section 6.25.7.1 [Signals and signal sets], page 246.

[Class]<read-error>
[Condition Type]&read-error

[SRFI-36] A subclass of <error>. When the reader detects a lexical or syntactic error during
reading an S-expression, this type of condition is raised.

[Instance Variable of <read-error>]port
A port from which the reader is reading. (NB: SRFI-36’s &read-error doesn’t have this
slot. Portable program shouldn’t rely on this slot).

[Instance Variable of <read-error>]line
A line count (1-base) of the input where the reader raised this error. It may be -1 if the
reader is reading from a port that doesn’t keep track of line count.

[Instance Variable of <read-error>]column
[Instance Variable of <read-error>]position
[Instance Variable of <read-error>]span

These slots are defined in SRFI-36’s &read-error. For the time being, these slots always
hold #f.

[Class]<io-error>
[Condition Type]&io-error

[SRFI-36] A base class of I/O errors. Inherits <error>.

[Class]<port-error>
[Condition Type]&io-port-error

[SRFI-36] An I/O error related to a port. Inherits <io-error>.

[Instance Variable of <port-error>]port
Holds the port where the error occurred.

[Class]<io-read-error>
[Condition Type]&io-read-error

[SRFI-36] An I/O error during reading from a port. Inherits <port-error>.

[Class]<io-write-error>
[Condition Type]&io-write-error

[SRFI-36] An I/O error during writing to a port. Inherits <port-error>.

[Class]<io-closed-error>
[Condition Type]&io-closed-error

[SRFI-36] An I/O error when read/write is attempted on a closed port. Inherits
<port-error>.

[Class]<io-unit-error>
An I/O error when the read/write is requested with a unit that is not supported by the port
(e.g. a binary I/O is requested on a character-only port). Inherits <port-error>.

Chapter 6: Core library 201

Condition API

[Macro]define-condition-type name supertype predicate ↓eld-spec . . .
[SRFI-35+] Defines a new condition type. In Gauche, a condition type is a class, whose
metaclass is <condition-meta>.

Name becomes the name of the new type, and also the variable of that name is bound to
the created condition type. Supertype is the name of the supertype (direct superclass) of
this condition type. A condition type must inherit from <condition> or its descendants.
(Multiple inheritance can’t be specified by this form, and generally should be avoided in
condition type hierarchy. Instead, you can use compound conditions, which don’t introduce
multiple inheritance.)

A variable predicate is bound to a predicate procedure for this condition type.

Each field-spec is a form of (field-name accessor-name), and the condition will have
fields named by ↓eld-name, and a variable accessor-name will be bound to a procedure that
accesses the field. In Gauche, each field becomes a slot of the created class.

Gauche extends srfi-35 to allow predicate and/or accessor-name to be #f, or accessor-name
to be omitted, if you don’t need to them to be defined.

When define-condition-type is expanded into a class definition, each slot gets a
:init-keyword slot option with the keyword whose name is the same as the slot name.

[Function]condition-type? obj
[SRFI-35] Returns #t iff obj is a condition type. In Gauche, it means (is-a? obj

<condition-meta>).

[Function]make-condition-type name parent ↓eld-names
[SRFI-35] A procedural version to create a new condition type.

[Function]make-condition type ↓eld-name value . . .
[SRFI-35] Creates a new condition of condition-type type, and initializes its fields as specified
by field-name and value pairs Returns #t iff obj is a condition. In Gauche, it means (is-a?
obj <condition>).

[Function]condition-has-type? obj type
[SRFI-35] Returns #t iff obj belongs to a condition type type. Because of compound condi-
tions, this is not equivalent to is-a?.

[Function]condition-ref condition ↓eld-name
[SRFI-35] Retrieves the value of field ↓eld-name of condition. If condition is a compound
condition, you can access to the field of its original conditions; if more than one original
condition have ↓eld-name, the first one passed to make-compound-condition has precedence.

You can use slot-ref and/or ref to access to the field of conditions; compound conditions
define a slot-missing method so that slot-ref behaves as if the compound conditions have
all the slots of the original conditions. Using condition-ref increases portability, though.

[Function]make-compound-condition condition0 condition1 . . .
[SRFI-35] Returns a compound condition that has all condition0 condition1 The re-
turned condition’s fields are the union of all the fields of given conditions; if any conditions
have the same name of fields, the first one takes precedence. The returned condition also has
condition-type of all the types of given conditions. (This is not a multiple inheritance. See
<compound-condition> above.)

[Function]extract-condition condition condition-type
[SRFI-35] Condition must be a condition and have type condition-type. This procedure
returns a condition of condition-type, with field values extracted from condition.

Chapter 6: Core library 202

[Macro]condition type-↓eld-binding . . .
[SRFI-35] A convenience macro to create a (possibly compound) condition. Type-↓eld-
binding is a form of (condition-type (field-name value-expr) ...).

(condition

(type0 (field00 value00) ...)

(type1 (field10 value10) ...)

...)

≡
(make-compound-condition

(make-condition type0 ’field00 value00 ...)

(make-condition type1 ’field10 value10 ...)

...)

6.21 Eval and repl

[Function]eval expr env
[R7RS eval] Evaluate expr under the environment env. In Gauche, env is just a <module>

object.

R5RS and R7RS provides a portable way to obtain environment specifiers. R5RS way is
described below. R7RS way is described in Section 10.2.7 [R7RS eval], page 477.

[Function]null-environment version
[Function]scheme-report-environment version
[Function]interaction-environment

[R5RS] Returns an environment specifier which can be used as the second argument of eval.
Right now an environment specifier is just a module. (null-environment 5) returns a null

module, which contains just the syntactic bindings specified in R5RS, (scheme-report-
environment 5) returns a scheme module, which contains syntactic and procedure bindings
in R5RS, and (interaction-environment) returns a user module that contains all the
Gauche built-ins plus whatever the user defined. It is possible that the Gauche adopts a first-
class environment object in future, so do not rely on the fact that the environment specifier
is just a module.

An error is signaled if a value other than 5 is passed as version argument.

[Function]read-eval-print-loop :optional reader evaluator printer prompter
This exports Gosh’s default read-eval-print loop to applications. Each argument can be #f,
which indicates it to use Gauche’s default procedure(s), or a procedure that satisfies the
following conditions.

reader A procedure that takes no arguments. It is supposed to read an expression and
returns it.

evaluator A procedure that takes two arguments, an expression and an environment speci-
fier. It is supposed to evaluate the expression and returns zero or more value(s).

printer A procedure that takes zero or more arguments. It is supposed to print out these
values. The result of this procedure is discarded.

prompter A procedure that takes no arguments. It is supposed to print out the prompt.
The result of this procedure is discarded.

Given those procedures, read-eval-print-loop runs as follows:

1. Prints the prompt by calling prompter.

Chapter 6: Core library 203

2. Reads an expression by calling reader. If it returns EOF, exits the loop and returns from
read-eval-print-loop.

3. Evaluates an expression by calling evaluator

4. Prints the result by calling printer, then repeats from 1.

When an error is signaled from one of those procedures, it is captured and reported by the
default escape handler, then the loop restarts from 1.

It is OK to capture a continuation within those procedures and re-invoke them afterwards.

6.22 Input and Output

6.22.1 Ports

[Builtin Class]<port>
A port class. A port is Scheme’s way of abstraction of I/O channel. Gauche extends a port
in number of ways so that it can be used in wide range of applications.

Textual and binary I/O
R7RS defines textual and binary ports. In Gauche, most ports can mix both
text I/O and binary I/O. It is cleaner to think the two is distinct, for they are
sources/sinks of different types of objects and you don’t need to mix textual and
binary I/O.

In practice, however, a port is often a tap to an untyped pool of bytes and you
may want to decide interpret it later. One example is the standard I/O; in Unix-
like environment, it’s up to the program to use pre-opened ports for textual or
binary I/O. R7RS defines the initial ports for current-input-port etc. are
textual ports; in Gauche, you can use either way.

Conversion
Some ports can be used to convert a data stream from one format to an-
other; one of such applications is character code conversion ports, provided by
gauche.charconv module (see Section 9.4 [Character code conversion], page 318,
for details).

Extra features
There are also a ports with special functionality. A coding-aware port (see
Section 6.22.6 [Coding-aware ports], page 212) recognizes a special "magic com-
ment" in the file to know which character encoding the file is written. Virtual
ports (see Section 9.37 [Virtual ports], page 461) allows you to program the
behavior of the port in Scheme.

6.22.2 Port and threads

When Gauche is compiled with thread support, the builtin port operations locks the port, so
that port access from multiple threads will be serialized. (It is required by SRFI-18, BTW).
Here, "builtin port operations" are the port access functions that takes a port and does some
I/O or query on it, such as read/write, read-char/write-char, port->string, etc. Note that
call-with-* and with-* procedures do not lock the port during calling the given procedures,
since the procedure may pass the reference of the port to the other thread, and Gauche wouldn’t
know if that’s the case.

This means you don’t need to be too paranoia to worry about ports under multithreaded
environment. However, keep it in mind that this locking mechanism is meant to be a safety net
from breaking the port’s internal state, and not to be a general mutex mechanism. It assumes
port accesses rarely conflict, and uses spin lock to reduce the overhead of majority cases. If you

Chapter 6: Core library 204

know there will be more than one thread accessing the same port, you should use explicit mutex
to avoid conflicts.

[Function]with-port-locking port thunk
Executes thunk, while making the calling thread hold the exclusive lock of port during the
dynamic extent of thunk.

Calls of the builtin port functions during the lock is held would bypass mutex operations and
yield better performance.

Note that the lock is held during the dynamic extent of thunk; so, if thunk invokes a con-
tinuation captured outside of with-port-locking, the lock is released. If the continuation
captured within thunk is invoked afterwards, the lock is re-acquired.

With-port-locking may be nested. The lock is valid during the outermost call of
with-port-locking.

Note that this procedure uses the port’s built-in lock mechanism which uses busy wait when
port access conflicts. It should be used only for avoiding fine-grain lock overhead; use explicit
mutex if you know there will be conflicts.

6.22.3 Common port operations

[Function]port? obj
[Function]input-port? obj
[Function]output-port? obj

[R7RS base] Returns true if obj is a port, an input port and an output port, respectively.
Port? is not listed in the R5RS standard procedures, but mentioned in the "Disjointness of
Types" section.

[Function]port-closed? port
Returns true if obj is a port and it is already closed. A closed port can’t be reopened.

[Parameter]current-input-port
[Parameter]current-output-port
[Parameter]current-error-port

[R7RS base] Returns the current input, output and error output port, respectively.

R7RS defines that the initial values of these ports are textual ports. In Gauche, initial ports
can handle both textual and binary I/O.

Values of the current ports can be temporarily changed by parameterize (see Section 9.21
[Parameters], page 383), though you might want the convenience procedures such as
with-output-to-string or with-input-from-file in typical cases.

(use gauche.parameter)

(let1 os (open-output-string)

(parameterize ((current-output-port os))

(display "foo"))

(get-output-string os))

⇒ "foo"

[Parameter]standard-input-port
[Parameter]standard-output-port
[Parameter]standard-error-port

Returns standard i/o ports at the time the program started. These ports are the default values
of current-input-port, current-output-port and current-error-port, respectively.

You can also change value of these procedures by parameterize, but note that (1)
current-*-ports are initialized before the program execution, so changing values of

Chapter 6: Core library 205

standard-*-port won’t affect them, and (2) changing values these procedures only affect
Scheme-world, and does not change system-level stdio file descriptors low-level libraries re-
ferring.

[Function]with-input-from-port port thunk
[Function]with-output-to-port port thunk
[Function]with-error-to-port port thunk

Calls thunk. During evaluation of thunk, the current input port, current output port and
current error port are set to port, respectively. Note that port won’t be closed after thunk is
executed.

[Function]with-ports iport oport eport thunk
Does the above three functions at once. Calls thunk while the current input, output, and
error ports are set to iport, oport, and eport, respectively. You may pass #f to any port
argument(s) if you don’t need to alter the port(s).

Note that port won’t be closed after thunk is executed. (Unfortunately, recent Scheme
standards added a similar named procedure, call-with-port, which does close the port.
See below.)

[Function]close-port port
[Function]close-input-port port
[Function]close-output-port port

[R7RS base] Closes the port. Close-port works both input and output ports, while
close-input-port and close-output-port work only for the respective ports and throws
an error if another type of port is passed.

Theoretically, only close-port would suffice; having those three is merely for historical
reason. R5RS has close-input-port and close-output-port; R6RS and R7RS support
all three.

[Function]call-with-port port proc
[R7RS base] Calls proc with one argument, port. After proc returns, or it throws an un-
captured error, port is closed. Value(s) returned from proc will be the return value(s) of
call-with-port.

[Function]port-type port
Returns the type of port in one of the symbols file, string or proc.

[Function]port-name port
Returns the name of port. If the port is associated to a file, it is the name of the file.
Otherwise, it is some description of the port.

[Function]port-buffering port
[Function](setter port-buffering) port bu↑ering-mode

If port is type of file port (i.e. (port-type port) returns file), these procedures gets and
sets the port’s buffering mode. For input ports, the port buffering mode may be either one
of :full, :modest or :none. For output ports, port-buffering, it may be one of :full,
:line or :none. See Section 6.22.4 [File ports], page 207, for explanation of those modes.

If port-buffering is applied to ports other than file ports, it returns #f. If the setter of
port-buffering is applied to ports other than file ports, it signals an error.

[Function]port-current-line port
Returns the current line count of port. This information is only available on file-based port,
and as long as you’re doing sequential character I/O on it. Otherwise, this returns -1.

Chapter 6: Core library 206

[Function]port-file-number port
Returns an integer file descriptor, if the port is associated to the system file I/O. Returns #f
otherwise.

[Function]port-seek port o↑set :optional whence
If the given port allows random access, this procedure sets the read/write pointer of the port
according to the given o↑set and whence, then returns the updated offset (number of bytes
from the beginning of the data). If port is not random-accessible, #f is returned. In the
current version, file ports and input string ports are fully random-accessible. You can only
query the current byte offset of output string ports.

Note that port position is represented by byte count, not character count.

It is allowed to seek after the data if port is an output file port. See POSIX lseek(2) document
for details of the behavior. For input file port and input string port, you can’t seek after the
data.

The whence argument must be a small integer that represents from where o↑set should be
counted. The following constant values are defined.

SEEK_SET O↑set represents the byte count from the beginning of the data. This is the
default behavior when whence is omitted.

SEEK_CUR O↑set represents the byte count relative to the current read/write pointer. If you
pass 0 to o↑set, you can get the current port position without changing it.

SEEK_END O↑set represents the byte count relative to the end of the data.

[Function]port-tell port
Returns the current read/write pointer of port in byte count, if port is random-accessible.
Returns #f otherwise. This is equivalent to the following call:

(port-seek port 0 SEEK_CUR)

Note on the names: Port-seek is called seek, file-position or input-port-position/
output-port-position on some implementations. Port-tell is called tell, ftell or
set-file-position!. Some implementations have port-position for different functionality.
CommonLisp has file-position, but it is not suitable for us since port need not be a file
port. Seek and tell reflects POSIX name, and with Gauche naming convention we could use
sys-seek and sys-tell; however, port deals with higher level of abstraction than system calls,
so I dropped those names, and adopted new names.

[Function]copy-port src dst :key (unit 0) (size #f)
Copies data from an input port src to an output port dst, until eof is read from src.

The keyword argument unit may be zero, a positive exact integer, a symbol byte or a symbol
char, to specify the unit of copying. If it is an integer, a buffer of the size (in case of zero, a
system default size) is used to copy, using block I/O. Generally it is the fastest if you copy
between normal files. If unit is a symbol byte, the copying is done byte by byte, using C-
version of read-byte and write-byte. If unit is a symbol char, the copying is done character
by character, using C-version of read-char and write-char.

If nonnegative integer is given to the keyword argument size, it specifies the maximum amount
of data to be copied. If unit is a symbol char, size specifies the number of characters.
Otherwise, size specifies the number of bytes.

Returns number of characters copied when unit is a symbol char. Otherwise, returns number
of bytes copied.

Chapter 6: Core library 207

6.22.4 File ports

[Function]open-input-file ↓lename :key if-does-not-exist bu↑ering element-type
encoding conversion-bu↑er-size

[Function]open-output-file ↓lename :key if-does-not-exist if-exists bu↑ering
element-type encoding conversion-bu↑er-size

[R7RS+] Opens a file ↓lename for input or output, and returns an input or output port
associated with it, respectively.

The keyword arguments specify precise behavior.

:if-exists

This keyword argument can be specified only for open-output-file, and speci-
fies the action when the ↓lename already exists. One of the following value can
be given.

:supersede

The existing file is truncated. This is the default behavior.

:append The output data will be appended to the existing file.

:overwrite

The output data will overwrite the existing content. If the output
data is shorter than the existing file, the rest of existing file remains.

:error An error is signaled.

#f No action is taken, and the function returns #f.

:if-does-not-exist

This keyword argument specifies the action when ↓lename does not exist.

:error An error is signaled. This is the default behavior of open-input-
file.

:create A file is created. This is the default behavior of open-output-file.
The check of file existence and creation is done atomically; you can
exclusively create the file by specifying :error or #f to if-exists,
along this option. You can’t specify this value for open-input-file.

#f No action is taken, and the function returns #f.

:buffering

This argument specifies the buffering mode. The following values are allowed.
The port’s buffering mode can be get/set by port-buffering. (see Section 6.22.3
[Common port operations], page 204).

:full Buffer the data as much as possible. This is the default mode.

:none No buffering is done. Every time the data is written (to an output
port) or read (from an input port), the underlying system call is used.
Process’s standard error port is opened in this mode by default.

:line This is valid only for output ports. The written data is buffered, but
the buffer is flushed whenever a newline character is written. This is
suitable for interactive output port. Process’s standard output port
is opened in this mode by default. (Note that this differs from the
line buffering mode of C stdio, which flushes the buffer as well when
input is requested from the same file descriptor.)

Chapter 6: Core library 208

:modest This is valid only for input ports. This is almost the same as the
mode :full, except that read-uvector may return less data than
requested if the requested amount of data is not immediately avail-
able. (In the :full mode, read-uvector waits the entire data to be
read). This is suitable for the port connected to a pipe or network.

:element-type

This argument specifies the type of the file.

:character

The file is opened in "character" (or "text") mode.

:binary The file is opened in "binary" mode.

In the current version, this argument is ignored and all files are opened in binary
mode. It doesn’t make difference in the Unix platforms.

:encoding

This argument specifies character encoding of the file. The argument is a string
or a symbol that names a character encoding scheme (CES).

For open-input-file, it can be a wildcard CES (e.g. *jp) to guess the file’s
encoding heuristically (see Section 9.4.2 [Autodetecting the encoding scheme],
page 320), or #t, in which case we assume the input file itself has magic encoding
comment and use open-coding-aware-port (see Section 6.22.6 [Coding-aware
ports], page 212).

If this argument is given, Gauche automatically loads gauche.charconv mod-
ule and converts the input/output characters as you read to or write from the
port. See Section 9.4.1 [Supported character encoding schemes], page 318, for
the details of character encoding schemes.

:conversion-buffer-size

This argument may be used with the encoding argument to specify the buffer
size of character encoding conversion. It is passed as a bu↑er-size argument of
the conversion port constructors (see Section 9.4.3 [Conversion ports], page 320).

Usually you don’t need to give this argument; but if you need to guess the input
file encoding, larger buffer size may work better since guessing routine can have
more data before deciding the encoding.

By combination of if-exists and if-does-not-exist flags, you can implement various actions:

(open-output-file "foo" :if-exists :error)

⇒ ;opens "foo" exclusively, or error

(open-output-file "foo" :if-exists #f)

⇒ ;opens "foo" exclusively, or returns #f

(open-output-file "foo" :if-exists :append

:if-does-not-exist :error)

⇒ ;opens "foo" for append only if it already exists

To check the existence of a file without opening it, use sys-access or file-exists? (see
Section 6.25.4.4 [File stats], page 240).

Note for portability: Some Scheme implementations (e.g. STk) allows you to specify a
command to ↓lename and reads from, or writes to, the subprocess standard input/output.
Some other scripting languages (e.g. Perl) have similar features. In Gauche, open-input-
file and open-output-file strictly operates on files (what the underlying OS thinks as

Chapter 6: Core library 209

files). However, you can use “process ports” to invoke other command in a subprocess and
to communicate it. See Section 9.24.4 [Process ports], page 401, for details.

[Function]call-with-input-file string proc :key if-does-not-exist bu↑ering
element-type encoding conversion-bu↑er-size

[Function]call-with-output-file string proc :key if-does-not-exist if-exists
bu↑ering element-type encoding conversion-bu↑er-size

[R7RS+] Opens a file specified by string for input/output, and call proc with one argument,
the file port. When proc returns, or an error is signaled from proc that is not captured within
proc, the file is closed.

The keyword arguments have the same meanings of open-input-file and open-output-

file’s. Note that if you specify #f to if-exists and/or if-does-not-exist, proc may receive #f
instead of a port object when the file is not opened.

Returns the value(s) proc returned.

[Function]with-input-from-file string thunk :key if-does-not-exist bu↑ering
element-type encoding conversion-bu↑er-size

[Function]with-output-to-file string thunk :key if-does-not-exist if-exists
bu↑ering element-type encoding conversion-bu↑er-size

[R7RS file] Opens a file specified by string for input or output and makes the opened port as
the current input or output port, then calls thunk. The file is closed when thunk returns or
an error is signaled from thunk that is not captured within thunk.

Returns the value(s) thunk returns.

The keyword arguments have the same meanings of open-input-file and open-output-

file’s, except that when #f is given to if-exists and if-does-not-exist and the opening port
is failed, thunk isn’t called at all and #f is returned as the result of with-input-from-file
and with-output-to-file.

Notes on semantics of closing file ports: R7RS states, in the description of call-with-port
et al., that "If proc does not return, then the port will not be closed automatically unless it is
possible to prove that the port will never again be used for read or write operation."

Gauche’s implementation slightly misses this criteria; the mere fact that an uncaptured error
is thrown in proc does not prove the port will never be used. Nevertheless, it is very difficult
to think the situation that you can do meaningful operation on the port after such an error is
signaled; you’d have no idea what kind of state the port is in. In practical programs, you should
capture error explicitly inside proc if you still want to do some meaningful operation with the
port.

Note that if a continuation captured outside call-with-input-file et al. is invoked inside
proc, the port is not closed. It is possible that the control returns later into the proc, if a
continuation is captured in it (e.g. coroutines). The low-level exceptions (see Section 6.20.3
[Handling exceptions], page 194) also doesn’t ensure closing the port.

[Function]open-input-fd-port fd :key bu↑ering name owner?
[Function]open-output-fd-port fd :key bu↑ering name owner?

Creates and returns an input or output port on top of the given file descriptor. Bu↑ering
specifies the buffering mode as described in open-input-file entry above; the default is
:full. Name is used for the created port’s name and returned by port-name. A boolean
flag owner? specifies whether fd should be closed when the port is closed.

[Function]port-fd-dup! toport fromport
Interface to the system call dup2(2). Atomically closes the file descriptor associated to toport,
creates a copy of the file descriptor associated to fromport, and sets the new file descriptor

Chapter 6: Core library 210

to toport. Both toport and fromport must be file ports. Before the original file descriptor
of toport is closed, any buffered output (when toport is an output port) is flushed, and any
buffered input (when toport is an input port) is discarded.

‘Copy’ means that, even the two file descriptors differ in their values, they both point to the
same system’s open file table entry. For example they share the current file position; after
port-fd-dup!, if you call port-seek on fromport, the change is also visible from toport, and
vice versa. Note that this ’sharing’ is in the system-level; if either toport or fromport is
buffered, the buffered contents are not shared.

This procedure is mainly intended for programs that needs to control open file descriptors
explicitly; e.g. a daemon process would want to redirect its I/O to a harmless device such
as /dev/null, and a shell process would want to set up file descriptors before executing the
child process.

6.22.5 String ports

String ports are the ports that you can read from or write to memory.

[Function]open-input-string string :key name
[R7RS base][SRFI-6] Creates an input string port that has the content string. This is a more
efficient way to access a string in order rather than using string-ref with incremental index.

(define p (open-input-string "foo x"))

(read p) ⇒ foo

(read-char p) ⇒ #\space

(read-char p) ⇒ #\x

(read-char p) ⇒ #<eof>

(read-char p) ⇒ #<eof>

The name keyword argument is a Gauche extension. By default, the created port is named
as (input string port). It is mainly used for debugging. You can specify alternative name
with this argument. As Gauche’s convention, file ports has the source file path as its name, so
port names for debugging information should be parenthesized not to be taken as pathnames.

gosh> (open-input-string "")

#<iport (input string port) 0x215c0c0>

gosh> (open-input-string "" :name "(user input)")

#<iport (user input) 0x22a4e40>

[Function]get-remaining-input-string port
Port must be an input string port. Returns the remaining content of the input port. The
internal pointer of port isn’t moved, so the subsequent read from port isn’t affected. If port
has already reached to EOF, a null string is returned.

(define p (open-input-string "abc\ndef"))

(read-line p) ⇒ "abc"

(get-remaining-input-string p) ⇒ "def"

(read-char p) ⇒ #\d

(read-line p) ⇒ "ef"

(get-remaining-input-string p) ⇒ ""

[Function]open-output-string :key name
[R7RS base][SRFI-6] Creates an output string port. Anything written to the port is accu-
mulated in the buffer, and can be obtained as a string by get-output-string. This is a far
more efficient way to construct a string sequentially than pre-allocate a string and fill it with
string-set!.

The name keyword argument is a Gauche extension. By default, the created port is named
as (output string port). It is mainly used for debugging. You can specify alternative name

Chapter 6: Core library 211

with this argument. As Gauche’s convention, file ports has the source file path as its name, so
port names for debugging information should be parenthesized not to be taken as pathnames.

gosh> (open-output-string)

#<oport (output string port) 0x22a4c00>

gosh> (open-output-string :name "(temporary output)")

#<oport (temporary output) 0x22a49c0>

[Function]get-output-string port
[R7RS base][SRFI-6] Takes an output string port port and returns a string that has been
accumulated to port so far. If a byte data has been written to the port, this function re-scans
the buffer to see if it can consist a complete string; if not, an incomplete string is returned.

This doesn’t affect the port’s operation, so you can keep accumulating content to port after
calling get-output-string.

[Function]call-with-input-string string proc
[Function]call-with-output-string proc
[Function]with-input-from-string string thunk
[Function]with-output-to-string thunk

These utility functions are trivially defined as follows. The interface is parallel to the file port
version.

(define (call-with-output-string proc)

(let ((out (open-output-string)))

(proc out)

(get-output-string out)))

(define (call-with-input-string str proc)

(let ((in (open-input-string str)))

(proc in)))

(define (with-output-to-string thunk)

(let ((out (open-output-string)))

(with-output-to-port out thunk)

(get-output-string out)))

(define (with-input-from-string str thunk)

(with-input-from-port (open-input-string str) thunk))

[Function]call-with-string-io str proc
[Function]with-string-io str thunk

(define (call-with-string-io str proc)

(let ((out (open-output-string))

(in (open-input-string str)))

(proc in out)

(get-output-string out)))

(define (with-string-io str thunk)

(with-output-to-string

(lambda ()

(with-input-from-string str

thunk))))

Chapter 6: Core library 212

[Function]write-to-string obj :optional writer
[Function]read-from-string string :optional start end

These convenience functions cover common idioms using string ports.

(write-to-string obj writer)

≡
(with-output-to-string (lambda () (writer obj)))

(read-from-string string)

≡
(with-input-from-string string read)

The default value of writer is the procedure write. The default values of start and end is 0
and the length of string.

Portability note: Common Lisp has these functions, with different optional arguments. STk
has read-from-string without optional argument.

6.22.6 Coding-aware ports

A coding-aware port is a special type of procedural input port that is used by load to read a
program source. The port recognizes the magic comment to specify the character encoding of
the program source, such as ;; -*- coding: utf-8 -*-, and makes an appropriate character
encoding conversion. See Section 2.3 [Multibyte scripts], page 11, for the details of coding magic
comment.

[Function]open-coding-aware-port iport
Takes an input port and returns an input coding aware port, which basically just pass through
the data from iport to its reader. However, if a magic comment appears within the first two
lines of data from iport, the coding aware port applies the necessary character encoding
conversion to the rest of the data as they are read.

The passed port, iport, is "owned" by the created coding-aware port. That is, when the
coding-aware port is closed, iport is also closed. The content read from iport is buffered in
the coding-aware port, so other code shouldn’t read from iport.

By default, Gauche’s load uses a coding aware port to read the program source, so that the
coding magic comment works for the Gauche source programs (see Section 6.23.1 [Loading
Scheme file], page 225). However, since the mechanism itself is independent from load, you
can use this port for other purposes; it is particularly useful to write a function that processes
Scheme source programs which may have the coding magic comment.

6.22.7 Input

For the input-related procedures, the optional iport argument must be an input port, and when
omitted, the current input port is assumed.

6.22.7.1 Reading data

[Function]read :optional iport
[R7RS base] Reads an S-expression from iport and returns it. Gauche recognizes the lexi-
cal structure specified in R7RS, and some additional lexical structures listed in Section 4.1
[Lexical structure], page 36.

If iport has already reached to the end of file, an eof object is returned.

The procedure reads up to the last character that consists the S-expression, and leaves the rest
in the port. It’s not like CommonLisp’s read, which consumes whitespaces after S-expression
by default.

Chapter 6: Core library 213

[Function]read-with-shared-structure :optional iport
[Function]read/ss :optional iport

[SRFI-38] These procedures are defined in srfi-38 to recognize shared substructure notation
(#n=, #n#). Gauche’s builtin read recognizes the srfi-38 notation, so these are just synonyms
to read; these are only provided for srfi-38 compatibility.

[Function]read-char :optional iport
[R7RS base] Reads one character from iport and returns it. If iport has already reached to the
end, returns an eof object. If the byte stream in iport doesn’t consist a valid character, the
behavior is undefined. (In future, a port will have a option to deal with invalid characters).

[Function]peek-char :optional iport
[R7RS base] Reads one character in iport and returns it, keeping the character in the port.
If the byte stream in iport doesn’t consist a valid character, the behavior is undefined. (In
future, a port will have a option to deal with invalid characters).

[Function]read-byte :optional iport
Reads one byte from an input port iport, and returns it as an integer in the range between
0 and 255. If iport has already reached EOF, an eof object is returned.

This is called read-u8 in R7RS.

[Function]peek-byte :optional iport
Peeks one byte at the head of an input port iport, and returns it as an integer in the range
between 0 and 255. If iport has already reached EOF, an eof object is returned.

This is called peek-u8 in R7RS.

[Function]read-line :optional iport allow-byte-string?
[R7RS+] Reads one line (a sequence of characters terminated by newline or EOF) and returns
a string. The terminating newline is not included. This function recognizes popular line
terminators (LF only, CRLF, and CR only). If iport has already reached EOF, an eof object
is returned.

If a byte sequence is read from iport which doesn’t constitute a valid character in the native
encoding, read-line signals an error by default. However, if a true value is given to the
argument allow-byte-string?, read-line returns a byte string (incomplete string) in such
case, without reporting an error. It is particularly useful if you read from a source whose
character encoding is not yet known; for example, to read XML document, you need to check
the first line to see if there is a charset parameter so that you can then use an appropriate
character conversion port. This optional argument is Gauche’s extension to R7RS.

[Function]read-string nchars :optional iport
[R7RS base] Read nchars characters, or as many characters as available before EOF, and
returns a string that consists of those characters. If the input has already reached EOF, an
eof object is returned.

[Function]read-block nbytes :optional iport
This procedure is deprecated - use read-uvector instead (see Section 9.35.4 [Uvector block
I/O], page 458).

Reads nbytes bytes from iport, and returns an incomplete string consisted by those bytes.
The size of returned string may shorter than nbytes when iport doesn’t have enough bytes
to fill. If nbytes is zero, a null string is always returned.

If iport has already reached EOF, an eof object is returned.

Chapter 6: Core library 214

If iport is a file port, the behavior of read-block differs by the buffering mode of the port
(See Section 6.22.4 [File ports], page 207, for the detail explanation of buffering modes).

• If the buffering mode is :full, read-block waits until nbytes data is read, except it
reads EOF.

• If the buffering mode is :modest or :none, read-block returns shorter string than nbytes
even if it doesn’t reach EOF, but the entire data is not available immediately.

If you want to write a chunk of bytes to a port, you can use either display if the data
is in string, or write-uvector in gauche.uvector (see Section 9.35.4 [Uvector block I/O],
page 458) if the data is in uniform vector.

[Function]eof-object
[R7RS base] Returns an EOF object.

[Function]eof-object? obj
[R7RS base] Returns true if obj is an EOF object.

[Function]char-ready? :optional port
[R7RS base] If a character is ready to be read from port, returns #t.

For now, this procedure actually checks only if next byte is immediately available from port.
If the next byte is a part of a multibyte character, the attempt to read the whole character
may block, even if char-ready? returns #t on the port. (It is unlikely to happen in usual
situation, but theoretically it can. If you concern, use read-uvector to read the input as a
byte sequence, then use input string port to read characters.)

[Function]byte-ready? :optional port
If one byte (octet) is ready to be read from port, returns #t.

In R7RS, this procedure is called u8-ready?

6.22.7.2 Reader lexical mode

[Parameter]reader-lexical-mode
Get/set the reader lexical mode. Changing this parameter switches behavior of the reader
concerning some corner cases of the lexical syntax, where legacy Gauche syntax and R7RS
syntax aren’t compatible.

In general, you don’t need to change this parameter directly. The lexical syntax matters at
the read-time, while changing this parameter happens at the execution-time; unless you know
the exact timing when each phase occurs, you might not get what you want.

The hash-bang directive #!gauche-legacy and #!r7rs indirectly affects this parameter; the
first one sets the reader mode to legacy, and the second one to strict-r7.

The command-line argument -fwarn-legacy sets the default reader mode to warn-legacy.

Change to this parameter during load is delimited within that load; once load is done, the
value of this parameter is reset to the value when load is started.

The parameter takes one of the following symbols as a value.

permissive

This is the default mode. It tries to find a reasonable compromise between two
syntax.

In string literals, hex escape sequence is first interpreted as R7RS lexical syn-
tax. If the syntax doesn’t conform R7RS hex escape, it is interpreted as legacy
Gauche hex escape syntax. For example, "\x30;a" is read as "0a", for the hex
escape sequence including the terminating semicolon is read as R7RS hex escape

Chapter 6: Core library 215

sequence. It also reads "\x30a" as "0a", for the legacy Gauche hex escape always
takes two hexadecimal digits without the terminator. With this mode, you can
use R7RS hex escape syntax for the new code, and yet almost all legacy Gauche
code can be read without a problem. However, if the legacy code has a semicolon
followed by hex escape, it is interpreted as R7RS syntax and the incompatibility
arises.

Identifiers beginning with a colon are read as keywords, as they’ve always been.
For the strict R7RS behavior, you need to use vertical-bar escaping (e.g. |:foo|)
to have symbols beginning with colon. Note that this incompatibility will be
addressed in the future version of Gauche, when keywords become a subtype of
symbols.

strict-r7

Strict R7RS compatible mode. When the reader encounters the hash-bang di-
rective #!r7rs, the rest of file is read with this mode.

In this mode, Gauche’s extended lexical syntax will raise an error. Identifiers
beginning with a colon are read as symbols.

Use this mode to read R7RS code with maximum compatibility.

legacy The reader works as the legacy Gauche (version 0.9.3.3 and before). When the
reader encounters the hash-bang directive #!gauche-legacy, the rest of file is
read with this mode.

This only matters when you want to read two-digit hex escape followed by semi-
colon as a character plus a semicolon, e.g. "\x30;a" as "0;a" instead of "0a".
We expect such a sequence rarely appears in the code, but if you dump a data
in a string literal format, you may have such sequence (especially in incomplete
string literals).

warn-legacy

The reader works as the permissivemode, but warns if it reads legacy hex-escape
syntax. This mode is default when -fwarn-legacy command-line argument is
given to gosh.

This is useful to check if you have any incompatible escape sequence in your code.

6.22.7.3 Read-time constructor

Read-time constructor, defined in SRFI-10, provides an easy way to create an external repre-
sentation of user-defined structures.

[Reader Syntax]#,(tag arg ...)
[SRFI-10] Gauche maintains a global table that associates a tag (symbol) to a constructor
procedure.

When the reader encounters this syntax, it reads arg . . . , finds a reader constructor associated
with tag, and calls the constructor with arg . . . as arguments, then inserts the value returned
by the constructor as the result of reading the syntax.

Note that this syntax is processed inside the reader—the evaluator doesn’t see any of args,
but only sees the object the reader returns.

[Function]define-reader-ctor tag procedure
[SRFI-10] Associates a reader constructor procedure with tag.

Examples:

(define-reader-ctor ’pi (lambda () (* (atan 1) 4)))

Chapter 6: Core library 216

#,(pi) ⇒ 3.141592653589793

’(#,(pi)) ⇒ (3.141592653589793)

(define-reader-ctor ’hash

(lambda (type . pairs)

(let ((tab (make-hash-table type)))

(for-each (lambda (pair)

(hash-table-put! tab (car pair) (cdr pair)))

pairs)

tab)))

(define table

#,(hash eq? (foo . bar) (duh . dah) (bum . bom)))

table ⇒ #<hash-table eq? 0x80f9398>

(hash-table-get table ’duh) ⇒ dah

Combined with write-object method (see Section 6.22.8 [Output], page 217), it is easy to
make a user-defined class written in the form it can be read back:

(define-class <point> ()

((x :init-value 0 :init-keyword :x)

(y :init-value 0 :init-keyword :y)))

(define-method write-object ((p <point>) out)

(format out "#,(<point> ~s ~s)" (ref p ’x) (ref p ’y)))

(define-reader-ctor ’<point>

(lambda (x y) (make <point> :x x :y y)))

NOTE: The extent of the effect of define-reader-ctor is not specified in SRFI-10, and
might pose a compatibility problem among implementations that support SRFI-10. (In fact,
the very existence of define-reader-ctor is up to an implementation choice.)

In Gauche, at least for the time being, define-reader-ctor take effects as soon as the form
is compiled and evaluated. Since Gauche compiles and evaluates each toplevel form in order,
tag specified in define-reader-ctor can be used immediately after that. However, it doesn’t
work if the call of define-reader-ctor and the use of tag is enclosed in a begin form, for the
entire begin form is compiled at once before being evaluated.

Other implementations may require to read the entire file before making its define-reader-
ctor call effective. If so, it effectively prevents one from using define-reader-ctor and the
defined tag in the same file. It is desirable to separate the call of define-reader-ctor and the
use of tag in the different files if possible.

Another issue about the current define-reader-ctor is that it modifies the global table of
Gauche system, hence it is not modular. The code written by different people might use the
same tags, and yield an unexpected result. In future versions, Gauche may have some way to
encapsulate the scope of tag, although the author doesn’t have clear idea yet.

6.22.7.4 Input utility functions

[Function]port->string port
[Function]port->list reader port
[Function]port->string-list port

Chapter 6: Core library 217

[Function]port->sexp-list port
Generally useful input procedures. The API is taken from scsh and STk.

port->string reads port until EOF and returns the accumulated data as a string.

port->list applies reader on port repeatedly, until reader returns an EOF, then returns the
list of objects reader returned. Note that port isn’t closed.

port->string-list is a port->list specialized by read-line, and port->sexp-list is a
port->list specialized by read.

If the input contains an octet sequence that’s not form a valid character in the Gauche’s native
character encoding, port->string and port->string-list may return incomplete string(s).
If you want to deal with binary data, consider using port->uvector in gauche.uvector (see
Section 9.35.4 [Uvector block I/O], page 458).

[Function]port-fold fn knil reader
[Function]port-fold-right fn knil reader
[Function]port-for-each fn reader
[Function]port-map fn reader

Convenient iterators over the input read by reader.

Since these procedures are not really about ports, they are superseded by generator-fold,
generator-fold-right, generator-for-each and generator-map, respectively. See
Section 6.18.9 [Folding generated values], page 183, for the details.

We provide these only for the backward compatibility.

6.22.8 Output

6.22.8.1 Layers of output routines

Gauche has quite a few output procedures which may confuse newcomers. The following table
will help to understand how to use those procedures:

Object writers
Procedures that write out Scheme objects. Although there exist more low-level
procedures, these are regarded as a basic layer of output routines, since it works on
a generic Scheme object as a single unit. They come in two flavors:

• Write-family procedures: write, write-shared, write-simple–these are to
produce external representation of Scheme objects, which can be generally read
back by read without losing information as much as possible1. The external
representation of most Scheme objects are the ones you write literal data in
program, so this is the default way of writing Scheme objects out.

• Display-family procedures: display, print, newline. These are to produce
plain-text output suitable for human readers.

High-level formatting output
To produce output in specific width, alignment, etc: format. This corresponds to
C’s printf.

Low-level type-specific output
Procedures that deal with raw data.

• To output a character or a byte: write-char, write-byte.

1 In a sense, this is somewhat similar to what is called “serialization” or “marshalling” in other programming
language; you can write out a generic Scheme object on disk or to wire, and read it to get an object equivalent
to the original one. In Lisp-family languages, this is called read/write invariance and is a built-in feature.
Note that some objects do not have this invariance in nature, so sometimes you need to make your own
serializer/marshaller.

Chapter 6: Core library 218

• To output a string or an array of binary data: write-string, write-uvector.

• To flush the output buffer: flush, flush-all-ports.

6.22.8.2 Output controls

[Class]<write-controls>
You can control several aspects of Lisp structure output via <write-controls> object.
The object output routines (e.g. write, display) and the high-level output routines (e.g.
format) can take optional write-controls.

The following example may give you some ideas on what write controls can do:

(write ’(1 10 100 1000)

(make-write-controls :base 16 :radix #t))

prints (#x1 #xa #x64 #x3e8)

(write (iota 100)

(make-write-controls :length 5))

prints (0 1 2 3 4 ...)

The make-write-controls procedure returns a write-controls object, which has the following
slots (those slot names are taken from Common Lisp’s print control variables):

[Instance Variable of <write-controls>]length
If this slot has a nonnegative integer, it determines the maximum number of items dis-
played for lists and vectors (including uniform vectors). If the sequence has more elements
than the limit, ... is printed in place. If this slot is #f (default), sequence will be written
out fully.

[Instance Variable of <write-controls>]level
If this slot has a nonnegative integer, it determines the maximum depth of the structure
(lists and vectors) to be displayed. If the structure has deeper node, it will be printed as
#. If this slot is #f (default), no depth limit is enforced.

[Instance Variable of <write-controls>]base
This slot must have an integer between 2 and 36, inclusive, and specifies the radix used
to print exact numbers. The default value is 10.

[Instance Variable of <write-controls>]radix
This slot must have a boolean value. If it is true, radix prefix is always printed before
exact numbers. The default value is #f.

[Instance Variable of <write-controls>]pretty
If this slot has true value, pretty printing is used, that is, newlines and indentations are
inserted to show nested data structures fit in the specified width of columns.

[Instance Variable of <write-controls>]width
If this slot has a nonnegative integer, it specifies the display column width used for pretty
printing.

A write-controls object is immutable. If you need a controls object with a slight variation of
an existing controls object, use write-controls-copy.

Note: When we introduced <write-controls> object in 0.9.5, we used slot names as
print-length, print-pretty etc., mirroring Common Lisp’s special variables. However, the
print- part is redundant, as it is a part of a class dedicated to print control. So we changed
the slot names as of 0.9.6. The procedures make-write-controls and write-controls-

copy accepts both old and new names for the backward compatibility. The old code that

Chapter 6: Core library 219

directly refers to the slots needs to be rewritten (we think there’re a not a lot). We’ll drop
the old name support in 1.0 release.

[Function]make-write-controls :key length level base radix pretty width
Creates and returns a write-controls object.

[Function]write-controls-copy controls :key length level base radix pretty width
Returns a copy of another write-controls object controls. If keyword arguments are given,
those values override the original values.

Note: The high-level output procedures can be recursively called via write-object method.
In that case, the write controls of the root output call will be automatically inherited to the
recursive output calls to the same port.

6.22.8.3 Object output

For the following procedures, the optional port argument must be an output port, and when
omitted, the current output port is assumed.

Some procedures take port/controls argument, which can be either an output port or
<write-controls> object. For example, write takes up to two such optional arguments; that
is, you can call it as (write obj), (write obj port), (write obj controls), (write obj port

controls) or (write obj controls port). When omitted, the port is assumed to be the cur-
rent output port, and the controls is assumed to be the default controls.

[Function]write obj :optional port/controls1 port/controls2
[Function]write-shared obj :optional port/controls1 port/controls2
[Function]write-simple obj :optional port/controls1 port/controls2

[R7RS+ write] The write-family procedures are used to write an external representation of
Scheme object, which can be read back by read procedure. The three procedures differ in a
way to handle shared or circular structures.

Write is circular-safe; that is, it uses datum label notation (#n= and #n#) to show cycles. It
does not use datum label notation for non-circular structures that are merely shared (see the
second example).

(let1 x (list 1)

(set-cdr! x x) ; create a cycle

(write x))

⇒ shows #0=(1 . #0#)

(let1 x (list 1)

(write (list x x)))

⇒ shows ((1) (1))

Write-shared is also circular-safe, and it also shows shared structures using datum labels.
Use this if you need to preserve topology of a graph structure.

(let1 x (list 1)

(write (list x x)))

⇒ shows (#0=(1) #0#)

Finally, write-simple writes out the object recursively without taking account of shared
or circular structures. This is fast, for it doesn’t need to scan the structure before actually
writing out. However, it won’t stop when a circular structure is passed.

When these procedures encounter an object of a user-defined class, they call the generic
function write-object.

Chapter 6: Core library 220

Historical context: Write has been in Scheme standards, but handling of circular structures
hasn’t been specified until R7RS. In fact, until Gauche 0.9.4, write diverged for circular struc-
tures. SRFI-38 introduced the datum-label notation and write-with-shared-structure

and write/ss procedures to produce such notation, and Gauche supported it. R7RS clari-
fied this issue, and Gauche 0.9.4 followed.

[Function]write-with-shared-structure obj :optional port
[Function]write/ss obj :optional port
[Function]write* obj :optional port

[SRFI-38] These are aliases of write-shared above.

Gauche has been used the name write* for long, which is taken from STklos. SRFI-38 defines
write-with-shared-structure and write/ss. These names are kept for the backward
compatibility. New code should use write-shared.

[Function]display obj :optional port/controls1 port/controls2
[R7RS write] Produces a human-friendly representation of an object obj to the output port.

If obj contains cycles, display uses datum-label notation.

When display encounters an object of a user-defined class, it calls the generic function
write-object.

(display "\"Mahalo\", he said.")

⇒ shows "Mahalo", he said.

(let ((x (list "imua")))

(set-cdr! x x)

(display x))

⇒ shows #0=(imua . #0#)

[Function]print expr . . .
Displays exprs (using display) to the current output port, then writes a newline.

[Function]pprint obj :key port controls width length level newline
Pretty prints obj to port, which is defaulted to the current output port. The same effect is
achieved by passing the write procedure a write control with pretty slot setting to #t (in
fact, it is how pprint is implemented), but this procedure provides more convenient interface
when you want to play with the pretty printer.

By default, pprint prints a newline after writing obj. You can suppress this newline by
passing #f to newline keyword argument.

To customize pretty printing, you can pass a write control object to the controls keyword
argument (the pretty slot of controls is ignored; it’ll always printed prettily). Furthermore,
you can override width, length and level slots of controls. If you omit controls, a reasonable
default value is assumed. See Section 6.22.8.2 [Output controls], page 218, for the detail of
write controls.

(pprint (make-list 6 ’(gauche droite)))

⇒ prints
((gauche droite) (gauche droite) (gauche droite) (gauche droite)

(gauche droite) (gauche droite))

(pprint (make-list 6 ’(gauche droite)) :width 20)

⇒ prints
((gauche droite)

(gauche droite)

(gauche droite)

Chapter 6: Core library 221

(gauche droite)

(gauche droite)

(gauche droite))

(pprint (make-list 6 ’(gauche droite)) :length 3)

⇒ prints
((gauche droite) (gauche droite) (gauche droite))

(pprint (make-list 6 ’(gauche droite)) :level 1)

⇒ prints
(# # # # # #)

[Method]write-object (obj <object>) port
You can customize how the object is printed out by this method.

[Function]newline :optional port
[R7RS base] Writes a newline character to port. This is equivalent to (write-char #\newline

port), (display "\n" port). It is kept for a historical reason.

6.22.8.4 Formatting output

[Function]format dest controls string arg . . .
[Function]format controls dest string arg . . .
[Function]format dest string arg . . .
[Function]format controls string arg . . .
[Function]format string arg . . .

[SRFI-28+] Format arg . . . according to string. This function is a subset of CommonLisp’s
format function, with a bit of extension. It is also a superset of SRFI-28, Basic format strings
([SRFI-28], page 764).

The dest argument specifies the destination; if it is an output port, the formatted result
is written to it; if it is #t, the result is written to the current output port; if it is #f, the
formatted result is returned as a string. Dest can be omitted, as SRFI-28 format; it has the
same effects as giving #f to the dest.

The controls argument is <write-controls> object (see Section 6.22.8.2 [Output controls],
page 218), which affects the output of ~s and ~a. This is Gauche’s extension.

(The unusual function signature of format is for the convenience; both dest and controls are
optional and they can appear in either order.)

string is a string that contains format directives. A format directive is a character sequence
begins with tilde, ‘~’, and ends with some specific characters. A format directive takes the
corresponding arg and formats it. The rest of string is copied to the output as is.

(format #f "the answer is ~s" 42)

⇒ "the answer is 42"

The format directive can take one or more parameters, separated by comma characters. A
parameter may be an integer or a character; if it is a character, it should be preceded by a
quote character. Parameter can be omitted, in such case the system default value is used.
The interpretation of the parameters depends on the format directive.

Furthermore, a format directive can take two additional flags: atmark ‘@’ and colon ‘:’. One
or both of them may modify the behavior of the format directive. Those flags must be placed
immediately before the directive character.

If a character ‘v’ or ‘V’ is in the place of the parameter, the value of the parameter is taken
from the format’s argument. The argument must be either an integer, a character, or #f

(indicating that the parameter is effectively omitted).

Chapter 6: Core library 222

Some examples:

~10,2s A format directive ~s, with two parameters, 10 and 2.

~12,,,’*A

A format directive ~a, with 12 for the first parameter and a character ‘*’ for the
fourth parameter. The second and third parameters are omitted.

~10@d A format directive ~d, with 10 for the first parameter and ‘@’ flag.

~v,vx A format directive ~x, whose first and second parameter will be taken from the
arguments.

The following is a complete list of the supported format directives. Either upper case or lower
case character can be used for the format directive; usually they have no distinction, except
noted.

~A Parameters: mincol,colinc,minpad,padchar,maxcol

Ascii output. The corresponding argument is printed by display. If an integer
mincol is given, it specifies the minimum number of characters to be output; if
the formatted result is shorter than mincol, a whitespace is padded to the right
(i.e. the result is left justified).

The colinc, minpad and padchar parameters control, if given, further padding.
A character padchar replaces the padding character for the whitespace. If an
integer minpad is given and greater than 0, at least minpad padding character is
used, regardless of the resulting width. If an integer colinc is given, the padding
character is added (after minpad) in chunk of colinc characters, until the entire
width exceeds mincol.

If atmark-flag is given, the format result is right justified, i.e. padding is added
to the left.

The maxcol parameter, if given, limits the maximum number of characters to be
written. If the length of formatted string exceeds maxcol, only maxcol characters
are written. If colon-flag is given as well and the length of formatted string
exceeds maxcol, maxcol - 4 characters are written and a string “ ...” is attached
after it.

(format #f "|~a|" "oops")

⇒ "|oops|"

(format #f "|~10a|" "oops")

⇒ "|oops |"

(format #f "|~10@a|" "oops")

⇒ "| oops|"

(format #f "|~10,,,’*@a|" "oops")

⇒ "|******oops|"

(format #f "|~,,,,10a|" ’(abc def ghi jkl))

⇒ "|(abc def gh|"

(format #f "|~,,,,10:a|" ’(abc def ghi jkl))

⇒ "|(abc de ...|"

~S Parameters: mincol,colinc,minpad,padchar,maxcol

S-expression output. The corresponding argument is printed by write. The
semantics of parameters and flags are the same as ~A directive.

(format #f "|~s|" "oops")

⇒ "|\"oops\"|"

Chapter 6: Core library 223

(format #f "|~10s|" "oops")

⇒ "|\"oops\" |"

(format #f "|~10@s|" "oops")

⇒ "| \"oops\"|"

(format #f "|~10,,,’*@s|" "oops")

⇒ "|****\"oops\"|"

~C Parameters: None

Character output. The argument must be a character, or an error is signaled. If
no flags are given, the character is printed with display. If atmark-flag is given,
the character is printed with write.

~D Parameters: mincol,padchar,commachar,interval

Decimal output. The argument is formatted as an decimal integer. If the argu-
ment is not an integer, all parameters are ignored (after processing ‘v’ parameters)
and it is formatted by ~A directive.

If an integer parameter mincol is given, it specifies minimum width of the for-
matted result; if the result is shorter than it, padchar is padded on the left (i.e.
the result is right justified). The default of padchar is a whitespace.

(format #f "|~d|" 12345)

⇒ "|12345|"

(format #f "|~10d|" 12345)

⇒ "| 12345|"

(format #f "|~10,’0d|" 12345)

⇒ "|0000012345|"

If atmark-flag is given, the sign ‘+’ is printed for the positive argument.

If colon-flag is given, every interval-th digit of the result is grouped and com-
machar is inserted between them. The default of commachar is ‘,’, and the
default of interval is 3.

(format #f "|~:d|" 12345)

⇒ "|12,345|"

(format #f "|~,,’_,4:d|" -12345678)

⇒ "|-1234_5678|"

~B Parameters: mincol,padchar,commachar,interval

Binary output. The argument is formatted as a binary integer. The semantics
of parameters and flags are the same as the ~D directive.

~O Parameters: mincol,padchar,commachar,interval

Octal output. The argument is formatted as an octal integer. The semantics of
parameters and flags are the same as the ~D directive.

~X
~x Parameters: mincol,padchar,commachar,interval

Hexadecimal output. The argument is formatted as a hexadecimal integer. If
‘X’ is used, upper case alphabets are used for the digits larger than 10. If ‘x’ is
used, lower case alphabets are used. The semantics of parameters and flags are
the same as the ~D directive.

(format #f "~8,’0x" 259847592)

⇒ "0f7cf5a8"

(format #f "~8,’0X" 259847592)

⇒ "0F7CF5A8"

Chapter 6: Core library 224

~F Parameters: width,digis,scale,ovfchar,padchar

Floating-number output. If the argument is a real number, it is formatted as a
decimal floating number. The width parameter defines the width of the field; the
number is written out right-justified, with the left room padded with padchar,
whose default is #\space. When the formatted output can’t fit in width, ovfchar
is output width times if it is given, or the entire output is shown if ovfchar is
omitted.

(format "~6f" 3.14) ⇒ " 3.14"

(format "~6f" 3.141592) ⇒ "3.141592"

(format "~6,,,’#f" 3.141592) ⇒ "######"

(format "~6,,,,’*f" 3.14) ⇒ "**3.14"

The digits parameter specifies number of digits shown below the decimal point.
Must be nonnegative integer. When omitted, enough digits to identify the flonum
uniquely is generated (same as using write and display—when you read back
the number, you’ll get exactly the same flonum.)

(format "~6,3f" 3.141592) ⇒ " 3.142"

(format "~6,0f" 3.141592) ⇒ " 3."

(format "~10,4f" 355/113) ⇒ " 3.1416"

(foramt "~10,4f" 3) ⇒ " 3.0000"

If the scale parameter is given, the argument is multiplied by (expt 10 scale)

before printing.

If the @ flag is given, plus sign is printed before the non-negative number.

(format "~8,3@f" 3.141592) ⇒ " +3.142"

When digits is smaller than the digits required to represent the flonum unam-
biguously, we round at digits+1 position. By default, it is done based on the value
the flonum represents—that is, we choose the rounded value closer to the actual
value of the flonum. It can sometimes lead to unintuitive results, however. Sup-
pose you want to round 1.15 at 100ths (that is, round to nearest 10ths). Unlike
elementary math class, it gives you 1.1. That’s because the flonum represented
by 1.15 is actually tiny bit smaller than 1.15, so it’s closer to 1.1 than 1.2. We
show it as 1.15 since no other flonums are closer to 1.15.

But in casual applications, users may perplexed with this behavior. So we support
another rounding mode, which we call notational rounding. It is based on the
notation used for the flonum. In that mode, rounding 1.15 to nearest 10ths yields
1.2. You can get it by adding : flag.

(format "~6,1f" 1.15) ⇒ " 1.1"

(format "~6,1:f" 1.15) ⇒ " 1.2"

~* Parameter: count

Moves the argument counter count times forward, effectively skips next count
arguments. The default value of count is 1, hence skip the next argument. If a
colon-flag is given, moves the argument counter backwards, e.g. ~:* makes the
next directive to process last argument again. If an atmark-flag is given, count
specifies absolute position of the arguments, starting from 0.

~~ Output a single tilda ~.

~% Output a newline character.

6.22.8.5 Low-level output

[Function]write-char char :optional port
[R7RS base] Write a single character char to the output port port.

Chapter 6: Core library 225

[Function]write-byte byte :optional port
Write a byte byte to the port. byte must be an exact integer in range between 0 and 255.

This procedure is called write-u8 in R7RS.

[Function]write-string string :optional oport start end
[R7RS base] If the optional start and end arguments are omitted, it is the same as (display
string oport). The optional arguments restricts the range of string to be written.

[Function]flush :optional port
[Function]flush-all-ports

Output the buffered data in port, or all ports, respectively.

The function "flush" is called in variety of ways on the various Scheme implementations:
force-output (Scsh, SCM), flush-output (Gambit), or flush-output-port (Bigloo). The
name flush is taken from STk and STklos. R7RS calls this flush-output-port

6.23 Loading Programs

6.23.1 Loading Scheme file

[Function]load ↓le :key paths (error-if-not-found #t) environment ignore-coding
[R7RS+] Loads ↓le, that is, read Scheme expressions in ↓le and evaluates them. An extension
“.scm” may be omitted from ↓le.

If ↓le doesn’t begin with “/” or “./” or “../”, it is searched from the system file search list,
stored in a variable *load-path*. Or you can explicitly specify the search path by passing a
list of directory names to the keyword argument paths.

On success, load returns #t. If the specified file is not found, an error is signaled unless the
keyword argument error-if-not-found is #f, in which case load returns #f.

By default, load uses a coding-aware port (see Section 6.22.6 [Coding-aware ports], page 212)
so that the "coding:" magic comment at the beginning of the source file is effective. (See
Section 2.3 [Multibyte scripts], page 11, for the details of the coding magic comment). If a true
value is given to the keyword argument ignore-coding, load doesn’t create the coding-aware
port and directly reads from the file port.

If a module is given to the keyword argument environment, load works as if the given module
is selected at the beginning of the loaded file.

The current module is preserved; even select-module is called in ↓le, the module in which
load is called is restored afterwards.

Gauche’s load is upper-compatible to R5RS load, but R7RS load differs in optional argu-
ments; see Section 10.2.11 [R7RS load], page 479.

If you want to load a library file, it’s better to use ‘use’ (see Section 4.13.3 [Defining and
selecting modules], page 69), or ‘require’ described below. See Section 2.7 [Compilation],
page 14, for difference between load and require.

[Variable]*load-path*
Keeps a list of directories that are searched by load and require.

If you want to add other directories to the search path, do not modify this variable directly;
use add-load-path, described below, instead.

[Special Form]add-load-path path 'ag . . .
Adds a path path to the library load path list. If path is a relative path, it is resolved relative
to the current working directory, unless :relative flag is given.

Chapter 6: Core library 226

Each 'ag argument may be one of the followings.

:after Append path to the end of the current list of load paths. By default, path is
added in front of the load path list.

#t The same as :after. This is for the backward compatibility.

:relative

Interpret path as a relative path to the directory of the current file, instead of the
current working directory. If the current file can’t be determined (e.g. evaluated
in REPL, or the expression is read from a socket), this flag is ignored.

Use this form instead of changing *load-path* directly. This form is a special form and
recognized by the compiler; if you change *load-path*, it is in effect at run time, and that
may be too late for “use” or “require”.

Furthermore, add-load-path looks for the architecture dependent directories under the spec-
ified path and if it exists, sets up the internal path list for dynamic loading correctly. Suppose
you have your Scheme module in /home/yours/lib, and that requires a dynamic loadable
library. You can put the library under /home/yours/lib/ARCH/, where ARCH is the value
(gauche-architecture) returns (see Section 6.25.3 [Environment Inquiry], page 234). Then
you can have compiled libraries for multiple platforms and Gauche can still find the right
library.

[Function]load-from-port port
Reads Scheme expressions from an input port port and evaluates them, until EOF is read.

Note that unless you pass a coding-aware port to port, the "coding:" magic comment won’t
be handled.

[Function]current-load-port
[Function]current-load-path
[Function]current-load-history
[Function]current-load-next

These procedures allows you to query the current context of loading. They returns the
following values when called inside a file being loaded:

current-load-port

Returns the port object from which this form is being loaded.

current-load-path

Returns the pathname of the file from which this form is being loaded. Note that
this may return #f if the source of load is not a file.

current-load-history

Returns a list of pairs of a port and a line number (integer), representing the
nesting of loads. Suppose you load foo.scm, and from its line 7 it loads bar.scm,
and from its line 18 it loads baz.scm. If you call current-load-history in the
file baz.scm, you’ll get

((#<port "foo.scm"> . 7) (#<port "bar.scm"> . 18))

current-load-next

Returns a list of remaining directories to be searched at the time this file
is found. Suppose the *load-path* is ("." "../lib" "/home/gauche/lib"

"/share/gauche/lib") and you load foo.scm, which happens to be in ../lib/.
Then, inside foo.scm, current-load-next returns:

("/home/gauche/lib" "/share/gauche/lib")

When called outside of load, these procedures returns #f, #f, () and (), respectively.

Chapter 6: Core library 227

6.23.2 Load dynamic library

[Function]dynamic-load ↓le :key init-function
Loads and links a dynamic loadable library (shared library) ↓le. File shouldn’t contain the
suffix (“.so” on most systems); dynamic-load adds it, for it may differ among platforms.

The keyword argument init-function specifies the initialization function name of the library
in a string. By default, if the file basename (without extension) is “foo”, the initialization
function name is “Scm Init foo”.

Usually a dynamic loadable library is provided with wrapping Scheme module, so the user
doesn’t have to call this function directly.

There’s no way to unload the loaded libraries.

6.23.3 Require and provide

Require and provide are a traditional Lisp way to ensure loading a library file only once. If
you require a feature for the first time, a library file that provides it is loaded and the fact that
the feature is provided is memorized. Subsequent request of the same feature doesn’t need to
load the file.

In Gauche, the use syntax (see Section 4.13.4 [Using modules], page 70) hides the require
mechanism under the hood so you hardly need to see these forms. These are provided just
in case if you want to do some non-trivial management of libraries and thus want to bypass
Gauche’s standard mechanism.

[Special Form]require feature
If feature is not loaded, load it. Feature must be a string, and it is taken as a file name
(without suffix) to be loaded. This loading takes place at compile time.

If you load SLIB module, require is extended. see Section 12.44 [SLIB], page 688, for details.

If the loaded file does not contain provide form at all, the feature is automatically provided,
as if (provide feature) is called at the end of the loaded file. We call this autoprovide
feature.

Note that require first sets the current module to an immutable module called
gauche.require-base and then load the file. The files loaded by require usually have
define-module/select-module or define-library for the first thing, so you rarely notice
the gauche.require-base module. However, if the loaded file has toplevel defines or
imports (use’s) without specifying a module, you’ll get an error like the following:

*** ERROR: Attempted to create a binding (a) in a sealed

module: #<module gauche.require-base>

Rationale: Generally it’s difficult to guarantee when the specified file is loaded by require

(because some other module may already have required it). If we just used the caller’s current
module, there would be a couple of issues: The form define-module or define-library may
not be visible from the current module, and you can’t guarantee if the toplevel defines without
specifying modules in the loaded file inserts the caller’s current module, since they may have
been loaded into a different module. It is just a bad idea to insert toplevel definitions or to
import other modules without specifying which module you put them in. So we made them
an error.

[Function]provide feature
Adds feature to the system’s provided feature list, so that the subsequent require won’t
load the same file again.

Because of the autoproviding, i.e. require automatically provides the required feature, you
hardly need to use a provide form explicitly. There are a couple of scenarios that you may
want to use a provide form:

Chapter 6: Core library 228

• To provide a feature (or features) that is/are different from the one that caused loading
the file.

Suppose feature X supersedes feature Y and providing compatible APIs of Y but with
different implementation. Once X.scm is loaded, you don’t want Y.scm to be loaded; so
you want to tell the user that X.scm also provides the feature Y. Adding (provide "X")

and (provide "Y") at the end of X.scm accomplish that. (Note: If you add a provide
form, require no longer autoprovides the feature, so you need to specify (provide "X")

in X.scm explicitly to provide X as well.)

Of course, this doesn’t prevent users from loading Y.scm by specifying (require "Y")

before (require "X"). It should be considered just as a workaround in a production
where other solutions are costly, instead of a permanent solution.

• To provide no features at all. Passing #f as feature prevents autoproviding by require

without providing any feature.

This should also be a temporary solution. One possible scenario is that you are chang-
ing X.scm very frequently during development and you want (require "X") always
causes loading the file. Don’t forget to remove (provide #f) when you release the
file, though. Besides, for interactive reloading, consider using gauche.reload (see
Section 9.26 [Reloading modules], page 410) instead.

[Function]provided? feature
Returns #t if feature is already provided.

6.23.4 Autoload

[Macro]autoload ↓le/module item . . .
Sets up item . . . to be autoloaded. That is, when an item is referenced for the first time,
↓le/module is loaded before the item is evaluated. This delays the loading of ↓le/module
until it is needed.

You can specify either a string file name or a symbol module name to ↓le/module. If it is
a string, the named file is loaded. If it is a symbol, the named module is loaded (using the
same rule as of use), then the binding of item in the ↓le/module is imported to the module
used the autoload (See Section 4.13.3 [Defining and selecting modules], page 69, for details
of use).

Item can be either a variable name (symbol), or a form (:macro symbol). If it is a variable,
the named file/module is loaded when the variable is about to be evaluated. If it is the
latter form, the named file/module is loaded when a form (symbol arg ...) is about to be
compiled, which enables autoloading macros.

↓le/module must define symbol in it, or an error is signaled when ↓le/module is autoloaded.

The following is an example of autoloading procedures.

(autoload "foo" foo0 foo1)

(autoload "bar" bar0 bar1)

(define (foobar x)

(if (list? x)

(map bar0 x)

(foo0)))

(foobar ’(1 2)) ; "bar" is loaded at this moment

(foobar #f) ; "foo" is loaded at this moment

Chapter 6: Core library 229

Note that if you set to autoload macro, the file/module is loaded immediately when such
form that uses the macro is compiled, regardless of the piece of the code is executed or not.

6.23.5 Operations on libraries

There are several procedures you can use to check if certain libraries and/or modules are installed
in the system.

In the following descriptions, pattern is either a symbol or a string. If it is a symbol, it
specifies a module name (e.g. foo.bar). If it is a string, it specifies a partial pathname of the
library (e.g. "foo/bar"), which will be searched under library search paths. You can also use
glob-like metacharacters ’*’ and ’?’ in pattern.

[Function]library-fold pattern proc seed :key paths strict? allow-duplicates?
A basic iterator for library/module files. This procedure searches Scheme program files which
matches pattern, under directories listed in paths (the default is the standard file load paths,
load-path). For each matched file, it calls proc with three arguments: the matched module
or library name, the full path of the program file, and the state value. Seed is used as the
initial state value, and the value proc returns is used as the state value for the next call of
proc. The value returned from the last proc becomes the return value of library-fold.

If pattern is a symbol and the keyword argument strict? is #t (which is the default), this
procedure calls library-has-module? on the files whose name seems to match the given
pattern of module name, in order to find out the file really implements the module. It can be
a time consuming process if you try to match large number of modules; you can pass #f to
strict? to avoid the extra check. If pattern is a string, matching is done only for file names
so strict? is ignored.

By default, if there are more than one files that have the same name that matches pattern
in paths, only the first one appears in paths is taken. This gives you the file you’ll get if you
use require or use for that library. If you want to iterate all of matching files, pass #t to
the allow-duplicates? keyword argument.

Here are some examples (the result may differ in your environment).

(library-fold ’srfi-1 acons ’())

⇒ ((srfi-1 . "../lib/srfi-1.scm"))

(library-fold "srfi-1" acons ’())

⇒ (("srfi-1" . "../lib/srfi-1.scm"))

;; Note the returned list is in a reverse order of

;; how acons is called.

(library-fold ’srfi-1 acons ’() :allow-duplicates? #t)

⇒ ((srfi-1 . "/usr/share/gauche/0.7.1/lib/srfi-1.scm")

(srfi-1 . "../lib/srfi-1.scm"))

;; In the following cases, the module name doesn’t match,

;; but the filename does.

(library-fold ’srfi-19.* acons ’())

⇒ ()

(library-fold "srfi-19/*" acons ’())

⇒ (("srfi-19/read-tai" . "../lib/srfi-19/read-tai.scm")

("srfi-19/format" . "../lib/srfi-19/format.scm"))

;; Finds available dbm implementations

Chapter 6: Core library 230

(library-fold ’dbm.* acons ’())

⇒ ((dbm.cdb . "/usr/share/gauche/0.7.1/lib/dbm/cdb.scm")

(dbm.gdbm . "../lib/dbm/gdbm.scm")

(dbm.ndbm . "../lib/dbm/ndbm.scm")

(dbm.odbm . "../lib/dbm/odbm.scm"))

[Function]library-map pattern proc :key paths allow-duplicates? strict?
[Function]library-for-each pattern proc :key paths allow-duplicates? strict?

Map and for-each version of iterator over matched libraries/modules. See library-fold

above for detailed operation of matching and the meanings of keyword arguments.

Proc receives two arguments, the matched module/library name and full path of the file.
Library-map returns a list of results of proc. Library-for-each discards the results.

(library-map ’srfi-4 list :allow-duplicates? #t)

⇒ ((srfi-4 "../lib/srfi-4.scm")

(srfi-4 "/usr/share/gauche/0.7.1/lib/srfi-4.scm"))

(library-map ’dbm.* (lambda (m p) m))

⇒ (dbm.odbm dbm.ndbm dbm.gdbm dbm.cdb)

[Function]library-exists? mod/path :key paths force-search? strict?
Search a library or a module specified by mod/path, and returns a true value if it finds one.
Paths and strict? keyword arguments have the same meaning as library-fold.

Unlike the iterator procedures above, this procedure first checks loaded libraries and modules
in the calling process, and returns true if it finds mod/path in it, without looking into the
filesystem. Passing #t to force-search? keyword arguments skips the checking of loaded
libraries and modules.

[Function]library-has-module? path module
Returns #t iff a file specified by path exists and appears to implement a module named by
module. path must be an actual filename.

(library-has-module? "./test/foo/bar.scm" ’foo.bar)

⇒ #t ;; if ./test/foo/bar.scm implements module foo.bar.

This procedure assumes a typical layout of the source code to determine if the given file
implements the module, i.e., it reads the first form of the code and see if it is a define-module
form that is defining the given module.

6.24 Sorting and merging

The interface of sorting and merging API complies SRFI-95, with the following extensions:

• You can sort not only lists, vectors and strings, but any sequence (an instance of
<sequence>).

• You can use both comparison procedures and comparators (see Section 6.2.4 [Basic com-
parators], page 95) to specify the order.

• You can omit comparison procedure; in that case, elements are compared with
default-comparator.

[Function]sort seq :optional cmp keyfn
[Function]sort! seq :optional cmp keyfn

[SRFI-95+] Sorts elements in a sequence seq in ascending order and returns the sorted se-
quence. sort! destructively reuses the original sequence.

You can pass an instance of any <sequence> as seq; the same type of sequence will be
returned. For sort, the sequence type must have builder interface so that sort can build a

Chapter 6: Core library 231

new sequence of the same type (See Section 9.5.4 [Fundamental iterator creators], page 328,
for the builder interface). For sort!, seq must be mutable.

The sorting order is specified by cmp. It must be either a procedure or a comparator. If it
is a procedure, it must take two elements of seq, and returns #t if the first argument strictly
precedes the second. If it is a comparator, it must have the comparison procedure. If omitted,
default-comparator is used.

If the optional argument keyfn is given, the elements are first passed to it and the results are
used for comparison. It is guaranteed that keyfn is called at most once per element.

(sort ’(("Chopin" "Frederic")

("Liszt" "Franz")

("Alkan" "Charles-Valentin"))

string<?

car)

⇒ (("Alkan" "Charles-Valentin")

("Chopin" "Frederic")

("Liszt" "Franz"))

In the current implementation, quicksort and heapsort algorithm is used when both cmp and
keyfn is omitted, and merge sort algorithm is used otherwise. That is, the sort is stable if you
pass at least cmp (note that to guarantee stability, cmp must return #f when given identical
arguments.) SRFI-95 requires stability, but also requires cmp argument, so those procedures
are upper-compatible to SRFI-95.

If you want to keep a sorted set of objects to which you add objects one at at time, you can
also use treemaps (see Section 6.16 [Treemaps], page 168). If you only need to find out a few
maximum or minimum elements instead of sorting all the elements, heaps can be used (see
Section 12.8 [Heap], page 594).

[Function]sorted? seq :optional cmp keyfn
[SRFI-95+] Returns #t iff elements in seq are in sorted order. You can pass any sequence to
seq. The optional argument cmp and keyfn are the same as sort.

In SRFI-95, cmp can’t be omitted.

[Function]merge a b :optional cmp keyfn
[Function]merge! a b :optional cmp keyfn

[SRFI-95+] Arguments a and b are lists, and their elements are sorted using a compare
function or a comparator cmp. These procedures merges two list and returns a list, whose
elements are sorted using cmp. The destructive version merge! reuses cells in a and b; the
returned list is eq? to either a or b.

In SRFI-95, cmp can’t be omitted.

The following procedures are for the backward compatibility. Their features are already
covered by extended sort and sort!.

[Function]stable-sort seq :optional cmp keyfn
[Function]stable-sort! seq :optional cmp keyfn

Sort a sequence seq, using stable sort algorithm. Arguments cmp and keyfn are the same as
sort and sort!.

In fact, sort and sort! now uses stable algorithm when cmp is provided, so these procedures
are redundant, unless you want to omit cmp and yet guarantee stable sort.

[Function]sort-by seq keyfn :optional cmp
[Function]sort-by! seq keyfn :optional cmp
[Function]stable-sort-by seq keyfn :optional cmp

Chapter 6: Core library 232

[Function]stable-sort-by! seq keyfn :optional cmp
Variations of sort procedures that takes a key extracting function. These are redundant now,
for sort etc. takes optional keyfn.

6.25 System interface

Gauche supports most of POSIX.1 functions and other system functions popular among Unix
variants as built-in procedures.

Lots of Scheme implementations provide some sort of system interface under various APIs.
Some are just called by different names (e.g, delete-file or remove-file or unlink to delete
a file), some do more abstraction introducing new Scheme objects. Instead of just picking one of
such interfaces, I decided to implement Gauche’s system interface API in two layers; the lower
level layer, described in this section, follows the operating system’s API as close as possible. On
top of that, the higher-level APIs are provided, with considering compatibility to the existing
systems.

The low level system interface has the name sys-name and usually correspond to the system
call name. I tried to keep the interface similar whenever reasonable.

Gauche restarts a system call after it is interrupted by a signal. See Section 6.25.7 [Signal],
page 245, for the details.

If you are familiar with system programming in C, see also Appendix B [C to Scheme map-
ping], page 765, which shows correspondence between C standard library functions and Gauche
procedures.

6.25.1 Program termination

Gauche has a few ways to terminate itself (other than returning from main). The exit procedure
is a graceful way with all proper cleanups. sys-exit and sys-abort may be used in emergency
where proper cleanup is impossible.

[Function]exit :optional (code 0) (fmtstr #f) args . . .
[R7RS+] Terminates the current process with the exit code code. Code must be zero or posi-
tive exact integer. When a string is given to fmtstr, it is passed to format (see Section 6.22.8
[Output], page 217), with the rest arguments args, to produce a message to the standard error
port (not the current error port; see Section 6.22.3 [Common port operations], page 204).

In fact, the exiting procedure is a bit more complicated. The precise steps of exiting is as
follow.

1. The value of parameter exit-handler is checked. If it is not #f, the value is called
as a procedure with three arguments: code, fmtstr, and a list of rest arguments. It
is the default procedure of exit-handler that prints out the message to the standard
error port. If an error occurs within exit handler, it is captured and discarded. Other
exceptions are not caught.

2. The after thunks of the active dynamic winds are invoked. Any exceptions raised in
after thunks are captured and discarded.

3. The clean-up handlers registered via C API Scm_AddCleanupHandler are invoked. These
are usually responsible for under-the-hood cleanup jobs for each application that embeds
Gauche. From the Scheme world there’s not much to care.

4. The unclosed output buffered ports are flushed.

5. The process exits with code as an exit code, via exit(3).

The exit-handler mechanism allows the application to hook its exit operation. Note that
it is not for simple cleanup jobs; dynamic-wind, guard or unwind-protect are more appro-
priate. exit-handler is for more specific use just upon application exit. For example, GUI
applications may want to post a dialog instead of printing to stderr.

Chapter 6: Core library 233

For this reason, the library code shouldn’t change exit-handler; only the application knows
what to do when it exits.

Another useful case is when you want to call a third-party code which calls exit inside. In
that case you may swap the exit-handler for the one that raises a non-error exception while
calling the third-party code. Non-error exception isn’t caught in exit, effectively interrupts
the steps explained above. (Yet the after thunks of dynamic handlers are processed just like
normal exception handling case.) Your application code can then capture the exception. You
can use parameterize to swap exit-handler dynamically and thread-safely (see Section 9.21
[Parameters], page 383).

(guard (e [(eq? e ’exit-called) (handle-exit-as-desired)])

(parameterize ((exit-handler (lambda (c f a) (raise ’exit-called))))

(call-third-party-library)))

Generally, calling exit while other threads are running should be avoided, since it only
rewinds the dynamic handlers active in the calling threads, and other threads will be killed
abruptly. If you have to do so for some reason, you may be able to use exit-handler to tell
to other threads that the application is exiting. (There’s no general way, and Gauche doesn’t
even have a list of all running threads; it’s application’s responsibility).

Note on design: Some languages integrates exit handling into exception handling, treating
exit as a kind of exception. It is a tempting idea, so much that we’ve tried it. It didn’t work
out well in Gauche; a big annoyance was that when an after thunk raised an exception during
rewinding dynamic-winds, it shadowed the original exit exception.

[Function]exit-handler :optional new-handler
When called without argument, returns the value of the current exit handler. When called
with an argument, sets new-handler as the value of the exit handler, and returns the previous
value of the exit handler. new-handler must be a procedure that takes three arguments, or
#f.

The value of exit handler is thread-specific, and the default value is inherited from the value
of the current exit handler of the parent thread. exit-handler can be used as if it’s a
parameter in the parameterize macro (see Section 9.21 [Parameters], page 383).

[Function]sys-exit code
[POSIX] Terminates the current process with the exit code code. Code must be zero or
positive exact integer. This procedure calls _exit(2) directly. No cleanup is done. Unflushed
file output is discarded.

[Function]sys-abort
[POSIX] Calls POSIX abort(). This usually terminates the running process and dumps core.
No cleanup is done.

6.25.2 Command-line arguments

The recommended way to get command-line arguments passed to a Scheme script is the argument
to the main procedure (see Section 3.3 [Writing Scheme scripts], page 24). For the convenience,
there are a few ways to access to the command-line arguments globally.

Note that a Scheme code may not always be called with a command-line argument—for
example, an application-embedded Scheme scriptlet may not have the concept of command-line
at all. That’s why the main argument is preferred, since it is an explicit interface; if main is
called, the caller is responsible to pass in something.

That said, here are how to access the command-line arguments:

Chapter 6: Core library 234

[Parameter]command-line
[R7RS+] When called without arguments, it returns a list of command-line arguments, in-
cluding the program name in the first element, as a list of strings.

When Gauche is used as an embedded language, it is application’s discretion to set up this
parameter. If the application does nothing, this parameter will have an empty list. When
you use this parameter in the library you have to deal with that situation.

When called with one argument, a list of string, it will become the new value of the parameter.
You can use parameterize to switch the value of command-line dynamically (see Section 9.21
[Parameters], page 383). Note that R7RS only defines zero-argument command-line.

[Variable]*program-name*
[Variable]*argv*

These variables are bound to the program name and the list of command-line arguments, re-
spectively. In Gauche scripts that are invoked by gosh command, *program-name* is usually
the name of the script, as given to gosh. When gosh is invoked interactively, *program-name*
is gosh itself.

These variables exist in user module.

They are mainly kept for the backward compatibility. These names are compatible to STk,
but other Scheme implementation uses different conventions. The command-line parameter
above is preferred.

When Gauche is used as an embedded language, it’s the host application’s discretion to set
up these variables. Generally, you can’t count on those variables to exist. That’s another
reason you should avoid using them.

6.25.3 Environment Inquiry

[Function]sys-getenv name
[POSIX] Returns the value of the environment variable name as a string, or #f if the envi-
ronment variable is not defined.

For the portable code, you may want to use SRFI-98’s get-environment-variable (see
Section 11.18 [Accessing environment variables], page 549), which is also in R7RS.

Note: Most systems doesn’t guarantee thread-safety of getenv while environment is being
modified; however, Gauche mutexes environment accessing/mutating APIs internally, so you
don’t need to worry about the race condition as far as you use Gauche procedures.

[Function]sys-environ
Returns the current environment as a list of strings. Each string is a form of NAME=VALUE,
where NAME is the name of the environment variable and VALUE is its value. NAME never
contains a character #\=. This is useful when you want to obtain the all environment variables
of the current process. Use sys-getenv if you want to query a specific environment variable.

[Function]sys-environ->alist :optional envlist
A convenience procedure for sys-environ. When the list of environment strings (like what
sys-environ returns) is given to envlist, this procedure splits name and value of each envi-
ronment variable and returns an assoc list.

When envlist is omitted, this procedure calls sys-environ to get the current environment
variables.

For the portable code, you may want to use SRFI-98’s get-environment-variables (see
Section 11.18 [Accessing environment variables], page 549), which is also in R7RS.

(sys-environ->alist ’("A=B" "C=D=E"))

=> (("A" . "B") ("C" . "D=E"))

Chapter 6: Core library 235

[Function]sys-setenv name value :optional overwrite
[Function]sys-putenv name=value

sys-setenv inserts an environment variable name with the value value. Both name and
value must be a string. If the optional argument overwrite is #f (default), the environment
is untouched if a variable with name already exists. If overwrite is true, the variable is
overwritten.

For sys-putenv, you have to give a single string with the form of NAME=VALUE, that is,
concatenating name and value with #\=. If the environment variable with the same name
exists, it will be overwritten.

These API reflects POSIX setenv(3) and putenv(3). However, unlike putenv(3), modify-
ing the string passed to sys-putenv afterwards won’t affect the environment.

These procedures are only available when a feature identifier gauche.sys.setenv exists. Use
cond-expand (see Section 4.12 [Feature conditional], page 64) to check their availability.

(cond-expand

[gauche.sys.setenv

... use sys-setenv or sys-putenv ...]

[else

... fallback code ...])

These procedures are thread-safe as far as you access and modify the environment through
Gauche API.

[Function]sys-unsetenv name
[Function]sys-clearenv

Remove the environment variable with name (sys-unsetenv), or all environment variables.
sys-clearenv is handy when you need to run subprocess, but you cannot trust the inherited
environment.

These procedures are only available when a feature identifier gauche.sys.unsetenv exists.
Use cond-expand (see Section 4.12 [Feature conditional], page 64) to check their availability.

(cond-expand

[gauche.sys.unsetenv

... use sys-unsetenv or sys-clearenv ...]

[else

... fallback code ...])

SRFI-98 (see Section 11.18 [Accessing environment variables], page 549) also defines a subset
of above procedures to access to the environment variables. Portable programs may want to use
them instead.

[Function]gauche-version
[Function]gauche-architecture
[Function]gauche-library-directory
[Function]gauche-architecture-directory
[Function]gauche-site-library-directory
[Function]gauche-site-architecture-directory

These functions returns a string that tells information about Gauche interpreter itself.

[Function]sys-available-processors
Returns the number of available processors on the running platform. Return value is always
a positive exact integer. If Gauche can’t get the information, 1 is returned.

However, If an environment variable GAUCHE_AVAILABLE_PROCESSORS is defined and its value
can be interpreted as a positive integer, then the value is returned regardless of what the
hardware/OS tells.

Chapter 6: Core library 236

6.25.4 Filesystems

System calls that deal with filesystems. See also Section 12.23 [Filesystem utilities], page 635,
which defines high-level APIs on top of the procedures described here.

6.25.4.1 Directories

See also Section 12.23.1 [Directory utilities], page 635, for high-level API.

[Function]sys-readdir path
path must be a string that denotes valid pathname of an existing directory. This function
returns a list of strings of the directory entries. The returned list is not sorted. An error is
signaled if path doesn’t exists or is not a directory.

[Function]glob pattern :key separator folder
[Function]sys-glob pattern :key separator folder

Provides a traditional Unix glob(3) functionality; returns a list of pathnames that matches
the given pattern.

This feature used to be a wrapper of system-provided glob function, hence it was named
sys-glob. However, as of Gauche version 0.8.12, it was reimplemented in Scheme on top of
other system calls, to overcome incompatibilities between platforms and for the opportunity
to put more functionalities. So we renamed it glob. The old name sys-glob is kept for
compatibility, but new programs should use glob.

The pattern argument may be a single glob pattern, or a list of glob patterns. If a list is
given, pathnames that matches any one of the pattern are returned. If you’re a unix user,
you already know how it works.

gosh> (glob "*.scm")

("test.scm" "ext.scm")

gosh> (glob "src/*.[ch]")

("src/ext.c" "src/ext.h")

gosh> (glob ’("*.scm" "src/*.c"))

("src/ext.c" "test.scm" "ext.scm")

Unlike shell’s glob, if there’s no matching pathnames, () is returned.

In fact, globbing is a very useful tool to search hierarchical data structure in general, not
limited to the filesystems. So the glob function is implemented separately from the filesystem.
Using keyword arguments, you can glob from any kind of tree data structure. It is just that
their default values are set to look at the filesystems.

The separator argument should be a char-set, and used to split the pattern into components.
Its default is #[/]. It is not used to the actual pathnames to match.

The folder is a procedure that walks through the data structure. It is called with five
arguments:

(folder proc seed parent regexp non-leaf?)

proc is a procedure that takes two arguments. The folder should call proc with every node
in the parent whose component name matches regexp, passing around the seed value just
like fold. It should return the final value returned by proc. For example, if cons is given to
proc and () is given to seed, the return value of the folder is a list of nodes that matches the
regexp.

The representation of a node is up to the implementation of folder. It can be a pathname,
or some sort of objects, or anything. The glob procedure does not care what it is; the glob
procedure merely passes the node to subsequent call to folder as parent argument, or returns
a list of nodes as the result.

Chapter 6: Core library 237

The parent argument is basically a node, and folder traverses its children to find the match.
The exception is the initial call of folder— at the beginning glob knows nothing about each
node. When glob needs to match an absolute path, it passes #t, and when glob needs to
match a relative path, it passes #f, as the initial parent value.

The regexp argument is used to filter the child nodes. It should be matched against the
component name of the child, not including its directory names. As a special case, it can be
a symbol dir; if that’s the case, the folder should return node itself, but it may indicate node
as a directory ; e.g. if node is represented as a pathname, the folder returns a pathname with
trailing directory separator. As special cases, if node is a boolean value and regexp is dir,
the folder should return the node representing root node or current node, respectively; e.g.
if node is represented as a pathname, the folder may return "/" and "./" for those cases.

The non-leaf argument is a boolean flag. If it is true, the filter should omit the leaf nodes
from the result (e.g. only include the directories).

Now, here’s the precise spec of glob pattern matching.

Each glob pattern is a string to match pathname-like strings.

A pathname-like string is a string consists of one or more components, separated by separators.
The default separator is #[/]; you can change it with separator keyword argument. A
component cannot contain separators, and cannot be a null string. Consecutive separators
are regarded as a single separator. A pathname-like string optionally begins with, and/or
ends with a separator character.

A glob pattern also consists of components and separator characters. In a component, fol-
lowing characters/syntax have special meanings.

* When it appears at the beginning of a component, it matches zero or more
characters except a period (.). And it won’t match if the component of the
input string begins with a period.

Otherwise, it matches zero or more sequence of any characters.

** If a component is just **, it matches zero or more number of components that
match *. For example, src/**/*.h matches all of the following patterns.

src/*.h

src/*/*.h

src/*/*/*.h

src/*/*/*/*.h

...

? When it appears at the beginning of a component, it matches a character except
a period (.). Otherwise, it matches any single character.

[chars] Specifies a character set. Matches any one of the set. The syntax of chars
is the same as Gauche’s character set syntax (see Section 6.11 [Character set],
page 137). For the compatibility of the traditional glob, the ! character can be
used to complement the character set, e.g. [!abc] is the same as [^abc].

[Function]glob-fold pattern proc seed :key separator folder
This is actually a low-level construct of the glob function. Actually, glob is simply written
like this:

(define (glob patterns . opts)

(apply glob-fold patterns cons ’() opts))

The meaning of pattern, separator and folder is the same as explained above.

For each pathname that matches pattern, glob-fold calls proc with the pathname and a
seed value. The initial seed value is seed, and the value proc returns becomes the next seed

Chapter 6: Core library 238

value. The result of the last call to proc becomes the result of glob-fold. If there’s no
matching pathnames, proc is never called and seed is returned.

[Function]make-glob-fs-fold :key root-path current-path
This is a utility function to generate a procedure suitable to pass the folder keyword argument
of glob-fold and glob. Without arguments, this returns the same procedure which is used
in glob-fold and glob by default.

The keyword arguments root-path and current-path specify the paths where glob-fold starts
to search.

gosh> (glob "/tmp/*.scm")

("/tmp/x.scm" "/tmp/y.scm")

gosh> (glob "/*.scm"

:folder (make-glob-fs-fold :root-path "/tmp"))

("/tmp/x.scm" "/tmp/y.scm")

gosh> (glob "*.scm"

:folder (make-glob-fs-fold :current-path "/tmp"))

("/tmp/x.scm" "/tmp/y.scm")

See Section 6.25.4.4 [File stats], page 240, to check if a path is actually a directory.

6.25.4.2 Directory manipulation

[Function]sys-remove ↓lename
[POSIX] If ↓lename is a file it is removed. On some systems this may also work on an empty
directory, but portable scripts shouldn’t depend on it.

[Function]sys-rename old new
[POSIX] Renames a file old to new. The new name can be in different directory from the old
name, but both paths must be on the same device.

[Function]sys-tmpnam
[POSIX] Creates a file name which is supposedly unique, and returns it. This is in POSIX, but
its use is discouraged because of potential security risk. Use sys-mkstemp below if possible.

[Function]sys-mkstemp template
Creates and opens a file that has unique name, and returns two values; opened port and the
created filename. The file is created exclusively, avoiding race conditions. template is used
as the prefix of the file. Unlike Unix’s mkstemp, you don’t need padding characters. The file
is opened for writing, and its permission is set to 600.

[Function]sys-mkdtemp template
Creates a directory that has unique name, and returns the name. template is used as the
prefix of the directory. Unlike Unix’s mkdtemp, you don’t need padding characters. The
directory’s permission is set to 700.

[Function]sys-link existing new
[POSIX] Creates a hard link named new to the existing file existing.

[Function]sys-unlink pathname
[POSIX] Removes pathname. It can’t be a directory. Returns #t if it is successfully removed,
or #f if pathname doesn’t exist. An error is signaled otherwise.

There are similar procedures, delete-file/remove-file in file.util module, while they
raises an error when the named pathname doesn’t exist (see Section 12.23.4 [File operations],
page 641).

R7RS defines delete-file, which you may want to use in portable programs.

Chapter 6: Core library 239

[Function]sys-symlink existing new
Creates a symbolic link named new to the pathname existing. On systems that doesn’t
support symbolic links, this function is unbound.

[Function]sys-readlink path
If a file specified by path is a symbolic link, its content is returned. If path doesn’t exist or is
not a symbolic link, an error is signaled. On systems that don’t support symbolic links, this
function is unbound.

[Function]sys-mkdir pathname mode
[POSIX] Makes a directory pathname with mode mode. (Note that mode is masked by the
current umask; see sys-umask below). The parent directory of pathname must exist and be
writable by the process. To create intermediate directories at once, use make-directory* in
file.util (Section 12.23.1 [Directory utilities], page 635).

[Function]sys-rmdir pathname
[POSIX] Removes a directory pathname. The directory must be empty. To remove a directory
with its contents, use remove-directory* in file.util (Section 12.23.1 [Directory utilities],
page 635).

[Function]sys-umask :optional mode
[POSIX] Sets umask setting to mode. Returns previous umask setting. If mode is omitted
or #f, just returns the current umask without changing it. See man umask for more details.

6.25.4.3 Pathnames

See also Section 12.23.2 [Pathname utilities], page 638, for high-level APIs.

[Function]sys-normalize-pathname pathname :key absolute expand canonicalize
Converts pathname according to the way specified by keyword arguments. More than one
keyword argument can be specified.

absolute If this keyword argument is given and true, and pathname is not an absolute
pathname, it is converted to an absolute pathname by appending the current
working directory in front of pathname.

expand If this keyword argument is given and true, and pathname begins with ‘~’, it is
expanded as follows:

• If pathname is consisted entirely by “~”, or begins with “~/”, then the char-
acter “~” is replaced for the pathname of the current user’s home directory.

• Otherwise, characters following ‘~’ until either ‘/’ or the end of pathname
are taken as a user name, and the user’s home directory is replaced in place
of it. If there’s no such user, an error is signaled.

canonicalize

Tries to remove pathname components “.” and “..”. The pathname interpre-
tation is done purely in textural level, i.e. it doesn’t access filesystem to see the
conversion reflects the real files. It may be a problem if there’s a symbolic links
to other directory in the path.

[Function]sys-basename pathname
[Function]sys-dirname pathname

sys-basename returns a basename, that is the last component of pathname. sys-dirname

returns the components of pathname but the last one. If pathname has a trailing ‘/’, it is
simply ignored.

(sys-basename "foo/bar/bar.z") ⇒ "bar.z"

Chapter 6: Core library 240

(sys-basename "coo.scm") ⇒ "coo.scm"

(sys-basename "x/y/") ⇒ "y"

(sys-dirname "foo/bar/bar.z") ⇒ "foo/bar"

(sys-dirname "coo.scm") ⇒ "."

(sys-dirname "x/y/") ⇒ "x"

These functions doesn’t check if pathname really exists.

Some boundary cases:

(sys-basename "") ⇒ ""

(sys-dirname "") ⇒ "."

(sys-basename "/") ⇒ ""

(sys-dirname "/") ⇒ "/"

Note: The above behavior is the same as Perl’s basename and dirname. On some systems,
the command basename may return "/" for the argument "/", and "." for the argument
".".

[Function]sys-realpath pathname
sys-realpath returns an absolute pathname of pathname that does not include “.”, “..”
or symbolic links. If pathname does not exist, it includes a dangling symbolic link, or the
caller doesn’t have enough permission to access to the path, an error is signaled.

Note: the POSIX realpath(3) function is known to be unsafe, so Gauche avoids using it
and implements sys-realpath in its own.

[Function]sys-tmpdir
Returns the default directory name suitable to put temporary files.

On Unix-like systems, the environment variable TMPDIR and TMP are first checked, then falls
back to /tmp.

On Windows-native systems, it uses GetTempPath Windows API. It checks environment vari-
ables TMP, TEMP, and USERPROFILE in this order, and falls back to Windows system directory.

On both platforms, the returned pathname may not exist, or may not be writable by the
calling process.

In general, user programs and libraries are recommended to use temporary-directory (see
Section 12.23.1 [Directory utilities], page 635) instead; sys-tmpdir should be used only if
you now the raw value the platform provides.

6.25.4.4 File stats

See also Section 12.23.3 [File attribute utilities], page 640, for high-level APIs.

[Function]file-exists? path
[R7RS file] Returns true if path exists.

[Function]file-is-regular? path
[Function]file-is-directory? path

Returns true if path is a regular file, or is a directory, respectively. They return false if path
doesn’t exist at all.

[Builtin Class]<sys-stat>
An object that represents struct stat, attributes of an entry in the filesystem. It has the
following read-only slots.

Chapter 6: Core library 241

[Instance Variable of <sys-stat>]type
A symbol represents the type of the file.

regular a regular file
directory a directory
character a character device
block a block device
fifo a fifo
symlink a symbolic link
socket a socket

If the file type is none of the above, #f is returned.

Note: Some operating systems don’t have the socket file type and returns fifo for socket
files. Portable programs should check both possibilities to see if the given file is a socket.

[Instance Variable of <sys-stat>]perm
An exact integer for permission bits of struct stat. It is the same as lower 9-bits of
"mode" slot; provided for the convenience.

[Instance Variable of <sys-stat>]mode
[Instance Variable of <sys-stat>]ino
[Instance Variable of <sys-stat>]dev
[Instance Variable of <sys-stat>]rdev
[Instance Variable of <sys-stat>]nlink
[Instance Variable of <sys-stat>]uid
[Instance Variable of <sys-stat>]gid
[Instance Variable of <sys-stat>]size

An exact integer for those information of struct stat.

[Instance Variable of <sys-stat>]atime
[Instance Variable of <sys-stat>]mtime
[Instance Variable of <sys-stat>]ctime

A number of seconds since Unix Epoch for those information of struct stat.

[Function]sys-stat path
[Function]sys-fstat port-or-fd

[POSIX] Returns a <sys-stat> object of path, or the underlying file of port-or-fd, which
may be a port or a positive exact integer file descriptor, respectively.

If path is a symbolic link, a stat of the file the link points to is returned from sys-stat.

If port-or-fd is not associated to a file, sys-fstat returns #f.

[Function]sys-lstat path
Like sys-stat, but it returns a stat of a symbolic link if path is a symbolic link.

gosh> (describe (sys-stat "gauche.h"))

#<<sys-stat> 0x815af70> is an instance of class <sys-stat>

slots:

type : regular

perm : 420

mode : 33188

ino : 845140

dev : 774

rdev : 0

nlink : 1

uid : 400

Chapter 6: Core library 242

gid : 100

size : 79549

atime : 1020155914

mtime : 1020152005

ctime : 1020152005

[Function]sys-stat->mode stat
[Function]sys-stat->ino stat
[Function]sys-stat->dev stat
[Function]sys-stat->rdev stat
[Function]sys-stat->nlink stat
[Function]sys-stat->size stat
[Function]sys-stat->uid stat
[Function]sys-stat->gid stat
[Function]sys-stat->atime stat
[Function]sys-stat->mtime stat
[Function]sys-stat->ctime stat
[Function]sys-stat->file-type stat

Deprecated. Use slot-ref to access information of <sys-stat> object.

[Function]sys-access pathname amode
[POSIX] Returns a boolean value of indicating whether access of pathname is allowed in
amode. This procedure signals an error if used in a suid/sgid program (see the note below).
amode can be a combinations (logical or) of following predefined flags.

R_OK Checks whether pathname is readable by the current user.

W_OK Checks whether pathname is writable by the current user.

X_OK Checks whether pathname is executable (or searchable in case pathname is a
directory) by the current user.

F_OK Checks whether pathname exists or not, regardless of the access permissions of
pathname. (But you need to have access permissions of the directories containing
pathname).

Note: Access(2) is known to be a security hole if used in suid/sgid program to check the real
user’s privilege of accessing the file.

[Function]sys-chmod path mode
[Function]sys-fchmod port-or-fd mode

Change the mode of the file named path or an opened file specified by port-or-fd to mode.
mode must be a small positive integer whose lower 9 bits specifies POSIX style permission.

[Function]sys-chown path owner-id group-id
Change the owner and/or group of the file named path to owner-id and group-id respectively.
owner-id and group-id must be an exact integer. If either of them is -1, the corresponding
ownership is not changed.

[Function]sys-utime path :optional atime mtime
Change the file’s access time and modification time to atime andmtime, respectively. If atime
and/or mtime are omitted or #f, they are set to the current time. See also touch-file (see
Section 12.23.4 [File operations], page 641).

Chapter 6: Core library 243

6.25.4.5 Other file operations

[Function]sys-chdir dir
[POSIX] An interface to chdir(2). See also current-directory (see Section 12.23.1 [Direc-
tory utilities], page 635).

[Function]sys-pipe :key (bu↑ering :line)
[POSIX] Creates a pipe, and returns two ports. The first returned port is an input port and
the second is an output port. The data put to the output port can be read from the input
port.

Bu↑ering can be :full, :line or :none, and specifies the buffering mode of the ports opened
on the pipe. See Section 6.22.4 [File ports], page 207, for details of the buffering mode. The
default mode is sufficient for typical cases.

(receive (in out) (sys-pipe)

(display "abc\n" out)

(flush out)

(read-line in)) ⇒ "abc"

Note: the returned value is changed from version 0.3.15, in which sys-pipe returned a list
of two ports.

[Function]sys-mkfifo path mode
[POSIX] creates a fifo (named pipe) with a name path and mode mode. Mode must be a
positive exact integer to represent the file mode.

[Function]sys-isatty port-or-fd
[POSIX] port-or-fd may be a port or an integer file descriptor. Returns #t if the port is
connected to the console, #f otherwise.

[Function]sys-ttyname port-or-fd
[POSIX] port-or-fd may be a port or an integer file descriptor. Returns the name of the
terminal connected to the port, or #f if the port is not connected to a terminal.

[Function]sys-truncate path length
[Function]sys-ftruncate port-or-fd length

[POSIX] Truncates a regular file named by path or referenced by port-or-fd to a size of length
bytes. If the file is larger than length bytes, the extra data is discarded. If the file is smaller
than that, zero is padded.

6.25.5 Unix groups and users

Unix groups

[Builtin Class]<sys-group>
Unix group information. Has following slots.

[Instance Variable of <sys-group>]name
Group name.

[Instance Variable of <sys-group>]gid
Group id.

[Instance Variable of <sys-group>]passwd
Group password.

[Instance Variable of <sys-group>]mem
List of user names who are in this group.

Chapter 6: Core library 244

[Function]sys-getgrgid gid
[Function]sys-getgrnam name

[POSIX] Returns <sys-group> object from an integer group id gid or a group name name,
respectively. If the specified group doesn’t exist, #f is returned.

[Function]sys-gid->group-name gid
[Function]sys-group-name->gid name

Convenience function to convert between group id and group name.

Unix users

[Builtin Class]<sys-passwd>
Unix user information. Has following slots.

[Instance Variable of <sys-passwd>]name
User name.

[Instance Variable of <sys-passwd>]uid
User ID.

[Instance Variable of <sys-passwd>]gid
User’s primary group id.

[Instance Variable of <sys-passwd>]passwd
User’s (encrypted) password. If the system uses the shadow password file, you just get
obscure string like "x".

[Instance Variable of <sys-passwd>]gecos
Gecos field.

[Instance Variable of <sys-passwd>]dir
User’s home directory.

[Instance Variable of <sys-passwd>]shell
User’s login shell.

[Instance Variable of <sys-passwd>]class
User’s class (only available on some systems).

[Function]sys-getpwuid uid
[Function]sys-getpwnam name

[POSIX] Returns <sys-passwd> object from an integer user id uid or a user name name,
respectively. If the specified user doesn’t exist, #f is returned.

[Function]sys-uid->user-name uid
[Function]sys-user-name->uid name

Convenience functions to convert between user id and user name.

Password encryption

[Function]sys-crypt key salt
This is the interface to crypt(3). Key and salt must be a string, and an encrypted string is
returned. On systems where crypt(3) is not available, call to this function signals an error.

This routine is only for the code that needs to check password against the system’s password
database. If you are building user database on your own, you must use crypt.bcrypt module
(see Section 12.6 [Password hashing], page 590) instead of this routine.

Chapter 6: Core library 245

6.25.6 Locale

[Function]sys-setlocale category locale
[POSIX] Sets the locale of the category category to the locale locale. category must be an
exact integer; the following pre-defined variables are available. locale must be a string locale
name. Returns the locale name on success, or #f if the system couldn’t change the locale.

[Variable]LC_ALL
[Variable]LC_COLLATE
[Variable]LC_CTYPE
[Variable]LC_MONETARY
[Variable]LC_NUMERIC
[Variable]LC_TIME

Predefined variables for possible category value of sys-setlocale.

[Function]sys-localeconv
[POSIX] Returns an assoc list of various information for formatting numbers in the current
locale.

An example session. It may differ on your system settings.

(sys-localeconv)

⇒
((decimal_point . ".") (thousands_sep . "")

(grouping . "") (int_curr_symbol . "")

(currency_symbol . "") (mon_decimal_point . "")

(mon_thousands_sep . "") (mon_grouping . "")

(positive_sign . "") (negative_sign . "")

(int_frac_digits . 127) (frac_digits . 127)

(p_cs_precedes . #t) (p_sep_by_space . #t)

(n_cs_precedes . #t) (n_sep_by_space . #t)

(p_sign_posn . 127) (n_sign_posn . 127))

(sys-setlocale LC_ALL "fr_FR")

⇒ "fr_FR"

(sys-localeconv)

⇒
((decimal_point . ",") (thousands_sep . "")

(grouping . "") (int_curr_symbol . "FRF ")

(currency_symbol . "F") (mon_decimal_point . ",")

(mon_thousands_sep . " ") (mon_grouping . "\x03\x03")

(positive_sign . "") (negative_sign . "-")

(int_frac_digits . 2) (frac_digits . 2)

(p_cs_precedes . #f) (p_sep_by_space . #t)

(n_cs_precedes . #f) (n_sep_by_space . #t)

(p_sign_posn . 1) (n_sign_posn . 1))

6.25.7 Signal

Gauche can send out operating system’s signals to the other processes (including itself) and can
handle the incoming signals.

In multithread environment, all threads share the signal handlers, and each thread has its
own signal mask. See Section 6.25.7.5 [Signals and threads], page 251, for details.

Chapter 6: Core library 246

When a system call is interrupted by a signal, and a programmer defines a handler for the
signal that doesn’t transfer control to other context, the system call is restarted after the handler
returns.

On Windows native platforms, signals don’t work except some limited support of sys-kill.

6.25.7.1 Signals and signal sets

Each signal is referred by its signal number (a small integer) defined on the underlying operating
system. Variables are pre-defined to the system’s signal number. System’s signal numbers may
be architecture dependent, so you should use those variables rather than using literal integers.

[Variable]SIGABRT
[Variable]SIGALRM
[Variable]SIGCHLD
[Variable]SIGCONT
[Variable]SIGFPE
[Variable]SIGHUP
[Variable]SIGILL
[Variable]SIGINT
[Variable]SIGKILL
[Variable]SIGPIPE
[Variable]SIGQUIT
[Variable]SIGSEGV
[Variable]SIGSTOP
[Variable]SIGTERM
[Variable]SIGTSTP
[Variable]SIGTTIN
[Variable]SIGTTOU
[Variable]SIGUSR1
[Variable]SIGUSR2

These variables are bound to the signal numbers of POSIX signals.

[Variable]SIGTRAP
[Variable]SIGIOT
[Variable]SIGBUS
[Variable]SIGSTKFLT
[Variable]SIGURG
[Variable]SIGXCPU
[Variable]SIGXFSZ
[Variable]SIGVTALRM
[Variable]SIGPROF
[Variable]SIGWINCH
[Variable]SIGPOLL
[Variable]SIGIO
[Variable]SIGPWR

These variables are bound to the signal numbers of system-dependent signals. Not all of
them may be defined on some systems.

Besides each signal numbers, you can refer to a set of signals using a <sys-sigset> object.
It can be used to manipulate the signal mask, and to install a signal handler to a set of signals
at once.

[Class]<sys-sigset>
A set of signals. An empty sigset can be created by

Chapter 6: Core library 247

(make <sys-sigset>) ⇒ #<sys-sigset []>

[Function]sys-sigset signal . . .
Creates and returns an instance of <sys-sigset> with members signal Each signal may
be either a signal number, another <sys-sigset> object, or #t for all available signals.

(sys-sigset SIGHUP SIGINT) ⇒ #<sys-sigset [HUP|INT]>

[Function]sys-sigset-add! sigset signal . . .
[Function]sys-sigset-delete! sigset signal . . .

Sigset must be a <sys-sigset> object. Those procedures adds and removes the specified
signals from sigset respectively, and returns the result. sigset itself is also modified.

signal may be either a signal number, another <sys-sigset> object, or #t for all available
signals.

[Function]sys-sigset-fill! sigset
[Function]sys-sigset-empty! sigset

Fills sigset by all available signals, or empties sigset.

[Function]sys-signal-name signal
Returns the human-readable name of the given signal number. (Note that signal numbers
are system-dependent.)

(sys-signal-name 2) ⇒ "SIGINT"

6.25.7.2 Sending signals

To send a signal, you can use sys-kill which works like kill(2).

[Function]sys-kill pid sig
[POSIX] Sends a signal sig to the specified process(es). Sig must be a positive exact integer.
pid is an exact integer and specifies the target process(es):

• If pid is positive, it is the target process id.

• If pid is zero, the signal is sent to every process in the process group of the current
process.

• If pid is less than -1, the signal is sent to every process in the process group -pid.

On Windows native platforms, sys-kill may take positive integer or a process handle
(<win:handle> instance) as pid. Only SIGKILL, SIGINT and SIGABRT are allowed as sig ;
Gauche uses TerminateProcess to terminate the target process for SIGKILL, and sends the
target process CTRL_C_EVENT and CTRL_BREAK_EVENT for SIGINT and SIGABRT, respectively.

There’s no Scheme equivalence for raise(), but you can use (sys-kill (sys-getpid) sig).

6.25.7.3 Handling signals

You can register signal handling procedures in Scheme. (In multithread environment, signal
handlers are shared by all threads; see Section 6.25.7.5 [Signals and threads], page 251, for
details).

When a signal is delivered to the Scheme process, the VM just records it and processes it
later at a ’safe point’ where the state of VM is consistent. We call the signal is pending when it
is registered by the VM but not processed yet.

(Note that this makes handling of some signals such as SIGILL useless, for the process can’t
continue sensible execution after recording the signal).

If the same signal is delivered more than once before VM processes the first one, the second
one and later have no effect. (This is consistent to the traditional Unix signal model.) In other
words, for each VM loop a signal handler can be invoked at most once per each signal.

Chapter 6: Core library 248

When too many signals of the same kind are pending, Gauche assumes something has gone
wrong (e.g. infinite loop inside C-routine) and aborts the process. The default of this limit is set
rather low (3), to allow unresponsive interactive script to be terminated by typing Ctrl-C three
times. Note that the counter is individual for each signal; Gauche won’t abort if one SIGHUP

and two SIGINTs are pending, for example. You can change this limit by set-signal-pending-

limit described below.

When you’re using the gosh interpreter, the default behavior for each signal is as in the
following table.

SIGABRT, SIGILL, SIGKILL, SIGCONT, SIGSTOP, SIGSEGV, SIGBUS

Cannot be handled in Scheme. Gosh follows the system’s default behavior.

SIGCHLD, SIGTSTP, SIGTTIN, SIGTTOU, SIGWINCH

No signal handles are installed for these signals by gosh, so the process follows the
system’s default behavior. Scheme programs can install its own signal handler if
necessary.

SIGHUP, SIGQUIT, SIGTERM

Gosh installs a signal handler for these signals that exits from the application with
code 0.

SIGPIPE Gosh installs a signal handler that does nothing—that is, this signal is effectively
ignored by default.

It is a design choice. Since Gauche delays actual handling of signals, SIGPIPE would
be handled after the system call that tries to write to a broken pipe returns with
EPIPE. That makes the signal a lot less useful, for we can handle the situation with
error handlers for <system-error> with EPIPE.

The default Unix behavior of SIGPIPE is to terminate the process. It is useful for the
traditional command-line tools that are often piped together—if one of downstream
commands fails, the upstream process receives SIGPIPE and the entire command
chain is shut down without a fuss. The signal is, however, rather an annoyance for
other types of output such as sockets.

Gauche does support this “exit when pipe gets stuck” convention by ports. A
port can be configured as sigpipe sensitive; if writing to that port caused EPIPE, it
terminates the process. By default, standard output and standard error output are
configured in that way.

SIGPWR, SIGXCPU, SIGUSR1, SIGUSR2

On Linux platforms with thread support, these signals are used by the system and
not available for Scheme. On other systems, these signals behaves the same as
described below.

other signals

Gosh installs the default signal handler, which raises <unhandled-signal-error>

condition (see Section 6.20.4 [Conditions], page 198). Scheme programs can override
it by its own signal handler.

If you’re using Gauche embedded in some other application, it may redefine the default
behavior.

Use the following procedures to get/set signal handlers from Scheme.

[Function]set-signal-handler! signals handler :optional sigmask
Signals may be a single signal number or a <sys-sigset> object, and handler should be
either #t, #f, #<undef>, or a procedure that takes one argument. If handler is a procedure,

Chapter 6: Core library 249

it will be called when the process receives one of specified signal(s), with the received signal
number as an argument.

By default, the signals in signals are blocked (in addition to the signal mask in effect at that
time) during handler is executed, so that handler won’t be reentered by the same signal(s).
You can provide a <sys-sigset> object to the sigmask arg to specify the signals to be
blocked explicitly. Note that the signal mask is per-thread; if more than one thread unblocks
a signal, the handler may still be invoked during execution of the handler (in other thread)
even if you specify sigmask. You have to set the threads’ signal mask properly to avoid such
situation.

It is safe to do anything in handler, including throwing an error or invoking continuation
captured elsewhere. (However, continuations captured inside handler will be invalid once
you return from handler).

If handler is #t, the operating system’s default behavior is set to the specified signal(s). If
handler is #f, the specified signals(s) will be ignored.

If handler is #<undef> (see Section 6.5 [Undefined values], page 115), it indicates Gauche to
leave the current OS’s signal handler as it is. This value isn’t as much use in set-signal-

handler! as in get-signal-handler: If #<undef> is passed to set-signal-handler!,
it immediately returns without modifying anything. However, if you get #<undef> from
get-signal-handler, you can know that the signal handler behavior hasn’t been modified
by Gauche. (Note that once Gauche ever installs a signal handler, there is no way to revert
back to make get-signal-handler return #<undef>).

Note that signal handler setting is shared among threads in multithread environment. The
handler is called from the thread which is received the signal. See Section 6.25.7.5 [Signals
and threads], page 251, for details.

[Function]get-signal-handler signum
[Function]get-signal-handler-mask signum

Returns the handler setting, or signal mask setting, of a signal signum, respectively. See
set-signal-handler! for the meaning of the return value of get-signal-handler.

[Function]get-signal-handlers
Returns an associative list of all signal handler settings. Car of each element of returned list
is a <sys-sigset> object, and cdr of it is the handler (a procedure or a boolean value) of
the signals in the set.

[Function]get-signal-pending-limit
[Function]set-signal-pending-limit limit

Gets/sets the maximum number of pending signals per each signal type. If the number of
pending signals exceeds this limit, Gauche aborts the process. See the explanation at the
beginning of this section for the details. Limit must be a nonnegative exact integer. In the
current implementation the maximum number of limit is 255. Setting limit to zero makes
the number of pending signals unlimited.

[Macro]with-signal-handlers (handler-clause . . .) thunk
A convenience macro to install signal handlers temporarily during execution of thunk. (Note:
though this is convenient, this has certain dangerous properties described below. Use with
caution.)

Each Handler-clause may be one of the following forms.

(signals expr ...)

Signals must be an expression that will yield either a signal, a list of signals, or
a <sys-sigset> object. Installs a signal handler for signals that evaluates expr
. . . when one of the signals in signals is delivered.

Chapter 6: Core library 250

(signals => handler)

This form sets the handler of signals to handler, where handler should be either
#t, #f or a procedure that takes one argument.

If handler is a procedure, it will be called when the process receives one of
specified signal(s), with the received signal number as an argument. If handler
is #t, the operating system’s default behavior is set to the specified signal(s). If
handler is #f, the specified signals(s) will be ignored.

When the control exits from thunk, the signal handler setting before with-signal-handlers
are recovered.

CAVEAT: If you’re setting more than one signal handlers, they are installed in serial. If a
signal is delivered before all the handlers are installed, the signal handler state may be left
inconsistent. Also note that the handler setting is a global state; you can’t set "thread local"
handler by with-signal-handlers, although the form may be misleading.

6.25.7.4 Masking and waiting signals

A Scheme program can set a signal mask, which is a set of signals to be blocked from delivery. If
a signal is delivered which is completely blocked in the process, the signal becomes "pending".
The pending signal may be delivered once the signal mask is changed not to block the specified
signal. (However, it depends on the operating system whether the pending signals are queued
or not.)

In multithread environment, each thread has its own signal mask.

[Function]sys-sigmask how mask
Modifies the current thread’s signal mask, and returns the previous signal mask. Mask should
be a <sys-sigset> object to specify the new mask, or #f if you just want to query the current
mask without modifying one.

If you give <sys-sigset> object to mask, how argument should be one of the following
integer constants:

SIG_SETMASK

Sets mask as the thread’s signal mask.

SIG_BLOCK

Adds signals in mask to the thread’s signal mask.

SIG_UNBLOCK

Removes signals in mask from the thread’s signal mask.

[Function]sys-sigsuspend mask
Atomically sets thread’s signal mask to mask and suspends the calling thread. When a signal
that is not blocked and has a signal handler installed is delivered, the associated handler is
called, then sys-sigsuspend returns.

[Function]sys-sigwait mask
[POSIX] Mask must be a <sys-sigset> object. If any of signals in mask is/are pending
in the OS, atomically clears one of them and returns the signal number of the cleared one.
If there’s no signal in mask pending, sys-sigwait blocks until any of the signals in mask
arrives.

You have to block all signals in mask in all threads before calling sys-sigwait. If there’s a
thread that doesn’t block the signals, the behavior of sys-sigwait is undefined.

Note: Sys-sigwait uses system’s sigwait function, whose behavior is not defined if there’s
a signal handler on the signals it waits. To avoid complication, sys-sigwait resets the
handlers set to the signals included in mask before calling sigwait to SIG_DFL, and restores

Chapter 6: Core library 251

them after sigwait returns. If another thread changes signal handlers while sys-sigwait is
waiting, the behavior is undefined; you shouldn’t do that.

6.25.7.5 Signals and threads

The semantics of signals looks a bit complicated in the multithread environment. Nevertheless,
it is pretty comprehensible once you remember a small number of rules. Besides, Gauche sets
up the default behavior easy to use, while allowing programmers to do tricky stuff.

If you don’t want to be bothered by the details, just remember one thing, with one sidenote.
By default, signals are handled by the primordial (main) thread. However, if the main thread is
suspended on mutex or condition variable, the signal may not be handled at all, so be careful.

Now, if you are curious about the details, here are the rules:

• The signal handler setting is shared by all threads.

• The signal mask is thread-specific.

• If a process receives an asynchronous signal (think it as a signal delivered from other pro-
cesses), one thread is chosen, out of threads which don’t block that signal.

• The signal handler is run on the chosen thread. However, if the chosen thread is waiting for
acquiring a mutex lock or a condition variable, the handling of signal will be delayed until
the thread is restarted. Signal delivery itself doesn’t restart the thread.

Now, these rules have several implications.

If there are more than one thread that don’t block a particular signal, you can’t know which
thread receives the signal. Such a situation is much less useful in Gauche than C programs
because of the fact that the signal handling can be delayed indefinitely if the receiver thread is
waiting on mutex or condition variable. So, it is recommended to make sure, for each signal,
there is only one thread that can receive it.

In Gauche, all threads created by make-thread (see Section 9.32.2 [Thread procedures],
page 430) blocks all the signals by default (except the reserved ones). This lets all the signals
to be directed to the primordial (main) thread.

Another strategy is to create a thread dedicated for handling signals. To do so, you have to
block the signals in the primordial thread, then create the signal-handling thread, and within
that thread you unblock all the signals. Such a thread can just loop on sys-pause.

(thread-start!

(make-thread

(lambda ()

(sys-sigmask SIG_SETMASK (make <sys-sigset>)) ;;empty mask

(let loop () (sys-pause) (loop)))))

Complicated application may want to control per-thread signal handling precisely. You can
do so, just make sure that at any moment only the designated thread unblocks the desired signal.

6.25.8 System inquiry

[Function]sys-uname
[POSIX] Returns a list of five elements, (sysname nodename release version machine).

[Function]sys-gethostname
Returns the host name. If the system doesn’t have gethostname(), the second element of the
list returned by sys-uname is used.

[Function]sys-getdomainname
Returns the domain name. If the system doesn’t have getdomainname(), "localdomain" is
returned.

Chapter 6: Core library 252

[Function]sys-getcwd
[POSIX] Returns the current working directory by a string. If the current working direc-
tory couldn’t be obtained from the system, an error is signaled. See also sys-chdir (see
Section 6.25.4.5 [Other file operations], page 243), current-directory (see Section 12.23.1
[Directory utilities], page 635).

[Function]sys-getgid
[Function]sys-getegid

[POSIX] Returns integer value of real and effective group id of the current process, respec-
tively. Use sys-gid->group-name or sys-getgrgid to obtain the group’s name and other
information associated to the returned group id (see Section 6.25.5 [Unix groups and users],
page 243).

[Function]sys-setgid gid
[POSIX] Sets the effective group id of the current process.

[Function]sys-getuid
[Function]sys-geteuid

[POSIX] Returns integer value of real and effective user id of the current process, respectively.
Use sys-uid->user-name or sys-getpwuid to obtain the user’s name and other information
associated to the returned user id (see Section 6.25.5 [Unix groups and users], page 243).

[Function]sys-setuid uid
[POSIX] Sets the effective user id of the current process.

[Function]sys-getgroups
[POSIX] Returns a list of integer ids of supplementary groups.

[Function]sys-setgroups gids
Sets the current process’s groups to the given list of integer group ids. The caller must have
the appropriate privilege.

This procedure is only available when the feature id gauche.sys.setgroups exists. Use
cond-expand for the portable program:

(cond-expand

[gauche.sys.setgroups (sys-setgroups ’(0 1))]

[else])

[Function]sys-getlogin
[POSIX] Returns a string of the name of the user logged in on the controlling terminal of the
current process. If the system can’t determine the information, #f is returned.

[Function]sys-getpgrp
[POSIX] Returns a process group id of the current process.

[Function]sys-getpgid pid
Returns a process group id of the process specified by pid. If pid is zero, the current process
is used.

Note that getpgid() call is not in POSIX. If the system doesn’t have getpgid(),
sys-getpgid still works if pid is zero (it just calls sys-getpgrp), but signals an error if pid
is not zero.

[Function]sys-setpgid pid pgid
[POSIX] Sets the process group id of the process pid to pgid. If pid is zero, the process ID
of the current process is used. If pgid is zero, the process ID of the process specified by pid

is used. (Hence sys-setpgid(0, 0) sets the process group id of the current process to the
current process id).

Chapter 6: Core library 253

[Function]sys-setsid
[POSIX] Creates a new session if the calling process is not a process group leader.

[Function]sys-getpid
[Function]sys-getppid

[POSIX] Returns the current process id and the parent process id, respectively.

[Function]sys-times
[POSIX]

[Function]sys-ctermid
[POSIX] Returns the name of the controlling terminal of the process. This may be just a
"/dev/tty". See also sys-ttyname.

[Function]sys-getrlimit resource
[Function]sys-setrlimit resource current :optional maximum

[POSIX] Get and set resource limits respectively. Resource is an integer constant to specify
the resource of concern. The following constants are defined. (The constants marked as bsd
and/or linux indicates that they are not defined in POSIX but defined in BSD and/or Linux.
Other systems may or may not have them. Consult getrlimit manpage of your system for
the details.)

RLIMIT_AS RLIMIT_CORE

RLIMIT_CPU RLIMIT_DATA

RLIMIT_FSIZE RLIMIT_LOCKS

RLIMIT_MEMLOCK (bsd/linux) RLIMIT_MSGQUEUE (linux)

RLIMIT_NICE (linux) RLIMIT_NOFILE

RLIMIT_NPROC (bsd/linux) RLIMIT_RSS (bsd/linux)

RLIMIT_RTPRIO (linux) RLIMIT_SIGPENDING (linux)

RLIMIT_SBSIZE RLIMIT_STACK

RLIMIT_OFILE

[Function]sys-strerror errno
Errno must be an exact nonnegative integer representing a system error number. This func-
tion returns a string describing the error.

To represent errno, the following constants are defined. Each constant is bound to an exact
integer representing the system’s error number. Note that the actual value may differ among
systems, and some of these constants may not be defined on some systems.

E2BIG EHOSTDOWN ENETDOWN ENXIO

EACCES EHOSTUNREACH ENETRESET EOPNOTSUPP

EADDRINUSE EIDRM ENETUNREACH EOVERFLOW

EADDRNOTAVAIL EILSEQ ENFILE EPERM

EADV EINPROGRESS ENOANO EPFNOSUPPORT

EAFNOSUPPORT EINTR ENOBUFS EPIPE

EAGAIN EINVAL ENOCSI EPROTO

EALREADY EIO ENODATA EPROTONOSUPPORT

EBADE EISCONN ENODEV EPROTOTYPE

EBADF EISDIR ENOENT ERANGE

EBADFD EISNAM ENOEXEC EREMCHG

EBADMSG EKEYEXPIRED ENOKEY EREMOTE

EBADR EKEYREJECTED ENOLCK EREMOTEIO

EBADRQC EKEYREVOKED ENOLINK ERESTART

EBADSLT EL2HLT ENOMEDIUM EROFS

EBFONT EL2NSYNC ENOMEM ESHUTDOWN

Chapter 6: Core library 254

EBUSY EL3HLT ENOMSG ESOCKTNOSUPPORT

ECANCELED EL3RST ENONET ESPIPE

ECHILD ELIBACC ENOPKG ESRCH

ECHRNG ELIBBAD ENOPROTOOPT ESRMNT

ECOMM ELIBEXEC ENOSPC ESTALE

ECONNABORTED ELIBMAX ENOSR ESTRPIPE

ECONNREFUSED ELIBSCN ENOSTR ETIME

ECONNRESET ELNRNG ENOSYS ETIMEDOUT

EDEADLK ELOOP ENOTBLK ETOOMANYREFS

EDEADLOCK EMEDIUMTYPE ENOTCONN ETXTBSY

EDESTADDRREQ EMFILE ENOTDIR EUCLEAN

EDOM EMLINK ENOTEMPTY EUNATCH

EDOTDOT EMSGSIZE ENOTNAM EUSERS

EDQUOT EMULTIHOP ENOTSOCK EWOULDBLOCK

EEXIST ENAMETOOLONG ENOTTY EXDEV

EFAULT ENAVAIL ENOTUNIQ EXFULL

EFBIG

[Function]sys-errno->symbol k
[Function]sys-symbol->errno symbol

These procedures convert between integer error number and the symbol of its unix name (e.g.
EINTR).

If the given error number or name isn’t available on the running platform, those procedures
return #f. See sys-strerror above for potentially available error names.

Valid error names and their actual values differ among platforms. These procedures make it
easy to write portable meta-code that deal with system errors.

6.25.9 Time

Gauche has two representations of time, one is compatible to POSIX API, and the other is
compatible to SRFI-18, SRFI-19 and SRFI-21. Most procedures accept both representations;
if not, the representation the procedure accepts is indicated as either ’POSIX time’ or ’SRFI
time’.

POSIX time is represented by a real number which is a number of seconds since Unix Epoch
(Jan 1, 1970, 0:00:00GMT). Procedure sys-time, which corresponds to POSIX time(2), returns
this time representation.

SRFI-compatible time is represented by an object of <time> class, which keeps seconds
and nanoseconds, as well as the type of the time (UTC, TAI, duration, process time, etc).
Current-time returns this representation.

POSIX time

[Function]sys-time
[POSIX] Returns the current time in POSIX time (the time since Epoch (00:00:00 UTC,
January 1, 1970), measured in seconds). It may be a non-integral number, depending on the
architecture.

Note that POSIX’s definition of “seconds since the Epoch” doesn’t take leap seconds into
account.

[Function]sys-gettimeofday
Returns two values. The first value is a number of seconds, and the second value is a
fraction in a number of microseconds, since 1970/1/1 0:00:00 UTC. If the system doesn’t
have gettimeofday call, this function calls time(); in that case, microseconds portion is
always zero.

Chapter 6: Core library 255

[Builtin Class]<sys-tm>
Represents struct tm, a calendar date. It has the following slots.

[Instance Variable of <sys-tm>]sec
Seconds. 0-61.

[Instance Variable of <sys-tm>]min
Minutes. 0-59.

[Instance Variable of <sys-tm>]hour
Hours. 0-23.

[Instance Variable of <sys-tm>]mday
Day of the month, counting from 1. 1-31.

[Instance Variable of <sys-tm>]mon
Month, counting from 0. 0-11.

[Instance Variable of <sys-tm>]year
Years since 1900, e.g. 102 for the year 2002.

[Instance Variable of <sys-tm>]wday
Day of the week. Sunday = 0 .. Saturday = 6.

[Instance Variable of <sys-tm>]yday
Day of the year. January 1 = 0 .. December 31 = 364 or 365.

[Instance Variable of <sys-tm>]isdst
A flag that indicates if the daylight saving time is in effect. Positive if DST is in effect,
zero if not, or negative if unknown.

[Function]sys-gmtime time
[Function]sys-localtime time

[POSIX] Converts time to <sys-tm> object, represented in GMT or local timezone, respec-
tively. Time can be either POSIX-time or SRFI-time.

[Function]sys-ctime time
[POSIX] Converts time to it string representation, using POSIX ctime(). Time can be either
POSIX-time or SRFI-time.

[Function]sys-difftime time1 time0
[POSIX] Returns the difference of two times in the real number of seconds. Time0 and time1
can be either POSIX-time or SRFI-time.

[Function]sys-asctime tm
[POSIX] Converts <sys-tm> object tm to a string representation.

[Function]sys-strftime format tm
[POSIX] Converts <sys-tm> object tm to a string representation, according to a format string
format.

[Function]sys-mktime tm
[POSIX] Converts <sys-tm> object tm, expressed as local time, to the POSIX-time (number
of seconds since Epoch).

[Function]sys-tm->alist tm
(Deprecated function)

Chapter 6: Core library 256

SRFI time

[Builtin Class]<time>
The <time> object also represents a point of time.

[Instance Variable of <time>]type
Indicates time type. time-utc is the default, and that represents the number of seconds
since Unix Epoch. SRFI-19 (see Section 11.7 [Time data types and procedures], page 527)
adds more types.

[Instance Variable of <time>]second
Second part of the time.

[Instance Variable of <time>]nanosecond
Nanosecond part of the time.

[Function]current-time
[SRFI-18][SRFI-21] Returns the <time> object representing the current time in time-utc.
See Section 11.7 [Time data types and procedures], page 527, for it redefines current-time
to allow optional argument to specify time type.

[Function]time? obj
[SRFI-18][SRFI-19][SRFI-21] Returns #t if obj is a time object.

[Function]time->seconds time
[Function]seconds->time seconds

[SRFI-18][SRFI-21] Converts between time object and the number of seconds (POSIX-time).
Time argument of time->seconds has to be a <time> object.

6.25.10 Process management

The following procedures provide pretty raw, direct interface to the system calls. See also
Section 9.24 [High Level Process Interface], page 393, which provides more convenient process
handling on top of these primitives.

Fork and exec

[Function]sys-system command
[POSIX] Runs command in a subprocess. command is usually passed to sh, so the shell
metacharacters are interpreted.

This function returns an integer value system() returned. Since POSIX doesn’t define what
system() returns, you can’t interpret the returned value in a portable way.

On Windows native platforms this will pass the argument to cmd.exe.

[Function]sys-fork
[POSIX] Fork the current process. Returns 0 if you’re in the child process, and a child process’
pid if you’re in the parent process. All the opened file descriptors are shared between the
parent and the child. See fork(2) of your system for details.

If the child process runs some Scheme code and exits instead of calling sys-exec, it should
call sys-exit instead of exit to terminate itself. Normal exit call tries to flush the file
buffers, and on some OS it messes up the parent’s file buffers.

It should be noted that sys-fork is not safe when multiple threads are running. Because
fork(2) copies the process’ memory image which includes any mutex state, a mutex which
is locked by another thread at the time of sys-fork remains locked in the child process,
nevertheless the child process doesn’t have the thread that unlock it! (This applies to the

Chapter 6: Core library 257

internal mutexes as well, so even you don’t use Scheme mutex explicitly, this situation can
always happen.)

If what you want is to spawn another program in a multi-threaded application, use sys-fork-
and-exec explained below. If you absolutely need to run Scheme code in the child process,
a typical technique is that you fork a manager process at the beginning of application, and
whenever you need a new process you ask the manager process to fork one for you.

This procedure is not available on Windows native platforms.

[Function]sys-exec command args :key directory iomap sigmask
[POSIX+] Execute command with args, a list of arguments. The current process image is
replaced by command, so this function never returns.

All elements of args must be strings. The first element of args is used as argv[0], i.e. the
program name.

The keyword argument directory must be a string of a directory name or #f. If it is a string,
sys-exec change current working directory there before executing the program.

The iomap keyword argument, when provided, specifies how the open file descriptors are
treated. It must be the following format:

((to-fd . from-port-or-fd) ...)

To-fd must be an integer, and from-port-or-fd must be an integer file descriptor or a port.
Each element of the list makes the file descriptor of from-port-or-fd of the current process be
mapped to the file descriptor to-fd in the executed process.

If iomap is provided, any file descriptors other than specified in the iomap list will be closed
before exec(). Otherwise, all file descriptors in the current process remain open.

(sys-exec "ls" ’("ls" "-l")) ⇒ ;; ls is executed.

(let ((out (open-output-file "ls.out")))

(sys-exec "ls" ’("ls" "-l") :iomap ‘((2 . 1) (1 . ,out)))

⇒
;; ls is executed, with its stderr redirected

;; to the current process’s stdout, and its

;; stdout redirected to the file "ls.out".

The sigmask keyword argument can be an instance of <sys-sigset> or #f (See Section 6.25.7
[Signal], page 245, for the details of signal masks). If it is an instance of <sys-sigset>, the
signal mask of calling thread is replaced by it just before exec(2) is called. It is useful, for
example, to run an external program from a thread where all signals are blocked (which is
the default; see Section 6.25.7.5 [Signals and threads], page 251). Without setting sigmask,
the execed process inherits calling thread’s signal mask and become a process that blocks all
signals, which is not very convenient in most cases.

When sys-exec encounters an error, most of the time it raises an error condition. Once the
file descriptors are permuted, however, it would be impractical to handle errors in reasonable
way (you don’t even know stderr is still available!), so Gauche simply exits on the error.

On Windows native platforms, only redirections of stdin, stdout and stderr are handled.
Singal mask is ignored, for Windows doesn’t have signals as the means of interprocess com-
munication.

[Function]sys-fork-and-exec command args :key directory iomap sigmask
detached

Like sys-exec, but executes fork(2) just before remapping I/O, altering signal mask and
call execvp(2). Returns child’s process id. The meanings of arguments are the same as
sys-exec.

Chapter 6: Core library 258

It is strongly recommended to use this procedure instead of sys-fork and sys-exec combina-
tion when you need to spawn another program while other threads are running. No memory
allocation nor lock acquisition is done between fork(2) and execvp(2), so it’s pretty safe in
the multithreaded environment.

On Windows native platforms, this procedure returns a Windows handle object
(<win:handle>) of the created process instead of an integer process ID. See below for
Windows process handle specific API.

Like sys-exec, only redirections of stdin, stdout and stderr are handled on Windows native
platforms.

When a true value is given to the detached keyword argument, the executed process is
detached from the current process group and belongs to its own group. That is, it won’t be
affected to the signal sent to the process group the caller process currently belongs to. It is
a part of the common idioms to start a daemon process.

On Unix platforms, besides the executed process gets its own session by setsid(2), it per-
forms extra fork(3) to make its parent be the init process (pid=1). (Note: It means the
running process is actually a grandchild of the calling process, although that relationship
isn’t preserved. The returned pid is the running process’s one, not the intermediate process
that exits immediately.)

OnWindows native platforms, this flag causes the new process to be created with the CREATE_
NEW_PROCESS_GROUP creation flag.

Wait

[Function]sys-wait
[POSIX] Calls system’s wait(2). The process suspends its execution until one of the child
terminates. Returns two exact integer values, the first one is the child’s process id, and the
second is a status code. The status code can be interpreted by the following functions.

[Function]sys-waitpid pid :key nohang untraced
[POSIX] This is an interface to waitpid(3), an extended version of wait.

pid is an exact integer specifying which child(ren) to be waited. If it is a positive integer, it
waits for that specific child. If it is zero, it waits for any member of this process group. If it
is -1, it waits for any child process. If it is less than -1, it waits for any child process whose
process group id is equal to the absolute value of pid.

If there’s no child process to wait, or a specific pid is given but it’s not a child process of the
current process, an error (<system-error>, ECHILD) is signaled.

The calling process suspends until one of those child process is terminated, unless true is
specified to the keyword argument nohang.

If true is specified to the keyword argument untraced, the status of stopped child process can
be also returned.

The return values are two exact integers, the first one is the child process id, and the second
is a status code. If nohang is true and no child process status is available, the first value is
zero.

On Windows native platforms, this procedure may also accept a Windows process handle
(<win:handle>) object as pid to wait the specific process. You can pass -1 as pid to wait
for any children, but you cannot wait for a specific process group.

[Function]sys-wait-exited? status
[Function]sys-wait-exit-status status

[POSIX] The argument is an exit status returned as a second value from sys-wait or
sys-waitpid. sys-wait-exited? returns #t if the child process is terminated normally.

Chapter 6: Core library 259

sys-wait-exit-status returns the exit code the child process passed to exit(2), or the
return value of main().

[Function]sys-wait-signaled? status
[Function]sys-wait-termsig status

[POSIX] The argument is an exit status returned as a second value from sys-wait or
sys-waitpid. sys-wait-signaled? returns #t if the child process is terminated by an
uncaught signal. sys-wait-termsig returns the signal number that terminated the child.

[Function]sys-wait-stopped? status
[Function]sys-wait-stopsig status

[POSIX] The argument is an exit status returned as a second value from sys-waitpid.
sys-wait-stopped? returns #t if the child process is stopped. This status can be caught
only by sys-waitpid with true untraced argument. sys-wait-stopsig returns the signum
number that stopped the child.

On Windows native platforms, exit code is not structured as on Unix. You cannot distinguish
a process being exited voluntarily or by forced termination. Gauche uses exit code #xff09 to
terminate other process with sys-kill, and the above sys-wait-* procedures are adjusted
accordingly, so that sys-wait-signaled? can likely to be used to check whether if the child
process is terminated by Gauche. (See Section 6.25.7 [Signal], page 245, for the details of signal
support on Windows.) Sys-wait-stopped? never returns true on Windows native platforms
(yet).

Windows specific utilities

The following procedures are to access Windows process handle. They are only available on
Windows native platforms.

[Function]sys-win-process? obj
[Windows] Returns #t iff obj is a Windows process handle object.

[Function]sys-win-process-pid handle
[Windows] Returns an integer PID of the process represented by a Windows process handle
handle. An error is signaled if handle is not a valid Windows process handle.

Note that the API to get a pid from a process handle is only provided on or after Windows
XP SP1. If you call this procedure on Windows version before that, -1 will be returned.

6.25.11 I/O multiplexing

The interface functions for select(2). The higher level interface is provided on top of these
primitives; see Section 9.27 [Simple dispatcher], page 411.

[Builtin Class]<sys-fdset>
Represents fd_set, a set of file descriptors. You can make an empty file descriptor set by
make method:

(make <sys-fdset>)

[Function]sys-fdset elt . . .
Creates a new <sys-fdset> instance with file descriptors specified by elt Each elt can be
an integer file descriptor, a port, or a <sys-fdset> instance. In the last case, the descriptors
in the given fdset is copied to the new fdset.

[Function]sys-fdset-ref fdset port-or-fd
[Function]sys-fdset-set! fdset port-or-fd 'ag

Gets and sets specific file descriptor bit of fdset. port-or-fd may be a port or an integer file
descriptor. If port-or-fd is a port that doesn’t have associated file descriptor, sys-fdset-ref
returns #f, and sys-fdset-set! doesn’t modify fdset. 'ag must be a boolean value.

Chapter 6: Core library 260

You can use generic setter of sys-fdset-ref as this:

(set! (sys-fdset-ref fdset port-or-fd) flag)

≡ (sys-fdset-set! fdset port-or-fd flag)

[Function]sys-fdset-copy! dest-fdset src-fdset
Copies the content of src-fdset into dest-fdset. Returns dest-fdset.

[Function]sys-fdset-clear! fdset
Empties and returns fdset.

[Function]sys-fdset->list fdset
[Function]list->sys-fdset fds

Converts an fdset to a list of integer file descriptors and vice versa. In fact, list->sys-fdset
works just like (lambda (fds) (apply sys-fdset fds)), so it accepts ports and other fdsets
as well as integer file descriptors.

[Function]sys-fdset-max-fd fdset
Returns the maximum file descriptor number in fdset.

[Function]sys-select readfds writefds exceptfds :optional timeout
[Function]sys-select! readfds writefds exceptfds :optional timeout

Waits for a set of file descriptors to change status. readfds, writefds, and exceptfds are
<fdset> objects to represent a set of file descriptors to watch. File descriptors in readfds are
watched to see if characters are ready to be read. File descriptors in writefds are watched if
writing to them is ok. File descriptors in exceptfds are watched for exceptions. You can pass
#f to one or more of those arguments if you don’t care about watching the condition.

timeout specifies maximum time sys-select waits for the condition change. It can be a
real number, for number of microseconds, or a list of two integers, the first is the number
of seconds and the second is the number of microseconds. If you pass #f, sys-select waits
indefinitely.

sys-select returns four values. The first value is a number of descriptors it detected status
change. It may be zero if timeout expired. The second, third and fourth values are <fdset>
object that contains a set of descriptors that changed status for reading, writing, and excep-
tion, respectively. If you passed #f to one or more of readfds, writefds and exceptfds, the
corresponding return value is #f.

sys-select! variant works the same as sys-select, except it modifies the passed <fdset>

arguments. sys-select creates new <fdset> objects and doesn’t modify its arguments.

6.25.12 Garbage Collection

The garbage collector runs implicitly whenever it is necessary, and you don’t usually need to
worry about it. However, in case if you do need to worry, here are a few procedures you can use.

[Function]gc
Trigger a full GC. It may be useful if you want to reduce interference of GC in certain parts
of code by calling this immediately before that.

[Function]gc-stat
Returns a list of lists, each inner list contains a keyword and related statistics. Current
statistics include :total-heap-size, :free-bytes, :bytes-since-gc and :total-bytes.

Chapter 6: Core library 261

6.25.13 Miscellaneous system calls

[Function]sys-pause
[POSIX] Suspends the process until it receives a signal whose action is to either execute a
signal-catching function or to terminate the process. This function only returns when the
signal-catching function returns. The returned value is undefined.

Note that just calling pause() doesn’t suffice the above semantics in Scheme-level. Internally
this procedure calls sigsuspend() with the current signal mask.

[Function]sys-alarm seconds
[POSIX] Arranges a SIGALRM signal to be delivered after seconds. The previous settings
of the alarm clock is canceled. Passing zero to seconds doesn’t schedule new alarm. Returns
the number of seconds remaining until previously scheduled alarm was due to be delivered
(or zero if no alarm is active).

[Function]sys-sleep seconds :optional (no-retry #f)
[POSIX] Suspends the calling thread until the specified number of seconds elapses.

Note that libc’s sleep(3) could return before the specified interval if the calling thread re-
ceives a signal; in that case, sys-sleep automatically restarts sleep(3) again with remaining
time interval (after invoking Scheme signal handlers if there’s any) by default. So you can
count on the thread does sleep at least the specified amount of time.

If you do want sys-sleep to return prematurely upon receiving a signal, you can give a true
value to an optional argument no-retry.

The reason that we retries by default is that Gauche’s GC may use signals to synchronize be-
tween threads. If GC is invoked by one thread While another thread is sleeping on sleep(3),
it may return prematurely. It could happen often if other threads allocate a lot, which could
make sys-sleep unreliable.

Returns zero if it sleeps well (which is always the case if no-retry is false), or the number of
unslept seconds if it is woke up by a signal.

To be portable across POSIX implementation, keep seconds less than 65536.

Some systems may be using alarm(2) to implement sleep(3), so you shouldn’t mix
sys-sleep and sys-alarm.

[Function]sys-nanosleep nanoseconds :optional (no-retry #f)
[POSIX] Suspends the calling thread until the specified number of nanoseconds elapses. The
argument nanoseconds can be a <time> object (see Section 6.25.9 [Time], page 254), or a
real number.

The system’s nanosleep(2) could return before the specified interval if the calling thread
receives a signal; in that case, sys-nanosleep automatically restarts nanosleep(2) again
with remaining time interval (after invoking Scheme signal handlers if there’s any) by default.
So you can count on the thread does sleep at least the specified amount of time.

The reason that we retries by default is that Gauche’s GC may use signals to synchro-
nize between threads. If GC is invoked by one thread while another thread is sleeping on
nanosleep(2), it may return prematurely. It could happen often if other threads allocate a
lot, which could make sys-nanosleep unreliable.

Returns #f if nanoseconds elapsed (which is always the case if no-retry is #f), or a <time>

object that indicates the remaining time if sys-nanosleep is interrupted by a signal.

;wait for 0.5 sec
(sys-nanosleep 500000000)

;wait for 1.3 sec

Chapter 6: Core library 262

(sys-nanosleep (make <time> :second 1 :nanosecond 300000000))

Note: On Windows native platforms, this function is emulated using Sleep. The argument
is rounded up to millisecond resolution, and it won’t be interrupted by a signal.

[Function]sys-random
[Function]sys-srandom seed

A pseudo random number generator. sys-random returns a random number between 0 and
a positive integer rand max, inclusive. This is a straightforward interface to random(3). If
the underlying system doesn’t have random(3), lrand48(3) is used.

sys-srandom sets the seed of the random number generator. It uses either srandom(3) or
srand48(3), depending on the system.

The intention of these functions are to provide an off-the-stock handy random number gen-
erator (RNG) for applications that doesn’t sensitive to the quality and/or speed of RNG.
For serious statistics analysis, use Mersenne Twister RNG in math.mt-random module (see
Section 12.25 [Mersenne-Twister random number generator], page 646).

[Variable]RAND_MAX
Bound to a positive integer that sys-random may return.

[Function]sys-get-osfhandle port-or-fd
[Windows] This procedure is only available on Windows native platforms. Returns a Windows
file handle associated to the given port or integer file descriptor. Throws an error if the given
argument does not have associated file handle.

6.26 Development helper API

Gauche has some basic built-in APIs to help developers to analyze the program.

6.26.1 Debugging aid

[Macro]debug-print expr
This macro prints expr in a source form, then evaluates it, then prints out the result(s), and
returns them.

The special reader syntax #?=expr is expanded into (debug-print expr). See Section 3.4
[Debugging], page 26, for the details.

[Parameter]debug-print-width
This parameter specifies the maximum width of information to be printed by debug-print.
If the information takes more columns than the value of this parameter, it is truncated.

To show all the information, set #f to this parameter.

[Macro]debug-funcall (PROC ARG ...)
This macro prints the value of arguments right before calling PROC and the result(s) of the
call afterwards.

The special reader syntax #?,expr is expanded into (debug-funcall expr). See Section 3.4
[Debugging], page 26, for the details.

[Function]debug-source-info obj
Retrieves source information attached to obj. The source information is returned as a list of
source file name and an integer line number. If no source information is available in obj, #f
is returned.

Chapter 6: Core library 263

[Function]source-code closure
Returns the source code of closure, if available. Otherwise, #f is returned.

Currently, only the code that’s directly read from Scheme source is available; if the Scheme
code is precompiled, the source code isn’t saved. It may be changed in future.

[Function]source-location closure
Returns the location (a list of filename and line number) where closure is defined, if available.
Otherwise, #f is returned.

gosh> (use rfc.http)

gosh> (source-location http-get)

("/usr/share/gauche-0.9/0.9.5/lib/rfc/http.scm" 443)

[Function]disasm closure
Disassemble the compiled body of closure and print it. It may not be very useful unless
you’re tracking a compiler bug, or trying to tune the program to its limit.

If you’re reading the disassembler output, keep in mind that the compiled code vector may
have some dead code; they are produced by the jump optimization, but the compiler doesn’t
bother to eliminate them.

[Function]debug-label obj
This returns a string that is quasi-unique to an object obj. “Quasi-unique” means the label
is unique to the obj— the same (eq?) objs returns the same string, and if two objs return
different string they aren’t eq? to each other— until next GC occurs.

This is mostly for printing out anonymous objects that doesn’t have any other good way to
distinguish each other. Note that uniqueness isn’t guaranteed across GCs, you shouldn’t use
the returned value as the key to identify the objects.

6.26.2 Profiler API

These are the functions to control Gauche’s built-in profiler. See Section 3.6.1 [Using profiler],
page 29, for the explanation of the profiler.

Note that the profiler isn’t guaranteed to work correctly yet in multi-threaded program, since
the interaction between setitimer and threads are platform-dependent.

[Function]profiler-start
Starts the sampling profiler. If the profiler is already started, nothing is done.

[Function]profiler-stop
Stop the sampling profiler, and save the sampled data into the internal structure. If there
are already saved sampled data, the newly obtained data is added to it. If the profiler isn’t
running, nothing is done.

[Function]profiler-reset
Stop the profiler if it is running. Then discard the saved sampled data.

[Function]profiler-show :key sort-by max-rows
Show the saved sampled data.

The keyword argument sort-by may be one of the symbols time, count, or time-per-call,
to specify how the result should be sorted. The default is time.

The keyword argument max-rows specifies the max number of rows to be shown. If it is #f,
all the data is shown.

264

[Function]with-profiler thunk
A convenience procedure. Call thunk with the sampling profiler running, and show the result
to the current output port afterwards. Returns value(s) thunk yields. The profiler is reset
after the result is shown.

You can’t nest this construct; the innermost with-profiler will reset the profiler, invalidates
any outer with-profiler.

265

7 Object system

Gauche’s object system design is largely inspired by STklos, whose design has come from Tiny-
CLOS. It supports multiple inheritance, multimethods, and metaobject protocol.

The type system is integrated to the object system, that is, a string is an instance of the
class <string>, and so on.

7.1 Introduction to the object system

This section briefly explains the basic structure of Gauche’s object system. It is strongly in-
fluenced by CLOS (Common-Lisp Object System). If you have experience in CLOS or related
systems such as TinyCLOS, STklos or Guile’s object system, you may skip to the next section.

Three concepts play the central role in CLOS-like object systems: A class, a generic function,
and a method.

A class specifies a structure of object. It also defines a datatype (strictly speaking, it’s not
the same thing as a datatype, but let’s skip the complicated part for now).

For example, a point in 2D space can be represented by x and y coordinates. A point class
can be defined using define-class macro. In the shortest form, it can be defined like this:

(define-class <2d-point> () (x y))

(You can find the code of definitions in the examples of this section in examples/oointro.scm

of Gauche’s source distribution.)

The symbol <2d-point> is the name of the class, and also the global variable <2d-point>

is bound to a class object. Surrounding a class name by < and > is just a convention; you can
pass any symbol to define-class.

The second argument of define-class is a list of direct superclasses, which specifies inheri-
tance of the class. We’ll come back to it later.

The third argument of define-class is a list of slots. A slot is a storage space, usually in
each object, where you can store a value. It is something similar to what is called a field or an
instance variable in other object-oriented languages; but slots can be configured more than just
a per-object storage space.

Now we defined a 2D point class, so we can create an instance of a point. You can pass a
class to a generic function make to create an instance. (Don’t worry about what generic function
is—think it as a special type of function, just for now).

(define a-point (make <2d-point>))

a-point ⇒ #<<2d-point> 0x8117570>

If you are using gosh interactively, you can use a generic function describe to inspect the
internal of an instance. A short alias, d, is defined to describe for the convenience. (See
Section 9.12 [Interactive session], page 356, for the details).

gosh> (d a-point)

#<<2d-point> 0x8117570> is an instance of class <2d-point>

slots:

x : #<unbound>

y : #<unbound>

In order to access or modify the value of the slot, you can use slot-ref and slot-set!,
respectively. These names are taken from STklos.

(slot-ref a-point ’x) ;; access to the slot x of a-point

⇒ error, since slot ’x doesn’t have a value yet

Chapter 7: Object system 266

(slot-set! a-point ’x 10.0) ;; set 10.0 to the slot x of a-point

(slot-ref a-point ’x)

⇒ 10.0

Gauche also provides a shorter name, ref, which can also be used in srfi-17’s generalized
set! syntax:

(ref a-point ’x) ⇒ 10.0

(set! (ref a-point ’y) 20.0)

(ref a-point ’y) ⇒ 20.0

Now you can see slot values are set.

gosh> (d a-point)

#<<2d-point> 0x8117570> is an instance of class <2d-point>

slots:

x : 10.0

y : 20.0

In practice, it is usually convenient if you can specify the default value for a slot, or give
values for slots when you create an instance. Such information can be specified by slot options.
Let’s modify the definition of <2d-point> like this:

(define-class <2d-point> ()

((x :init-value 0.0 :init-keyword :x :accessor x-of)

(y :init-value 0.0 :init-keyword :y :accessor y-of)))

Note that each slot specification is now a list, instead of just a symbol as in the previous
example. The list’s car now specifies the slot name, and its cdr gives various information. The
value after :init-value defines the default value of the slot. The keyword after :init-keyword
defines the keyword argument which can be passed to make to initialize the slot at creation
time. The name after keyword :accessor is bound to a generic function that can be used to
access/modify the slot, instead of using slot-ref/slot-set!.

Let’s see some interactive session. You create an instance of the new <2d-point> class, and
you can see the slots are initialized by the default values.

gosh> (define a-point (make <2d-point>))

a-point

gosh> (d a-point)

#<<2d-point> 0x8148680> is an instance of class <2d-point>

slots:

x : 0.0

y : 0.0

You create another instance, this time giving initialization values by keyword arguments.

gosh> (define b-point (make <2d-point> :x 50.0 :y -10.0))

b-point

gosh> (d b-point)

#<<2d-point> 0x8155b80> is an instance of class <2d-point>

slots:

x : 50.0

y : -10.0

Accessors are less verbose than slot-ref/slot-set!, thus convenient.

gosh> (x-of a-point)

0.0

Chapter 7: Object system 267

gosh> (x-of b-point)

50.0

gosh> (set! (y-of a-point) 3.33)

#<undef>

gosh> (y-of a-point)

3.33

The full list of available slot options is described in Section 7.2.1 [Defining class], page 272.
At a first glance, the declarations of such slot options may look verbose. The system might
have provide a static way to define init-keywords or accessor names automatically; however,
CLOS-like systems prefer flexibility. Using a mechanism called metaobject protocol, you can
customize how these slot options are interpreted, and you can add your own slot options as well.
See Section 7.5 [Metaobject protocol], page 287, for details.

We can also have <2d-vector> class in similar fashion.

(define-class <2d-vector> ()

((x :init-value 0.0 :init-keyword :x :accessor x-of)

(y :init-value 0.0 :init-keyword :y :accessor y-of)))

Yes, we can use the same accessor name like x-of, and it is effectively overloaded.

If you are familiar with mainstream object-oriented languages, you may wonder where meth-
ods are. Here they are. The following form defines a method move-by! of three arguments, pt,
dx, dy, where pt is an instance of <2d-point>.

(define-method move-by! ((pt <2d-point>) dx dy)

(inc! (x-of pt) dx)

(inc! (y-of pt) dy))

The second argument of define-method macro specifies a method specializer list. It indicates
the first argument must be an instance of <2d-point>, and the second and third can be any
type. The syntax to call a method is just like the one to call an ordinary function.

gosh> (move-by! b-point 1.4 2.5)

#<undef>

gosh> (d b-point)

#<<2d-point> 0x8155b80> is an instance of class <2d-point>

slots:

x : 51.4

y : -7.5

You can overload the method by different specializers; here you can move a point using a
vector.

(define-method move-by! ((pt <2d-point>) (delta <2d-vector>))

(move-by! pt (x-of delta) (y-of delta)))

Specialization isn’t limited to a user-defined classes. You can also specialize a method using
Gauche’s built-in type.

(define-method move-by! ((pt <2d-point>) (c <complex>))

(move-by! pt (real-part c) (imag-part c)))

And here’s the example session:

gosh> (define d-vector (make <2d-vector> :x -9.0 :y 7.25))

d-vector

gosh> (move-by! b-point d-vector)

#<undef>

gosh> (d b-point)

#<<2d-point> 0x8155b80> is an instance of class <2d-point>

slots:

Chapter 7: Object system 268

x : 42.4

y : -0.25

gosh> (move-by! b-point 3+2i)

#<undef>

gosh> (d b-point)

#<<2d-point> 0x8155b80> is an instance of class <2d-point>

slots:

x : 45.4

y : -2.25

You see that a method is dispatched not only by its primary receiver (<2d-point>), but also
other arguments. In fact, the first argument is no more special than the rest. In CLOS-like
system a method does not belong to a particular class.

So what is actually a method? Inspecting move-by! reveals that it is an instance of
<generic>, a generic function. (Note that describe truncates the printed value in methods

slot for the sake of readability).

gosh> move-by!

#<generic move-by! (3)>

gosh> (d move-by!)

#<generic move-by! (3)> is an instance of class <generic>

slots:

name : move-by!

methods : (#<method (move-by! <2d-point> <complex>)> #<method (move-

gosh> (ref move-by! ’methods)

(#<method (move-by! <2d-point> <complex>)>

#<method (move-by! <2d-point> <2d-vector>)>

#<method (move-by! <2d-point> <top> <top>)>)

I said a generic function is a special type of function. It is recognized by Gauche as an
applicable object, but when applied, it selects appropriate method(s) according to its arguments
and calls the selected method(s).

What the define-method macro actually does is (1) to create a generic function of the given
name if it does not exist yet, (2) to create a method object with the given specializers and the
body, and (3) to add the method object to the generic function.

The accessors are also generic functions, created implicitly by the define-class macro.

gosh> (d x-of)

#<generic x-of (2)> is an instance of class <generic>

slots:

name : x-of

methods : (#<method (x-of <2d-vector>)> #<method (x-of <2d-point>)>)

In the mainstream dynamic object-oriented languages, a class has many roles; it defines a
structure and a type, creates a namespace for its slots and methods, and is responsible for method
dispatch. In Gauche, namespace is managed by modules, and method dispatch is handled by
generic functions.

The default printed representation of object is not very user-friendly. Gauche’s write and
display function call a generic function write-object when they encounter an instance they
don’t know how to print. You can define its method specialized to your class to customize how
the instance is printed.

(define-method write-object ((pt <2d-point>) port)

(format port "[[~a, ~a]]" (x-of pt) (y-of pt)))

(define-method write-object ((vec <2d-vector>) port)

Chapter 7: Object system 269

(format port "<<~a, ~a>>" (x-of vec) (y-of vec)))

And what you’ll get is:

gosh> a-point

[[0.0, 3.33]]

gosh> d-vector

<<-9.0, 7.25>>

If you customize the printed representation to conform srfi-10 format, and define a corre-
sponding read-time constructor, you can make your instances to be written-out and read-back
just like built-in objects. See Section 6.22.7.3 [Read-time constructor], page 215, for the details.

Several built-in functions have similar way to extend their functionality for user-defined
objects. For example, if you specialize a generic function object-equal?, you can compare the
instances by equal?:

(define-method object-equal? ((a <2d-point>) (b <2d-point>))

(and (equal? (x-of a) (x-of b))

(equal? (y-of a) (y-of b))))

(equal? (make <2d-point> :x 1 :y 2) (make <2d-point> :x 1 :y 2))

⇒ #t

(equal? (make <2d-point> :x 1 :y 2) (make <2d-point> :x 2 :y 1))

⇒ #f

(equal? (make <2d-point> :x 1 :y 2) ’a)

⇒ #f

(equal? (list (make <2d-point> :x 1 :y 2)

(make <2d-point> :x 3 :y 4))

(list (make <2d-point> :x 1 :y 2)

(make <2d-point> :x 3 :y 4)))

⇒ #t

Let’s proceed to more interesting examples. Think of a class <shape>, which is an entity that
can be drawn. As a base class, it keeps common attributes such as a color and line thickness in
its slots.

(define-class <shape> ()

((color :init-value ’(0 0 0) :init-keyword :color)

(thickness :init-value 2 init-keyword :thickness)))

When an instance is created, make calls a generic function initialize, which takes care
of initializing slots such as processing init-keywords and init-values. You can customize the
initialization behavior by specializing the initialize method. The initialize method is
called with two arguments, one is a newly created instance, and another is a list of arguments
passed to make.

We define a initialize method for <shape> class, so that the created shape will be auto-
matically recorded in a global list. Note that we don’t want to replace system’s initialize

behavior completely, since we still need the init-keywords to be handled.

(define *shapes* ’()) ;; global shape list

(define-method initialize ((self <shape>) initargs)

(next-method) ;; let the system to handle slot initialization

(push! *shapes* self)) ;; record myself to the global list

Chapter 7: Object system 270

The trick is a special method, next-method. It can only be used inside a method body, and
calls less specific method of the same generic function—typically, it means you call the same
method of superclass. Most object-oriented languages have the concept of calling superclass’s
method. Because of multiple-argument dispatching and multiple inheritance, next-method is a
little bit more complicated, but the basic idea is the same.

So, what’s the superclass of <shape>? In fact, all Scheme-defined class inherits a class called
<object>. And it is <object>’s initialize method which takes care of slot initialization. After
calling next-method within your initialize method, you can assume all the slots are properly
initialized. So it is generally the first thing in your initialize method to call next-method.

Let’s inspect the above code. When you call (make <shape> args ...), the system allocates
memory for an instance of <shape>, and calls initialize generic function with the instance
and args It is dispatched to the initialize method you just defined. In it, you call
next-method, which in turn calls <object> class’s initialize method. It initializes the in-
stance with init-values and init-keywords. After it returns, you register the new <shape> instance
to the global shape list *shapes*.

The <shape> class represents just an abstract concept of shape. Now we define some concrete
drawable shapes, by subclassing the <shape> class.

(define-class <point-shape> (<shape>)

((point :init-form (make <2d-point>) :init-keyword :point)))

(define-class <polyline-shape> (<shape>)

((points :init-value ’() :init-keyword :points)

(closed :init-value #f :init-keyword :closed)))

Note the second argument passed to define-class. It indicates that <point-shape> and
<polyline-shape> inherit slots of <shape> class, and also instances of those subclasses can be
accepted wherever an instance of <shape> class is accepted.

The <point-shape> adds one slot, point, which contains an instance of <2d-point> defined
in the beginning of this section. The <polyline-shape> class stores a list of points, and a flag,
which specifies whether the end point of the polyline is connected to its starting point or not.

Inheritance is a powerful mechanism that should be used with care, or it easily result a code
which is untractable ("Object-oriented programming offers a sustainable way to write spaghetti
code.", as Paul Graham says in his article "The Hundred-Year Language"). The rule of thumb
is to make a subclass when you need a subtype. The inheritance of slots is just something that
comes with, but it shouldn’t be the main reason to do subclassing. You can always "include"
the substructure, as is done in <point-shape> class.

There appeared a new slot option in <point-shape> class. The :init-form slot option
specifies the default value of the slot when init-keyword is not given to make method. However,
unlike :init-value, with which the value is evaluated at the time the class is defined, the
value with :init-form is evaluated when the system actually needs the value. So, in the
<point-shape> instance, the default <2d-point> instance is only created if the <point-shape>
instance is created without having :point init-keyword argument.

A shape may be drawn in different formats for different devices. For now, we just consider a
PostScript output. To make the draw method polymorphic, we define a postscript output device
class, <ps-device>.

(define-class <ps-device> () ())

Then we can write a draw method, specialized for both <shape> and <ps-device>.

(define-method draw ((self <shape>) (device <ps-device>))

(format #t "gsave\n")

(draw-path self device)

Chapter 7: Object system 271

(apply format #t "~a ~a ~a setrgbcolor\n" (ref self ’color))

(format #t "~a setlinewidth\n" (ref self ’thickness))

(format #t "stroke\n")

(format #t "grestore\n"))

In this code, the device argument isn’t used within the method body. It is just used for
method dispatching. If we eventually have different output devices, we can add a draw method
that is specialized for such devices.

The above draw method does the common work, but actual drawing must be done in spe-
cialized way for each subclasses.

(define-method draw-path ((self <point-shape>) (device <ps-device>))

(apply format #t "newpath ~a ~a 1 0 360 arc closepath\n"

(point->list (ref self ’point))))

(define-method draw-path ((self <polyline-shape>) (device <ps-device>))

(let ((pts (ref self ’points)))

(when (>= (length pts) 2)

(format #t "newpath\n")

(apply format #t "~a ~a moveto\n" (point->list (car pts)))

(for-each (lambda (pt)

(apply format #t "~a ~a lineto\n" (point->list pt)))

(cdr pts))

(when (ref self ’closed)

(apply format #t "~a ~a lineto\n" (point->list (car pts))))

(format #t "closepath\n"))))

;; utility method

(define-method point->list ((pt <2d-point>))

(list (x-of pt) (y-of pt)))

Finally, we do a little hack. Let draw method work on the list of shapes, so that we can draw
multiple shapes within a page in batch.

(define-method draw ((shapes <list>) (device <ps-device>))

(format #t "%%\n")

(for-each (cut draw <> device) shapes)

(format #t "showpage\n"))

Then we can write some simple figures

(use srfi-1) ;; for iota

(use math.const) ;; for constant pi

(define (shape-sample)

;; creates 5 corner points of pentagon

(define (make-corners scale)

(map (lambda (i)

(let ((pt (make <2d-point>)))

(move-by! pt (make-polar scale (* i 2/5 pi)))

(move-by! pt 200 200)

pt))

(iota 5)))

(set! *shapes* ’()) ;; clear the shape list

Chapter 7: Object system 272

(let* ((corners (make-corners 100)))

;; a pentagon in green

(make <polyline-shape>

:color ’(0 1 0) :closed #t

:points corners)

;; a star-shape in red

(make <polyline-shape>

:color ’(1 0 0) :closed #t

:points (list (list-ref corners 0)

(list-ref corners 2)

(list-ref corners 4)

(list-ref corners 1)

(list-ref corners 3)))

;; put dots in each corner of the star

(for-each (cut make <point-shape> :point <>)

(make-corners 90))

;; draw the shapes

(draw *shapes* (make <ps-device>)))

)

The function shape-sample writes out a PostScript code of simple drawing to the current
output port. You can write it out to file by the following expression, and then view the result
by PostScript viewer such as GhostScript.

(with-output-to-file "oointro.ps" shape-sample)

7.2 Class

In this section, a class in Gauche is explained in detail.

7.2.1 Defining class

To define a class, use a macro define-class.

[Macro]define-class name supers (slot-spec . . .) option . . .
Creates a class object according to the arguments, and globally bind it to a variable name.
This macro should be used at toplevel.

Supers is a list of direct superclasses from which this class inherits. You can use multiple
inheritance. All Scheme-defined classes implicitly inherits <object>. It is implicitly added
to the right of supers list, so you don’t need to specify it. See Section 7.2.2 [Inheritance],
page 274, for the details about inheritance.

Slot-spec is a specification of a "slot", sometimes known as a "field" or an "instance variable"
(but you can specify "class variable" in slot-spec as well). The simplest form of slot-spec is
just a symbol, which names the slot. Or you can give a list, whose first element is a symbol
and whose rest is an interleaved list of keywords and values. The list form not only defines
a name of the slot but specifies behavior of the slot. It is explained below.

Finally, option . . . is an interleaved list of keywords and values, specifies how class object
should be created. This macro recognizes one keyword, :metaclass, whose corresponding
value is used for metaclass (class that instantiates another class). Other options are passed to
the make method to create the class object. See Section 7.5.1 [Class instantiation], page 287,
for the usage of metaclass.

If a slot specification is a list, it should be in the following form:

(slot-name :option1 value1 :option2 value2 ...)

Chapter 7: Object system 273

Each keyword (option1 etc.) gives a slot option. By default, the following slot options are
recognized. You can add more slot options by defining metaclass.

:allocation

Specifies an allocation type of this slot, which specifies how the value for this slot
is stored. The following keyword values are recognized by the standard class. A
programmer can define his own metaclass to extend the class to recognize other
allocation types.

:instance

A slot is allocated for each instance, so that every instance can have
distinct value. This realizes so-called "instance variable" behavior. If
:allocation slot option is omitted, this is the default.

:class A slot is allocated in this class object, so that every instance will share
the same value for this slot. This realizes so-called "class variable" be-
havior. The slot value is also shared by all subclasses (unless a subclass
definition shadows the slot).

:each-subclass

Similar to class allocation, but a slot is allocated for each class; that
is, it is shared by every instance of the class, but not shared by the
instances of its subclasses.

:virtual No storage is allocated for this type of slot. Accessing the slot calls pro-
cedures given in :slot-ref and :slot-set! options described below.
In other words, you can make a procedural slot. If a slot’s allocation
is specified as virtual, at least :slot-ref option has to be specified as
well, or define-class raises an error.

:builtin This type of allocation only appears in built-in classes, and you can’t
specify it in Scheme-defined class.

:init-keyword

A keyword value given to this slot option can be used to pass an initial value to
make method when an instance is created.

:init-value

Gives an initial value of the slot, if the slot is not initialized by the keyword argument
at the creation time. The value is evaluated when define-class is evaluated.

:init-form

Like init-value, but the value given is wrapped in a thunk, and evaluated each
time when the value is required. If both init-value and init-form are given,
init-form is ignored. Actually, :init-form expr is converted to :init-thunk

(lambda () expr) by define-class macro.

:initform

A synonym of init-form. This is kept for compatibility to STk, and shouldn’t be
used in the new code.

:init-thunk

Gives a thunk, which will be evaluated to obtain an initial value of the slot, if the
slot is not initialized by the keyword argument at the creation time. To give a value
to :init-form is equivalent to give (lambda () value) to :init-thunk.

:getter Takes a symbol, and a getter method is created and bound to the generic function
of that name. The getter method takes an instance of the class and returns the
value of the slot.

Chapter 7: Object system 274

:setter Takes a symbol, and a setter method is created and bound to the generic function
of that name. The setter method takes an instance of the class and a value, and
sets the value to the slot of the instance.

:accessor

Takes a symbol, and create two methods; a getter method and a setter method.
A getter method is bound to the generic function of the given name, and a setter
method is added as the setter of that generic function (see Section 4.4 [Assignments],
page 45, for generic setters).

:slot-ref

Specifies a value that evaluates to a procedure which takes one argument, an in-
stance. This slot option must be specified if the allocation of the slot is virtual.
Whenever a program tries to get the value of the slot, either using slot-ref or
the getter method, the specified procedure is called, and its result is returned as
the value of the slot. The procedure can return an undef value (the return value of
undefined) to indicate the slot doesn’t have a value. If the slot allocation is not
virtual this slot option is ignored.

:slot-set!

Specifies a value that evaluates to a procedure which takes two arguments, an in-
stance and a value. Whenever a program tries to set the value of the slot, either
using slot-set! or the setter method, the specified procedure is called with the
value to be set. If the slot allocation is not virtual this slot option is ignored. If
this option isn’t given to a virtual slot, the slot becomes read-only.

:slot-bound?

Specifies a value that evaluates to a procedure which takes one argument, an in-
stance. This slot option is only meaningful when the slot allocation is virtual.
Whenever a program tries to determine whether the slot has a value, this procedure
is called. It should return a true value if the slot has a value, or #f otherwise. If
this slot option is omitted for a virtual slot, the system calls the procedure given to
slot-ref instead, and see whether its return value is #<undef> or not.

7.2.2 Inheritance

Inheritance has two roles. First, you can extend the existing class by adding more slots. Second,
you can specialize the methods related to the existing class so that those methods will do a little
more specific task than the original methods.

Let’s define some terms. When a class <T> inherits a class <S>, we call <T> a subclass of <S>,
and <S> a superclass of <T>. This relation is transitive: <T>’s subclasses are also <S>’s subclasses,
and <S>’s superclasses are also <T>’s superclasses. Specifically, if <T> directly inherits <S>, that
is, <S> appeared in the superclass list when <T> is defined, then <S> is a direct superclass of
<T>, and <T> is a direct subclass of <S>.

When a class is defined, it and its superclasses are ordered from subclasses to superclasses,
and a list of classes is created in such order. It is called class precedence list, or CPL. Every class
has its own CPL. A CPL of a class always begins with the class itself, and ends with <top>.

You can query a class’s CPL by a procedure class-precedence-list:

gosh> (class-precedence-list <boolean>)

(#<class <boolean>> #<class <top>>)

gosh> (class-precedence-list <string>)

(#<class <string>> #<class <sequence>> #<class <collection>> #<class <top>>)

As you see, all classes inherits a class named <top>. Some built-in classes have several
abstract classes in its CPL between itself and <top>; the above example shows <string> class

Chapter 7: Object system 275

inherits <sequence> and <collection>. That means a string can behave both as a sequence
and a collection.

gosh> (is-a? "abc" <string>)

#t

gosh> (is-a? "abc" <sequence>)

#t

gosh> (is-a? "abc" <collection>)

#t

How about inheritance of Scheme-defined classes? If there’s only single inheritance, its CPL
is straightforward: you can just follow the class’s super, its super’s super, its super’s super’s
super, . . . , until you reach <top>. See the example:

gosh> (define-class <a> () ())

<a>

gosh> (define-class (<a>) ())

gosh> (class-precedence-list)

(#<class > #<class <a>> #<class <object>> #<class <top>>)

Scheme-defined class always inherits <object>. It is automatically inserted by the system.

When multiple inheritance is involved, a story becomes a bit complicated. We have to merge
multiple CPLs of the superclasses into one CPL. It is called linearization, and there are several
known linealization strategies. By default, Gauche uses an algorithm called C3 linearization,
which is consistent with the local precedence order, monotonicity, and the extended precedence
graph. We don’t go into the details here; as a general rule, the order of superclasses in a class’s
CPL is always consistent to the order of direct superclasses of the class, the order of CPL of
each superclasses, and the order of direct superclasses of each superclass, and so on. See [Dylan],
page 762, for the precise description.

If a class inherits superclasses in a way that its CPL can’t be constructed with satisfying
consistencies, an error is reported.

Here’s a simple example of multiple inheritance.

(define-class <grid-layout> () ())

(define-class <horizontal-grid> (<grid-layout>) ())

(define-class <vertical-grid> (<grid-layout>) ())

(define-class <hv-grid> (<horizontal-grid> <vertical-grid>) ())

(map class-name (class-precedence-list <hv-grid>))

⇒ (<hv-grid> <horizontal-grid> <vertical-grid>

<grid-layout> <object> <top>)

Note that the order of direct superclasses of <hv-grid> (<horizontal-grid> and
<vertical-grid>) is kept.

The following is a little twisted example:

(define-class <pane> () ())

(define-class <scrolling-mixin> () ())

(define-class <scrollable-pane> (<pane> <scrolling-mixin>) ())

Chapter 7: Object system 276

(define-class <editing-mixin> () ())

(define-class <editable-pane> (<pane> <editing-mixin>) ())

(define-class <editable-scrollable-pane>

(<scrollable-pane> <editable-pane>) ())

(map class-name (class-precedence-list <editable-scrollable-pane>))

⇒ (<editable-scrollable-pane> <scrollable-pane>

<editable-pane> <pane> <scrolling-mixin> <editing-mixin>

<object> <top>)

Once the class precedence order is determined, the slots of defined class is calculated as
follows: the slot definitions are collected in the direction from superclasss to subclass in CPL. If
a subclass has a slot definition of the same name of the one in superclass, then the slot definition
of the subclass is taken and superclass’s is discarded. Suppose a class <S> defines slots a, b, and
c, a class <T> defines slots c, d, and e, and a class <U> defines slots b and e. When <U>’s CPL is
(<U> <T> <S> <object> <top>), then <U>’s slots is calculated as the chart below; that is, <U>
gets five slots, of which b and e’s definitions come from <U>’s definitions, c and d’s come from
<T>, and a’s comes from <S>.

CPL | slot definitions

| () indicates shadowed slot

-----------+-------------------

<top> |

<object> |

<S> | a (b) (c)

<T> | c d (e)

<U> | b e

-----------+--------------------

<U>’s slots| a b c d e

You can get a list of slot definitions of a class object using class-slots function.

Note that the behavior described above is mere a default behavior. You can customize how
the CPL is computed, or how slot definitions are inherited, by defining metaclass. For example,
you can write a metaclass that allows you to merge slot options of the same slot names, instead
of the one shadowing the other. Or you can write a metaclass that forbids a subclass shadows
the superclass’s slot.

7.2.3 Class object

What is a class? In Gauche, a class is just an object that implements a specific feature: to
instantiate an object. Because of that, you can introspect the class by just looking into the slot
values. There are some procedures provided for the convenience of such introspection. Note
that if those procedures return a list, it belongs to the class and you shouldn’t modify it.

[Function]class-name class
Returns the name of class.

(class-name <string>) ⇒ <string>

[Function]class-precedence-list class
Returns the class precedence list of class.

(class-precedence-list <string>)

⇒ (#<class <string>>

#<class <sequence>>

Chapter 7: Object system 277

#<class <collection>>

#<class <top>>)

[Function]class-direct-supers class
Returns a list of direct superclasses of class. A direct superclass is a class from which class
inherits directly.

(class-direct-supers <string>)

⇒ (#<class <sequence>>)

[Function]class-direct-subclasses class
Returns a list of direct subclasses of class. A direct subclass is a class that directly inherits
class. If <T> is a direct subclass of <S>, then <S> is a direct superclass of <T>.

[Function]class-slots class
Returns a list of slot definitions of class. A slot definition is a list whose car is the name of
the slot and whose cdr is a keyword-value list that specifies slot options. You can further
inspect a slot definition to know what characteristics the slot has. See Section 7.2.4 [Slot
definition object], page 277, for the details.

The standard way to get a list of slot names of a given class is (map slot-definition-name

(class-slots class)).

[Function]class-slot-definition class slot-name
Returns a slot definition of a slot specified by slot-name in a class class. If class doesn’t have
a named slot, #f is returned.

[Function]class-direct-slots class
Returns a list of slot definitions that are directly defined in this class (i.e. not inherited from
superclasses). This information is used to calculate slot inheritance during class initialization.

[Function]class-direct-methods class
Returns a list of methods that has class in its specializer.

[Function]class-slot-accessor class slot-name
Returns a slot accessor object of the slot specified by slot-name in class. A slot accessor
object is an internal object that encapsulates the information how to access, modify, and
initialize the given slot.

You don’t usually need to deal with slot accessor objects unless you are defining some special
slots using metaobject protocol.

7.2.4 Slot definition object

A slot definition object, returned by class-slots, class-direct-slots and class-slot-

definition, keeps information about a slot. Currently Gauche uses a list to represent the
slot definition, as STklos and TinyCLOS do. However, it is not guaranteed that Gauche keeps
such a structure in future; you should use the following dedicated accessor methods to obtain
information of a slot definition object.

[Function]slot-definition-name slot-def
Returns the name of a slot given by a slot definition object slot-def.

[Function]slot-definition-options slot-def
Returns a keyword-value list of slot options of slot-def.

[Function]slot-definition-allocation slot-def
Returns the value of :allocation option of slot-def.

Chapter 7: Object system 278

[Function]slot-definition-getter slot-def
[Function]slot-definition-setter slot-def
[Function]slot-definition-accessor slot-def

Returns the value of :getter, :setter and :accessor slot options of slot-def, respectively.

[Function]slot-definition-option slot-def option :optional default
Returns the value of slot option option of slot-def. If there’s no such an option, default is
returned if given, or an error is signaled otherwise.

7.2.5 Class redefinition

If the specified class name is bound to a class when define-class is used, it is regarded as
redefinition of the original class.

Redefinition of a class means the following operations:

• A new class object is created based on the new definition, and bound to the variable given
to define-class.

• Methods defined on the original class (i.e. methods that have the original class in their
specializers) are changed so that they are defined on the new class.

• The direct-subclasses link of the direct superclasses of the original class is modified so that
they will point to the new class.

• All the subclasses of the original class are redefined recursively so that they reflect the
changes of the class. Each class remembers its initialization arguments, and each redefined
subclass gets the same initialization arguments as the original subclass.

• The original class is marked redefined.

Note that the original class and the new class are different objects. The original class object
remembers which variable in which module it is originally bound, and replaces the binding to
a new class. If you keep the direct reference to the original class somewhere else, it still refers
to the original class; you might want to take extra care. You can customize class redefinition
behavior by defining the class-redefinition method; see Section 7.5 [Metaobject protocol],
page 287, for the details.

If there are instances of the original class, such instances are automatically updated when it
is about to be accessed or modified via class-of, is-a?, slot-ref, slot-set!, ref, a getter
method, or a setter method.

Updating an instance means that the class of the instance is changed (from the old class to
the new class). By default, the values of the slots that are common in the original class and the
new class are carried over, and the slots added by the new class are initialized according to the
slot specification of the new class, and the values of the slots that are removed from the original
class are discarded. You can customize this behavior by writing the change-class method. See
Section 7.3.3 [Changing classes], page 283, for the details.

Notes on thread safety

Class redefinition process is non-local operation with full of side-effects. It is difficult to guarantee
that two threads safely run class redefinition protocol simultaneously. So Gauche uses a process-
wide lock to limit only one thread to enter the class redefinition protocol at a time.

If a thread tries to redefine a class while another thread is in the redefinition protocol, the
thread is blocked, even if it is redefining a class different from the one that are being redefined;
because redefinition affects all the subclasses, and all the methods and generic functions that
are related to the class and subclasses, it is not trivial to determine two classes are completely
independent or not.

If a thread tries to access an instance whose class is being redefined by another thread, also
the thread is blocked until the redefinition is finished.

Chapter 7: Object system 279

Note that the instance update protocol isn’t serialized. If two threads try to access an instance
whose class has been redefined, both trigger the instance update protocol, which would cause
an undesired race condition. It is the application’s responsibility to ensure such a case won’t
happen. It is natural since the instance access isn’t serialized by the system anyway. However,
an extra care is required to have mutex within an instance; just accessing the mutex in it may
trigger the instance update protocol.

Notes on compatibility

Class redefinition protocols subtlety differ among CLOS-like Scheme systems. Gauche’s is very
similar to STklos’s, except that STklos 0.56 doesn’t replace bindings of redefined subclasses,
and also it doesn’t remember initialization arguments so the redefined subclass may lose some
of the information that the original subclass has. Guile’s object system swaps identities of the
original class and the redefined class at the end of class redefinition protocol, so the reference
to the original class object will turn to the redefined class. As far as the author knows, class
redefinition is not thread-safe in both STklos 0.56 and Guile 1.6.4.

7.2.6 Class definition examples

Let’s see some examples. Suppose you are defining a graphical toolkit. A <window> is a rectangle
region on the screen, so it has width and height. It can be organized hierarchically, i.e. a window
can be placed within another window; so it has a pointer to the parent window. And we specify
the window’s position, x, y, by the coordinate relative to its parent window. Finally, we create a
"root" window that covers entire screen. It also serves the default parent window. So far, what
we get is something like this:

;; The first version

(define-class <window> ()

(;; Pointer to the parent window.

(parent :init-keyword :parent :init-form *root-window*)

;; Sizes of the window

(width :init-keyword :width :init-value 1)

(height :init-keyword :height :init-value 1)

;; Position of the window relative to the parent.

(x :init-keyword :x :init-value 0)

(y :init-keyword :y :init-value 0)

))

(define *screen-width* 1280)

(define *screen-height* 1024)

(define *root-window*

(make <window> :parent #f :width *screen-width* :height *screen-height*))

Note the usage of :init-value and :init-form. When the <window> class is defined, we
haven’t bound *root-window* yet, so we can’t use :init-value here.

gosh> *root-window*

#<<window> 0x80db1d0>

gosh> (define window-a (make <window> :width 100 :height 100))

window-a

gosh> (d window-a)

#<<window> 0x80db1b0> is an instance of class <window>

slots:

parent : #<<window> 0x80db1d0>

width : 100

Chapter 7: Object system 280

height : 100

x : 0

y : 0

gosh> (define window-b

(make <window> :parent window-a :width 50 :height 20 :x 10 :y 5))

window-b

gosh> (d window-b)

#<<window> 0x80db140> is an instance of class <window>

slots:

parent : #<<window> 0x80db1b0>

width : 50

height : 20

x : 10

y : 5

If you’re like me, you don’t want to expose a global variable such as *root-window* for users
of your toolkit. One way to encapsulate it (to certain extent) is to keep the pointer to the root
window in a class variable. Add the following slot option to the definition of <window>, and the
slot root-window of the <window> class refers to the same storage space.

(define-class <window> ()

(...

...

(root-window :allocation :class)

...))

You can use slot-ref and slot-set! on an instance of <window>, or use class-slot-ref

and class-slot-set! on the <window> class itself, to get/set the value of the root-window

slot.

The users of the toolkit may want to get the absolute position of the window (the coordinates
in the root window) instead of the relative position. You may provide virtual slots that returns
the absolute positions, like the following:

(define-class <window> ()

(...

...

(root-x :allocation :virtual

:slot-ref (lambda (o)

(if (ref o ’parent)

(+ (ref (ref o ’parent) ’root-x)

(ref o ’x))

(ref o ’x)))

:slot-set! (lambda (o v)

(set! (ref o ’x)

(if (ref o ’parent)

(- v (ref (ref o ’parent) ’root-x))

v)))

)

...))

Whether providing such interface via methods or virtual slots is somewhat a matter of taste.
Using virtual slots has an advantage of being able to hide the change of implementation, i.e.
you can change to keep root-x in a real slot and make x a virtual slot later without breaking
the code using <window>. (In the mainstream object-oriented languages, such kind of "hiding
implementation" is usually achieved by hiding instance variables and exposing methods. In

Chapter 7: Object system 281

Gauche and other CLOS-like systems, slots are always visible to the users, so the situation is a
bit different.

7.3 Instance

In this section, we explain how to create and use an instance.

7.3.1 Creating instance

Using class object, you can create an instance of the class by a generic function make. A
specialized method for standard <class> is defined:

[Generic Function]make
[Method]make (class <class>) arg . . .

Creates an instance of class and returns it. Arg . . . is typically a keyword-value list to
initialize the instance.

Conceptually, the default make method is defined as follows:

(define-method make ((class <class>) . initargs)

(let ((obj (allocate-instance class initargs)))

(initialize obj initargs)

obj))

That is, first it allocates memory for class’s instance, then initialize it with the initialize

method.

[Generic Function]allocate-instance
[Method]allocate-instance (class <class>) initargs

Returns a newly-allocated uninitialized instance of class.

[Generic Function]initialize
[Method]initialize (obj <object>) initargs

The default initialize method for <object> works as follows:

• For each initializable slot of the class

• If (the slot has the :init-keyword slot option AND the keyword appears in initargs):
Then the corresponding value is used to initialize the slot

• Else if the slot has :init-value slot option: Then the value given to the slot option is
used to initialize the slot

• Else if the slot has :init-thunk slot option: Then the thunk is called, and the returned
value is used to initialize the slot.

• Else: The slot is left unbound.

Among the default slot allocation classes, only instance-allocated slots are initializable and
are handled by the above sequence. Class-allocated slots (e.g. its slot allocation is either
:class or :each-subclass) are initialized when the class object is created, if :init-value
or :init-form slot option is given. Virtual slots aren’t initialized at all.

An user-defined allocation class can be configured either initializable or not initializable; see
Section 7.5 [Metaobject protocol], page 287, for the details.

If you specialize initialize method, make sure to call next-method so that the slots are
properly initialized by the default sequence, before accessing any slot of the newly created
instance.

Typically you specialize initialize method for your class to customize how the instance is
initialized.

Chapter 7: Object system 282

It is not common to specialize allocate-instance method. However, knowing that how
make works, you can specialize make itself to avoid allocation of instance in some circumstances
(e.g. using pre-allocated instances).

7.3.2 Accessing instance

Standard accessors

[Function]slot-ref obj slot
Returns a value of the slot slot of object obj.

If the specified slot is not bound to any value, a generic function slot-unbound is called with
three arguments, obj’s class, obj, and slot. The default behavior of slot-unbound is to signal
an error.

If the object doesn’t have the specified slot, a generic function slot-missing is called with
three arguments, obj’s class, obj, and slot. The default behavior of slot-missing is to signal
an error.

[Function]slot-set! obj slot value
Alters the value of the slot slot of object obj to the value value.

If the object doesn’t have the specified slot, a generic function slot-missing is called with
four arguments, obj’s class, obj, slot, value.

[Function]slot-bound? obj slot
Returns true if object obj’s slot slot is bound, otherwise returns false.

If the object doesn’t have the specified slot, a generic function slot-missing is called with
three arguments, obj’s class, obj, slot.

[Function]slot-exists? obj slot
Returns true if obj has the slot named slot.

[Function]slot-push! obj slot value
This function implements the common idiom. It can be defined like the following code (but
it may be optimized in the future versions).

(define (slot-push! obj slot value)

(slot-set! obj slot (cons value (slot-ref obj slot))))

[Function]slot-pop! obj slot :optional fallback
Reverse operation of slot-push!. If the value of slot of obj is a pair, removes its car and
returns the removed item.

When the value of slot is not a pair, or the slot is unbound, fallback is returned if it is
provided, otherwise an error is signaled.

[Method]ref (obj <object>) (slot <symbol>)
[Method](setter ref) (obj <object>) (slot <symbol>) value

These methods just calls slot-ref and slot-set!, respectively. They are slightly less ef-
ficient than directly calling slot-ref and slot-set!, but more compact in the program
code.

Fallback methods

[Generic Function]slot-unbound
[Method]slot-unbound (class <class>) obj slot

This generic function is called when an unbound slot value is retrieved. The return value of
this generic function will be returned to the caller that tried to get the value.

The default method just signals an error.

Chapter 7: Object system 283

[Generic Function]slot-missing
[Method]slot-missing (class <class>) obj slot :optional value

This generic function is called when a non-existent slot value is retrieved or set. The return
value of this generic function will be returned to the caller that tried to get the value.

The default method just signals an error.

Special accessors

[Function]current-class-of obj
Returns a class metaobject of obj. If obj’s class has been redefined, but obj is not updated
for the change, then this procedure returns the original class of obj without updating obj.

You need this procedure in rare occasions, such as within change-class method, in which
you don’t want to trigger updating obj (which would cause infinite loop).

[Function]class-slot-ref class slot-name
[Function]class-slot-set! class slot-name obj
[Function]class-slot-bound? class slot-name obj

When slot’s :allocation option is either :class or :each-subclass, these procedures allow
you to get/set the value of the slot without having an instance.

[Method]slot-ref-using-class (class <class>) (obj <object>) slot-name
[Method]slot-set-using-class! (class <class>) (obj <object>) slot-name value
[Method]slot-bound-using-class? (class <class>) (obj <object>) slot-name

Generic function version of slot-ref, slot-set! and slot-bound?. Class must be the class
of obj.

Besides being generic, these functions are different from their procedural versions that they
don’t trigger class redefinition when obj’s class has been redefined (i.e. in which case, class
should be the original class of obj).

Note: Unlike CLOS, slot-ref etc. don’t call the generic function version in it, so you can’t
customize the behavior of slot-ref by specializing slot-ref-using-class. So the primary
purpose of those generic functions are to be used within change-class method; especially,
slot-ref etc. can’t be used during obj’s being redefined, since they trigger class redefinition
again (see Section 7.3.3 [Changing classes], page 283, for details).

7.3.3 Changing classes

Class change protocol

An unique feature of CLOS-family object system is that you can change classes of an existing
instance. The two classes doesn’t need to be related; you can change a sewing machine into an
umbrella, if you like.

[Generic Function]change-class
[Method]change-class (obj <object>) (new-class <class>)

Changes an object obj’s class to new-class. The default method just calls change-object-
class procedure.

[Function]change-object-class obj orig-class new-class
Changes an object obj’s class from orig-class to new-class. This isn’t a generic function—
changing object’s class needs some secret magic, and this procedure encapsulates it.

The precise steps of changing class are as follow:

1. A new instance of new-class is allocated by allocate-instance.

Chapter 7: Object system 284

2. For each slot of new-class:

1. If the slot also exists in old-class, and is bound in obj, the value is retrieved from
obj and set to the new instance. (The slot is carried over).

2. Otherwise, the slot of the new instance is initialized by standard slot initialization
protocol, as described in Section 7.3.1 [Creating instance], page 281.

3. Finally, the content of the new instance is transplanted to the obj—that is, obj becomes
the instance of new-class without changing its identity.

Note that initialize method of new-class isn’t called on obj. If you desire, you can call it
by your own change-class method.

Change-object-class returns obj.

Usually a user is not supposed to call change-object-class directly. Instead, she can define
a specialized change-class. For example, if she wants to carry over the slot x of old class to
the slot y of new class, she may write something like this:

(define-method change-class ((obj <old-class>) <new-class>)

(let ((old-val (slot-ref obj ’x)))

(next-method) ;; calls default change-class

(slot-set! obj ’y old-val) ;; here, obj’s class is already <new-class>.

obj))

Customizing instance update

Updating an instance for a redefined class is also handled as class change. When an object is
accessed via normal slot accessor/modifier, its class is checked whether it has been redefined.
And if it has indeed been redefined, change-class is called with the redefined class as new-class;
that is, updating an instance is regarded as changing object’s class from the original one to the
redefined one.

By specializing change-class, you can customize the way an instance is updated for a
redefined class. However, you need a special care to write change-class for class redefinition.

First, the redefinition changes global binding of the class object. So you need to keep the refer-
ence to the old class before redefining the class, and use the old class to specialize change-class
method:

;; save old <myclass>

(define <old-myclass> <myclass>)

;; redefine <myclass>

(define-class <myclass> ()

...)

;; define customized change-class method

(define-method change-class ((obj <old-myclass>) <myclass>)

...

(next-method)

...)

Next, note that the above change-classmethod may be triggered implicitly when you access
to obj via slot-ref, slot-set!, class-of, etc. If you use such procedures like slot-ref

on obj again within change-class, it would trigger the instance update protocol recursively,
which would cause an infinite loop. You can only use the methods that doesn’t trigger instance
update, that is, slot-ref-using-class, slot-set-using-class!, slot-bound-using-class?
and current-class-of.

Chapter 7: Object system 285

If you want to carry over a slot whose value is calculated procedurally, such as a virtual slot,
then slot-ref etc. might be called implicitly on obj during calculating the slot value. Actually
change-object-class has a special protection to detect such a recursion. If that happens,
change-object-class gives up to retrieve the slot value and just initializes the slot of the new
instance as if the old slot were unbound.

Customizing instance update is highly tricky business, although very powerful. You
can find some nontrivial cases in the test program of Gauche source code; take a look at
test/object.scm.

7.4 Generic function and method

Defining methods

[Macro]define-generic name :key class
Creates a generic function and bind it to name.

You don’t usually need to use this, since the define-methodmacro implicitly creates a generic
function if it doesn’t exist yet.

You can pass a subclass of <generic> to the class keyword argument so that the created
generic function will be the instance of the passed class, instead of the default <generic>

class. It is useful when you defined a subclass of <generic> to customize generic function
application behavior.

[Macro]define-method name [quali↓er . . .] specs body
Defines a method whose name is name. If there’s already a generic function object globally
bound to name, the created method is added to the generic function. If name is unbound, or
bound to an object except a generic function, then a new generic function is created, bound
to name, then a new method is added to it.

The name can be followed by optional quali↓ers, each of which is a keyword. Currently, only
the following qualifier is valid.

:locked Declares that you won’t redefine the method with the same specifiers. Attempt
to redefine it will raise an error. (You can still define methods with different
specifiers.)

Most methods concerning basic operations on built-in objects are locked, for re-
defining them would case Gauche’s infrastracture unstable. It also allows Gauche
to perform certain optimizations.

Specs specifies the arguments and their types for this method. It’s like the argument list of
lambda form, except you can specify the type of each argument.

specs : (arg ...)

| (arg symbol)

| (arg ... extended-spec ...)

| symbol

arg : (symbol class)

| symbol

Class specifies the class that the argument has to belong to. If arg is just a symbol, it
is equivalent to (arg <top>). You can’t specify the type for the “rest” argument, for it is
always bound to a list.

You can use extended argument specifications such as :optional, :key and :rest as well.
(See Section 4.3 [Making Procedures], page 40, for the explanation of extended argument

Chapter 7: Object system 286

specifications). Those extended arguments are treated as if a single “rest” argument in terms
of dispatching; they aren’t used for method dispatch, and you can’t specify classes for these
optional and keyword arguments.

The list of classes of the argument list is called method specializer list, based on which the
generic function will select appropriate methods(s). Here are some examples of specs and
the corresponding specializer list (note that the rest argument isn’t considered as a part of
specializer list; we know it’s always a list.) The optional item indiecates whether the method
takes rest arguments or not.

specs: ((self <myclass>) (index <integer>) value)

specializers: (<myclas> <integer> <top>)

optional: #f

specs: (obj (attr <string>))

specializers: (<top> <string>)

optional: #f

specs: ((self <myclass>) obj . options)

specializers: (<myclas> <top>)

optional: #t

specs: ((self <myclass>) obj :optional (a 0) (b 1) :key (c 2))

specializers: (<myclas> <top>)

optional: #t

specs: args

specializers: ()

optional: #t

If you define a method on name whose specializer list, and whether it takes rest argumetns,
match with one in the generic function’s methods, then the existing method is replaced by
the newly defined one, unless the original method is locked.

Note: If you’re running Gauche with keyword-symbol integrated mode (see Section 6.8.1
[Keyword and symbol integration], page 131), there’s an ambiguity if you specify a keyword
as the sole specs (to receive entire arguments in a single variable). Gauche parses keywords
following name as qualifiers, so avoid using a keyword as such a variable.

Applying generic function

When a generic function is applied, first it selects methods whose specializer list matches the
given arguments. For example, suppose a generic function foo has three methods, whose spe-
cializer lists are (<string> <top>), (<string> <string>), and (<top> <top>), respectively.
When foo is applied like (foo "abc" 3), the first and the third method will be selected.

Then the selected methods are sorted from the most specific method to the least specific
method. It is calculated as follows:

• Suppose we have a method a that has specializers (A1 A2 ...), and a method b that has
(B1 B2 ...).

• Find the minimum n where the classes An and Bn differ. Then the class of n-th argument
is taken, and its class precedence list is checked. If An comes before Bn in the CPL, then
method a is more specific than b. Otherwise, b is more specific than a.

• If all the specializers of a and b are the same, except that one has an improper tail ("rest"
argument) and another doesn’t, then the method that doesn’t have an improper tail is more
specific than the one that has.

Chapter 7: Object system 287

Once methods are sorted, the body of the first method is called with the actual argument.

Within the method body, a special local variable next-method is bound implicitly.

[Next method]next-method
[Next method]next-method args . . .

This variable is bound within a method body to a special object that encapsulates the next
method in the sorted method list.

Calling without arguments invokes the next method with the same arguments as this method
is called with. Passing args . . . explicitly invokes the next method with the passed arguments.

If next-method is called in the least specific method, i.e. there’s no "next method", an error
is signaled.

7.5 Metaobject protocol

In CLOS-like object systems, the object system is built on top of itself—that is, things such
as the structure of the class, how a class is created, how an instance is created and initialized,
and how a method is dispatched and called, are all defined in terms of the object system. For
example, a class is just an instance of the class <class> that defines a generic structure and
behavior of standard classes. If you subclass <class>, then you can create your own set of
classes that behaves differently than the default behavior; in effect, you are creating your own
object system.

Metaobject protocols are the definitions of APIs concerning about how the object systems are
built—building-block classes, and the names and orders of generic functions to be called during
operations of the object system. Subclassing these classes and specializing these methods are
the means of customizing object system behaviors.

7.5.1 Class instantiation

Every class is an instance of a group of special classes. A class that can be a class of another
class is called metaclass. In Gauche, only the <class> class or its subclasses can be a metaclass.

Expansion of define-class

The define-class macro is basically a wrapper of the code that creates an instance of <class>
(or specified metaclass) and bind it to the given name. Suppose you have the following
define-class form.

(define-class name (supers)

slot-specs

options ...)

It is expanded into a form like this (you can see the exact form by looking at the definition
of define-class macro in src/libobj.scm of the source code tree.

(define name

(let ((tmp1 (make metaclass

:name ’name :supers (list supers)

:slots (map process-slot-definitions

slot-specs)

:defined-modules (list (current-module))

options ...)))

... check class redefinition ...

... registering accessor methods ...

tmp1))

Chapter 7: Object system 288

The created class’s class, i.e. metaclass, is determined by the following rules.

1. If :metaclass option is given to the define-class macro, its value is used. The value
must be the <class> class or its descendants.

2. Otherwise, the metaclasses of the classes in the class precedence list is examined.

• If all the metaclasses are <class>, then the created class’s metaclass is also <class>.

• If all the metaclasses are either <class> or another metaclass A, then the created class’
metaclass is A.

• If the set of metaclasses contains more than one metaclass (A, B, C . . .) other than
<class>, then the created class’ metaclass is a metaclass that inherits all of those
metaclasses A, B, C

The class’s name, superclasses, and slot definitions are passed as the initialization arguments
to the make generic function, with other arguments passed to define-class. The initialization
argument defined-modules is passed to remember which module the class is defined, for the
redefinition of this class.

The slot specifications slot-specs are processed by internal method process-slot-de↓nitions
(which can’t be directly called) to be turned into slot definitions. Specifically, an :init-form

slot option is turned into an :init-thunk option, and :getter, :setter and :accessor slot
options are quoted.

After the class (an instance of metaclass) is created, the global binding of name is checked.
If it is bound to a class, then the class redefinition protocol is invoked (see Section 7.2.5 [Class
redefinition], page 278).

Then, the methods given to :getter, :setter and :accessor slot options in slot-spec are
collected and registered to the corresponding generic functions.

Class structure

[Class]<class>
The base class of all metaclasses, <class>, has the following slots. Note that these slots are
for internal management, and users can’t change those information freely once the class is
initialized.

It is recommended to obtain information about a class by procedures described in Section 7.2.3
[Class object], page 276, instead of directly accessing those slots.

[Instance Variable of <class>]name
The name of the class; the symbol given to define-class macro. class-name returns
this value.

[Instance Variable of <class>]cpl
Class precedence list. class-precedence-list returns this value.

[Instance Variable of <class>]direct-supers
The list of direct superclasses. class-direct-supers returns this value.

[Instance Variable of <class>]accessors
An assoc list of slot accessors—it encapsulates how each slot should be accessed.

[Instance Variable of <class>]slots
A list of slot definitions. class-slots returns this value. See Section 7.2.4 [Slot definition
object], page 277, for the details of slot definitions.

[Instance Variable of <class>]direct-slots
A list of slot definitions that is directly specified in this class definition (i.e. not inherited).
class-direct-slots returns this value.

Chapter 7: Object system 289

[Instance Variable of <class>]num-instance-slots
The number of instance allocated slots.

[Instance Variable of <class>]direct-subclasses
A list of classes that directly inherits this class. class-direct-subclasses returns this
value.

[Instance Variable of <class>]direct-methods
A list of methods that has this class in its specializer list. class-direct-methods returns
this value.

[Instance Variable of <class>]initargs
The initialization argument list when this class is created. The information is used to
initialize redefined class (see Section 7.2.5 [Class redefinition], page 278).

[Instance Variable of <class>]defined-modules
A list of modules where this class has a global binding.

[Instance Variable of <class>]redefined
If this class has been redefined, this slot contains a reference to the new class. Otherwise,
this slot has #f.

[Instance Variable of <class>]category
The value of this slot indicates how this class is created. Scheme defined class has a symbol
scheme. Other values are for internal use.

The initialize method for <class>

[Method]initialize (class <class>) :rest initargs
The define-class macro expands into a call of (make <class> ...), which allocates a class
metaobject and calls initialize method. This method takes care of computing inheritance
order (class precedence list) and calculate slots, and set up various internal slots. Then, at
the very end of this method, it freezes the essential class slots; they became immutable.

Calculation of inheritance and slots are handle by generic fucntions. If you define a meta-
class, you can define methods for them to customize how those calculations are done. Class
inheritance is calculated by compute-cpl defined below. Slot calculation is a bit involved,
and explained in the next subsection (see Section 7.5.2 [Customizing slot access], page 289).

If your metaclass needs to initialize auxiliary slots, you can define your own initialize

method, in which you call next-method first to set up the core part of the <class> struc-
ture, then you sets up metcalss-specific part. One caveat is that, after next-method handes
initialization of the core <class> part, you can no longer modify essential class slots. If you
need to tweak those slots, you can override class-post-initialize method, which is called
right before the core class slots are frozen.

[Generic function]compute-cpl class

[Generic function]class-post-initialize class initargs

7.5.2 Customizing slot access

[Generic Function]compute-slots class
[Generic Function]compute-get-n-set class slot-de↓nition

These two generic functions are responsible to determine what slots a class has, and how each
slot is accessed.

In the initialize method of a class, compute-slots is called after the class’s
direct-supers, cpl and direct-slots are set. It must decide what slots the class should

Chapter 7: Object system 290

have, and what slot options each slot should have, based on those three piece of information.
The returned value should have the following form, and it is used as the value of the slots

slot of the class.

<slots> : (<slot-definition> ...)

<slot-definition> : (<slot-name> . <slot-options>)

<slot-name> : symbol

<slot-options> : keyword-value alternating list.

After the slots slot of the class is set by the returned value from compute-slots,
compute-get-n-set is called for each slot to calculate how to access and modify the slot. The
class and the slot definition are the arguments. It must return either one of the followings:

an integer n
This slot becomes n-th instance slot. This is the only way to allocate a slot per
instance.

The base method of compute-get-n-set keeps track of the current number of
allocated instance slots in the class’s num-instance-slots slot. It is not rec-
ommended for other specialized methods to use or change the value of this slot,
unless you know a very good reason to override the object system behavior in
deep down. Usually it is suffice to call next-method to let the base method
reserve an instance slot for you.

See the examples below for modifying instance slot access behaviors.

a list (get-proc set-proc bound?-proc initializable)

The get-proc, set-proc and bound?-proc elements are procedures
invoked when this slot of an instance is accessed (either via
slot-ref/slot-set!/slot-bound?, or an accessor method specified
by :getter/:setter slot options). The value other than get-proc may be #f,
and can be omitted if all the values after it is also #f. That is, the simplest
form of this type of return value is a list of one element, get-proc.

• When this slot is about to be read, get-proc is called with an argument, the
instance. The returned value of get-proc is the value of the slot.

The procedure may return #<undef> to indicate the slot is unbound. It
triggers the slot-unbound generic function. (That is, this type of slot cannot
have #<undef> as its value.)

• When this slot is about to be written, set-proc is called with two arguments,
the instance and the new value. It is called purely for the side effect; the
procedure may change the value of other slot of the instance, for example.

If this element is #f or omitted, the slot becomes read-only; any attempt to
write to the slot will raise an error.

• When slot-bound? is called to check whether the slot of an instance is
bound, bound?-proc is called with an argument, the instance. It should
return a boolean value which will be the result of slot-bound?.

If this element is #f or omitted, slot-bound? will call get-proc and returns
true if it returns #<undef>.

• The last element, initializable, is a flag that indicates whether this slot should
be initialized when :init-value or :init-form.

A <slot-accessor> object
Access to this slot is redirected through the returned slot-accessor object. See
below for more on <slot-accessor>.

Chapter 7: Object system 291

The value returned by compute-get-n-set is immediately passed to compute-slot-

accessor to create a slot accessor object, which encapsulates how to access and modify the
slot.

After all slot definitions are processed by compute-get-n-set and compute-slot-accessor,
an assoc list of slot names and <slot-accessor> objects are stored in the class’s accessors
slot.

[Generic Function]compute-slot-accessor
[Method]compute-slot-accessor (class <class>) slot access-speci↓er

Access-speci↓er is a value returned from compute-get-n-set. The base method creates an
instance of <slot-accessor> that encapsulates how to access the given slot.

Created slot accessor objects are stored (as an assoc list using slot names as keys) in the
class’s accessors slot. Standard slot accessors and mutators, such as slot-ref, slot-set!,
slot-bound?, and the slot accessor methods specified in :getter, :setter and :accessor

slot options, all go through slot accessor object eventually. Specifically, those functions and
methods first looks up the slot accessor object of the desired slot, then calls slot-ref-using-
accessor etc.

[Method]compute-slots (class <class>)
The standard method walks CPL of class and gathers all direct slots. If slots with the same
name are found, the one of a class closer to class in CPL takes precedence.

[Method]compute-get-n-set (class <class>) slot
The standard processes the slot definition with the following slot allocations: :instance,
:class, each-subclass and :virtual.

[Function]slot-ref-using-accessor obj slot-accessor
[Function]slot-set-using-accessor! obj slot-accessor value
[Function]slot-bound-using-accessor? obj slot-accessor
[Function]slot-initialize-using-accessor! obj slot-accessor initargs

The low-level slot accessing mechanism. Every function or method that needs to read or
write to a slot eventually comes down to one of these functions.

Ordinary programs need not call these functions directly. If you ever need to call them, you
have to be careful not to grab the reference to slot-accessor too long; if obj’s class is changed
or redefined, slot-accessor can no longer be used.

Here we show a couple of small examples to illustrate how slot access protocol can be
customized. You can also look at gauche.mop.* modules (in the source tree, look under
lib/gauche/mop/) for more examples.

The first example implements the same functionality of :virtual slot allocation. We add
:procedural slot allocation, which adds :ref, :set! and :bound? slot options.

(define-class <procedural-slot-meta> (<class>) ())

(define-method compute-get-n-set ((class <procedural-slot-meta>) slot)

(if (eqv? (slot-definition-allocation slot) :procedural)

(let ([get-proc (slot-definition-option slot :ref)]

[set-proc (slot-definition-option slot :set!)]

[bound-proc (slot-definition-option slot :bound?)])

(list get-proc set-proc bound-proc))

(next-method)))

A specialized compute-get-n-set is defined on a metaclass <procedural-slot-meta>. It
checks the slot allocation, handles it if it is :procedural, and delegates other slot allocation
cases to next-method. This is a typical way to add new slot allocation by layering.

Chapter 7: Object system 292

To use this :procedural slot, give <procedural-slot-meta> to a :metaclass argument of
define-class:

(define-class <temp> ()

((temp-c :init-keyword :temp-c :init-value 0)

(temp-f :allocation :procedural

:ref (lambda (o) (+ (*. (ref o ’temp-c) 9/5) 32))

:set! (lambda (o v)

(set! (ref o ’temp-c) (*. (- v 32) 5/9)))

:bound? (lambda (o) (slot-bound? o ’temp-c))))

:metaclass <procedural-slot-meta>)

An instance of <temp> keeps a temperature in both Celsius and Fahrenheit. Here’s an example
interaction.

gosh> (define T (make <temp>))

T

gosh> (d T)

#<<temp> 0xb6b5c0> is an instance of class <temp>

slots:

temp-c : 0

temp-f : 32.0

gosh> (set! (ref T ’temp-c) 100)

#<undef>

gosh> (d T)

#<<temp> 0xb6b5c0> is an instance of class <temp>

slots:

temp-c : 100

temp-f : 212.0

gosh> (set! (ref T ’temp-f) 450)

#<undef>

gosh> (d T)

#<<temp> 0xb6b5c0> is an instance of class <temp>

slots:

temp-c : 232.22222222222223

temp-f : 450.0

Our next example is a simpler version of gauche.mop.validator. We add a slot option
:filter, which takes a procedure that is applied to a value to be set to the slot.

(define-class <filter-meta> (<class>) ())

(define-method compute-get-n-set ((class <filter-meta>) slot)

(cond [(slot-definition-option slot :filter #f)

=> (lambda (f)

(let1 acc (compute-slot-accessor class slot (next-method))

(list (lambda (o) (slot-ref-using-accessor o acc))

(lambda (o v) (slot-set-using-accessor! o acc (f v)))

(lambda (o) (slot-bound-using-accessor? o acc))

#t)))]

[else (next-method)]))

The trick here is to call next-method and compute-slot-accessor to calculate the slot
accessor and wrap it. See how this metaclass works:

(define-class <foo> ()

((v :init-value 0 :filter x->number))

Chapter 7: Object system 293

:metaclass <filter-meta>)

gosh> (define foo (make <foo>))

foo

gosh> (ref foo’v)

0

gosh> (set! (ref foo’v) "123")

#<undef>

gosh> (ref foo’v)

123

7.5.3 Method instantiation

[Method]make (class <method>) :rest initargs

7.5.4 Customizing method application

[Generic Function]apply-generic gf args

[Generic Function]sort-applicable-methods gf methods args

[Generic Function]method-more-specific? method1 method2 classes

[Generic Function]apply-methods gf methods args

[Generic Function]apply-method gf method build-next args

294

8 Library modules - Overview

In the following chapters, we explain library modules bundled with Gauche’s distribution. These
modules should generally be loaded and imported (usually using use - See Section 4.13.4 [Using
modules], page 70, for details), unless otherwise noted.

Some modules are described as "autoloaded". That means you don’t need to load or use
the module explicitly; at the first time the bindings are used in the program, the module is
automatically loaded and imported. See Section 6.23.4 [Autoload], page 228, for the details of
autoloading.

As the number of bundled libraries grows, it becomes harder to find the one you need. If you
feel lost, check out the section Section 8.1 [Finding libraries you need], page 294, in which we
categorize libraries by their purposes.

The following four chapters describe bundled modules, grouped by their names.

• Chapter 9 [Library modules - Gauche extensions], page 301, contains a description of
gauche.* modules, which are more or less considered the core features of Gauche but sep-
arated since less frequently used. (Some modules are rather ad-hoc, but here for historical
reasons).

• Chapter 10 [Library modules - R7RS standard libraries], page 468, explains how Gauche
integrates R7RS into exising Gauche structures. If you want to write R7RS-compliant
portable programs, you definitely want to check the first two sections of this chapter. What
follows is the description of R7RS modules. Since Gauche supports most of R7RS core pro-
cedures in either built-in or existing modules, most R7RS modules are for the compatibility.

• Chapter 11 [Library modules - SRFIs], page 517, describes the modules which provide
SRFI functionalities. They have the names beginning with srfi-. Note that some of
SRFI features are built in Gauche core and not listed here. See Section 2.1 [Standard
conformance], page 5, for the entire list of supported SRFIs.

• Chapter 12 [Library modules - Utilities], page 581, describes other modules —including
database interface, filesystem utilities, network protocol utilities, and more.

There are a few procedures that help your program to check the existence of certain modules
or libraries at run-time. See Section 6.23.5 [Operations on libraries], page 229, for the details.

8.1 Finding libraries you need

Each module is named more or less after what it implements rather than what it is implemented
for. If the module solves one problem, both are the same. However, sometimes there are multiple
ways to solve a problem, or one implementation of an algorithm can solve multiple different
problems; thus it is difficult to name the modules in problem-oriented (or purpose-oriented)
way.

Because of this, it may not be straightforward for a newcomer to Gauche to find an appro-
priate Gauche module to solve her problem, since there may be multiple algorithms to do the
job, and each algorithm can be implemented in different modules.

The modules are also designed in layers; some low-level modules provide direct interface
to the system calls, while some higher-level ones provide more abstract, easy-to-use interface,
possibly built on top of more than one low-level modules. Which one should you use? Generally
you want to use the highest level, for the very purpose of libraries are to provide easy, abstract
interface. However there are times that you have to break the abstraction and to go down to
tweak the machinery in the basement; then you need to use low-level modules directly.

The purpose of this section is to group the libraries by their purposes. Each category lists
relevant modules with brief descriptions.

Chapter 8: Library modules - Overview 295

8.1.1 Library directory - data containers

Generic container operations

Some data containers have similar properties; for example, lists, vectors and hash tables can
be seen as a collection of data. So it is handy to have generic operators, such as applying a
procedure to all the elements.

Gauche provides such mechanism to a certain degree, mainly using its object system.

• Collection - Generic functions applicable for unordered set of values. See Section 9.5 [Col-
lection framework], page 322.

• Sequence - Generic functions applicable for ordered set of values. See Section 9.28 [Sequence
framework], page 412.

• Dictionary - Generic functions to handle dictionary, that is, a mapping from keys to values.
See Section 9.8 [Dictionary framework], page 338.

• Relation - Generic functions to handle relations (in a sense of Codd’s definition). See
Section 12.68 [Relation framework], page 744.

• Comprehension - This is a collection of macros very handy to construct and traverse col-
lections/sequences in concise code. See Section 11.11 [Eager comprehensions], page 537.

Container implementations

• List - the universal data structure. You want to check Section 6.6 [Pairs and Lists], page 116,
and Section 10.3.1 [R7RS lists], page 482,

• Vector - a one-dimensional array of arbitrary Scheme values. See Section 6.14 [Vectors],
page 160, and Section 11.28 [Vector library], page 559. If you need a wide range of index,
but the actual data is sparse, you might want to look at Section 12.14.1 [Sparse vectors],
page 610.

• Uniform vector - a special kind of vectors that can hold limited types of values (e.g. integers
representable in 8bits). It tends to be used in performance sensitive applications, such as
graphics. See Section 9.35 [Uniform vectors], page 447.

• Array - multi-dimensional arrays that can hold arbitrary Scheme values. See Section 9.1
[Arrays], page 301.

• Uniform array - multi-dimensional arrays that can hold limited types of values. This is also
supported by Section 9.1 [Arrays], page 301.

• String - a sequence of characters. See Section 6.12 [Strings], page 139, and Section 11.5
[String library], page 518. Gauche handles multibyte strings— see Section 2.2 [Multibyte
strings], page 10, for the defatils.

• Character set - a set of characters. See Section 6.11 [Character set], page 137, and
Section 11.6 [Character-set library], page 527.

• Hash table - hash tables. See Section 6.15 [Hashtables], page 163. For very large hash tables
(millions of entries), Section 12.14.3 [Sparse tables], page 614, may provide better memory
footprint.

• Balanced tree - If you need to order keys in a dictionary, you can use treemaps. See
Section 6.16 [Treemaps], page 168.

• Immutable map - Sometimes immutable dictionary is handy. Internally it implements a
functional balanced tree. See Section 12.10 [Immutable map], page 597.

• Queue - Both fast and thread-safe queues are provided in Section 12.11 [Queue], page 599.
Thread-safe queues can also be used as synchronized messaging channel.

• Heap - See Section 12.8 [Heap], page 594.

• Ring buffer - Space-efficient ring buffer. See Section 12.13 [Ring buffer], page 607.

Chapter 8: Library modules - Overview 296

• Cache - Various cache algorithm implementations. See Section 12.7 [Cache], page 591.

• Record - a simple data structure. Although Gauche’s object system can be used to define
arbitrary data structures, you might want to look at Section 9.25 [Record types], page 404,
and Section 12.67 [SLIB-compatible record type], page 743, for they are more portable and
potentially more efficient.

• Stream - you can implement cool lazy algorithms with it. See Section 12.69 [Stream library],
page 746.

• Trie - Another tree structure for efficient common-prefix search. See Section 12.15 [Trie],
page 615.

• Database interface - dbm interface can be used as a persistent hash table; see Section 12.17
[Generic DBM interface], page 625. For generic RDBMS interface, see Section 12.16 [Data-
base independent access layer], page 618.

8.1.2 Library directory - string and character

Basic string operations are covered in Section 6.12 [Strings], page 139, and Section 11.5 [String
library], page 518. A string is also a sequence of characters, so you can apply methods in
Section 9.5 [Collection framework], page 322, and Section 9.28 [Sequence framework], page 412.

Character and character set operations are covered in Section 6.10 [Characters], page 133,
Section 6.11 [Character set], page 137, and Section 11.6 [Character-set library], page 527.

If you scan or build strings sequentially, do not use index access. String ports (see
Section 6.22.5 [String ports], page 210) provides more efficient, and elegant way.

You can use regular expressions to search and extract character sequences from strings; see
Section 6.13 [Regular expressions], page 149.

If you need to deal with low-level (i.e. byte-level) representation of strings, Section 9.35
[Uniform vectors], page 447, has some tools to convert strings and byte vectors back and forth.

Are you dealing with a structure higher than a mere sequence of characters? Then take a look
at text.* modules. Section 12.54 [Parsing input stream], page 723, has some basic scanners.
Section 12.58 [Transliterate characters], page 728, implements a feature similar to Unix’s tr(1).
You can take diff of two texts; see Section 12.51 [Calculate difference of text streams], page 719.
And if you want to construct large text from string fragments, do not use string-append—see
Section 12.59 [Lazy text construction], page 730.

Last but not least, Gauche has support of various character encoding schemes. See Section 9.4
[Character code conversion], page 318, for the basic utilities. Most higher-level functions such
as open-input-file can take :encoding keyword argument to perform character conversion
implicitly. Also see Section 2.3 [Multibyte scripts], page 11, if you write Scheme program in non-
ASCII characters. If you want to process Gauche source code which may contain "encoding"
magic comment, see Section 6.22.6 [Coding-aware ports], page 212. Gauche also has GNU gettext
compatible module (Section 12.52 [Localized messages], page 720) if you need localization.

8.1.3 Library directory - data exchange

Most useful programs need to communicate with outside world (other programs or humans).
That involves reading the external data into your program understanding whatever format the
data is in, and also writing the data in the format the others can understand.

Lots of network-related external formats are defined in RFC, and there are corresponding
rfc.* module that handle some of them. See Section 12.28 [RFC822 message parsing], page 653,
for example, to handle the pervasive RFC2822 message format. Or, JSON can be handled by
Section 12.36 [JSON parsing and construction], page 669.

When you exchange table-formatted data, one of the easiest way may be the plain text,
one row per line, and columns are separated by some specific characters (e.g. comma). See
Section 12.50 [CSV tables], page 716, for basic parser/writer for them.

Chapter 8: Library modules - Overview 297

Oh, and nowadays every business user wants XML, right? You know they are just S-
expressions with extra redundancy and pointy parentheses. So why don’t you read XML as
if they’re S-exprs, process them with familiar cars and cdrs and maps, then write them out
with extra redundancy and pointy parens? Module sxml.ssax (Section 12.45 [Functional XML
parser], page 688) implements SAX XML parser, with which you can parse XML and process
them on the fly, or convert it to SXML, S-expression XML. You can query SXML using SXPath,
an XPath counterparts of S-expression (Section 12.46 [SXML Query Language], page 699). You
can output all kinds of XML and HTML using the SXML serializer (Section 12.48 [Serializing
XML and HTML from SXML], page 711).

(But you know most web services nowadays also talks JSON, and that’s much lighter and
handier than XML. See Section 12.36 [JSON parsing and construction], page 669).

It is planned that various file format handling routines would be available as file.* modules,
though we have none ready yet. If you plan to write one, please go ahead and let us know!

8.1.4 Library directory - files

Files and directories. Roughly speaking, there are two places you want to look at.

Section 6.25.4 [Filesystems], page 236, in the core, has routines close to the underlying OS
provides. If you have experience with Unix system programming you’ll find familiar function
names there. The fcntl functionality is splitted to gauche.fcntl (Section 9.9 [Low-level file
operations], page 342), FYI.

Also you definitely want to look at file.util (Section 12.23 [Filesystem utilities], page 635),
which implements higher-level routines on top of system-level ones.

8.1.5 Library directory - processes and threads

Process-related routines also come in two levels.

The gauche.process module provides high-level routines (Section 9.24 [High Level Process
Interface], page 393); you can pipe the data into and out of child processes easily, for example.

Gauche core provides the primitive fork and exec interface as well as the convenient system
call (see Section 6.25.10 [Process management], page 256). Use them when you want a precise
control over what you’re doing.

Gauche has preemptive threads on most Unix platforms including OSX. Check out
Section 9.32 [Threads], page 428, for the basic thread support, including primitive mutexes.
The data.queue module (see Section 12.11 [Queue], page 599) provides thread-safe queue that
can also be handy for synchronization. Thread pool is available in control.thread-pool (see
Section 12.5 [Thread pools], page 589).

8.1.6 Library directory - networking

We have multi-layer abstraction here. At the bottom, we have APIs corresponding to socket-
level system calls. In the middle, a convenience library that automates host name lookups,
connection and shutdown, etc. On top of them we have several modules that handles specific
protocols (e.g. http).

The gauche.net module (Section 9.19 [Networking], page 370) provides the bottom and
middle layer. For the top layer, look for rfc.* modules, e.g. rfc.http (Section 12.33 [HTTP],
page 663). More protocol support is coming (there are rfc.ftp and rfc.imap4 written by users,
which are waiting for being integrated into Gauche—maybe in next release).

There’s a plan of even higher level of libraries, under the name net.*, which will abstract
more than one network protocols. The planned ones include sending emails, or universal resource
access by uri. Code contributions are welcome.

8.1.7 Library directory - input and output

Chapter 8: Library modules - Overview 298

8.1.8 Library directory - time

8.1.9 Library directory - bits and bytes

Binary I/O

As the bottom level, Gauche includes primitive byte I/O (read-byte, write-byte) as well as
block I/O (read-uvector, read-uvector!, write-uvector) in its core. (See Section 6.22.7.1
[Reading data], page 212, Section 6.22.8 [Output], page 217, and Section 9.35.4 [Uvector block
I/O], page 458).

As the middle level, the module binary.io (Section 12.1 [Binary I/O], page 581) has routines
to retrieve specific datatype with optional endian specification.

And as the top level, the module binary.pack (Section 12.2 [Packing Binary Data], page 584)
allows packing and unpacking structured binary data, a la Perl’s pack/unpack.

Bit manipulation

Gauche core provides basic bitshift and mask operations (see Section 6.3.6 [Basic bitwise oper-
ations], page 112). SRFI-151 has comprehensive bitwise operations (see Section 11.32 [Bitwise
operations], page 572).

8.2 Naming convention of libraries

The following table summarizes naming categories of the modules, including external ones and
planned ones.

binary.* Utilities to treat binary data.

compat.* Provides compatibility layers.

data.* Implementations of various data structures.

dbi.*, dbd.*

Database independent interface layer and drivers.

dbm.* DBM interface

gauche.* Stuffs more or less considered as Gauche core features.

gl.* OpenGL binding and related libraries (external package).

gtk.* GTk+ binding and related libraries (external package).

file.* Manipulating files and directories.

lang.* Language-related libraries, artificial and/or natural (planned).

math.* Mathematics.

os.* Features for specific OSes.

rfc.* Implementations of net protocols defined in RFC’s.

srfi-* SRFI implementations.

sxml.* SXML libraries.

text.* Libraries dealing with text data.

util.* Generic implementations of various algorithms.

www.* Implementations of various protocols and formats mainly used in WWW.

Chapter 8: Library modules - Overview 299

8.3 Obsolete and superseded modules

During the course of development of Gauche, some modules have been renamed, merged, or
dissolved into the core. Also, some SRFI libraries become standard and given a new name, or
superseded with a newer SRFI library.

We list such modules here for the reference. New code shouldn’t use these modules, although
they are kept in the distribution so that legacy code can keep running.

Obsolete modules

[Module]text.unicode
Renamed to gauche.unicode. See Section 9.34 [Unicode utilities], page 442.

[Module]util.list
Dissolved into the core. No longer needed.

[Module]util.queue
Renamed to data.queue. See Section 12.11 [Queue], page 599.

[Module]util.rbtree
Incorporated into the core as built-in object <tree-map>. See Section 6.16 [Treemaps],
page 168.

The following procedures are aliases of the ones with replacing rbtree for tree-map, e.g.
rbtree-get is the same as tree-map-get.

make-rbtree rbtree? rbtree-get rbtree-put!

rbtree-delete! rbtree-exists? rbtree-empty? rbtree-update!

rbtree-push! rbtree-pop! rbtree-num-entries rbtree->alist

alist->rbtree rbtree-keys rbtree-values rbtree-copy

rbtree-fold rbtree-fold-right

The following procedures are similar to tree-map-min, tree-map-max, tree-map-pop-min!
and tree-map-pop-max!, respectively, except that the rbtree-* version takes an optional
default argument and returns it when the tree is empty, and raise an error if no default
argument is provided and tree is empty. (The tree-map version just returns #f for the empty
tree.)

rbtree-min rbtree-max

rbtree-extract-min! rbtree-extract-max!

The following procedure doesn’t have corresponding API in tree-map. It checks internal
consistency of the given tree-map.

rbtree-check

[Module]util.sparse
Renamed to data.sparse. See Section 12.14 [Sparse data containers], page 609.

[Module]util.trie
Renamed to data.trie. See Section 12.15 [Trie], page 615.

Superseded modules

[Module]srfi-1
SRFI-1 (List library) has become a part of R7RS large, as scheme.list. See Section 10.3.1
[R7RS lists], page 482.

[Module]srfi-14
SRFI-14 (Character-set library) has become a part of R7RS large, as scheme.charset. See
Section 10.3.5 [R7RS character sets], page 501.

Chapter 8: Library modules - Overview 300

[Module]srfi-43
Vector library (Legacy) - this module is effectively superseded by R7RS and srfi-133. See
Section 6.14 [Vectors], page 160, and see Section 11.28 [Vector library], page 559.

[Module]srfi-60
Integers as bits - this module is superseded by srfi-151. See Section 11.32 [Bitwise opera-
tions], page 572.

[Module]srfi-69
Basic hash tables - this module is superseded by R7RS scheme.hash-table. See
Section 10.3.6 [R7RS hash tables], page 505.

[Module]srfi-111
SRFI-111 (Boxes) has become a part of R7RS scheme.box module. See Section 10.3.10
[R7RS boxes], page 513.

[Module]srfi-113
SRFI-113 (Sets and bags) has become a part of R7RS scheme.set. See Section 10.3.4 [R7RS
sets], page 494.

[Module]srfi-114
Comparators - R7RS favored srfi-128 over this srfi to make scheme.comparator

(Section 10.3.12 [R7RS comparators], page 516), so adoption of this srfi may not be as wide.

Note that, in Gauche, a native comparator object can be used for srfi-114 procedures, and
this module provides some useful additional utilities. It’s ok to use this module if portability
isn’t a big issue.

[Module]srfi-117
SRFI-117 has become R7RS’s scheme.list-queue. See Section 10.3.11 [R7RS list queues],
page 513.

[Module]srfi-127
SRFI-127 has become R7RS’s scheme.lseq. See Section 10.3.9 [R7RS lazy sequences],
page 511.

[Module]srfi-132
SRFI-132 has become R7RS’s scheme.sort. See Section 10.3.3 [R7RS sort], page 491.

[Module]srfi-133
SRFI-133 has become R7RS’s scheme.vector. See Section 10.3.2 [R7RS vectors], page 486.

301

9 Library modules - Gauche extensions

9.1 gauche.array - Arrays

[Module]gauche.array
This module provides multi-dimensional array data type and operations. The primitive API
follows SRFI-25. Besides a generic srfi-25 array that can store any Scheme objects, this
module also provides array classes that stores numeric objects efficiently, backed up by ho-
mogeneous numeric vectors (see Section 9.35 [Uniform vectors], page 447). An external
representation of arrays, using SRFI-10 mechanism, is also provided.

Each element of an N -dimensional array can be accessed by N integer indices, [i_0 i_1 ...

i_N-1]. An array has associated shape that knows lower-bound s k and upper-bound e k
of index of each dimension, where s k <= e k, and the index i k must satisfy s k <= i k <

e k. (Note: it is allowed to have s k == e k, but such array can’t store any data. It is also
allowed to have zero-dimensional array, that can store a single data.). The shape itself is a [
D x 2] array, where D is the dimension of the array which the shape represents.

You can pass index(es) to array access primitives in a few ways; each index can be passed as
individual argument, or can be ’packed’ in a vector or one-dimensional array. In the latter
case, such a vector or an array is called an "index object". Using a vector is efficient in
Gauche when you iterate over the elements by changing the vector elements, for it won’t
involve memory allocation.

Arrays can be compared by the equal? procedure. Equal? returns #t if two arrays have the
same shape and their corresponding elements are the same in the sense of equal?.

Internally, an array consists of a backing storage and a mapping procedure. A backing storage
is an object of aggregate type that can be accessed by an integer index. A mapping procedure
takes multi-dimensional indices (or index object) and returns a scalar index into the backing
storage.

[Class]<array-base>
{gauche.array} An abstract base class of array types, that implements generic operations
on the array. To create an array instance, you should use one of the following concrete array
classes.

[Class]<array>
[Class]<u8array>
[Class]<s8array>
[Class]<u16array>
[Class]<s16array>
[Class]<u32array>
[Class]<s32array>
[Class]<u64array>
[Class]<s64array>
[Class]<f16array>
[Class]<f32array>
[Class]<f64array>

{gauche.array} Concrete array classes. The <array> class implements srfi-25 compati-
ble array, i.e. an array that can store any Scheme objects. The <u8array> class through
<f64array> classes uses a <u8vector> through <f64vector> as a backing storage, and can
only store a limited range of integers or inexact real numbers, but they are space efficient.

Chapter 9: Library modules - Gauche extensions 302

[Reader Syntax]#,(<array> shape obj ...)
An array is written out in this format. (Substitute <array> for <u8array> if the array is
<u8array>, etc.) shape is a list of even number of integers, and each 2n-th integer and 2n+1-
th integer specifies the inclusive lower-bound and exclusive upper-bound of n-th dimension,
respectively. The following obj . . . are the values in the array listed in row-major order.

When read back, this syntax is read as an array with the same shape and content, so it is
equal? to the original array.

; an array such that:

; 8 3 4

; 1 5 9

; 6 7 2

#,(<array> (0 3 0 3) 8 3 4 1 5 9 6 7 2)

; a 4x4 identity matrix

#,(<array> (0 4 0 4) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1)

[Function]array? obj
[SRFI-25] {gauche.array} Returns #t if obj is an array, #f otherwise. It is equivalent to
(is-a? obj <array-base>).

[Function]make-array shape :optional init
[SRFI-25] {gauche.array} Creates an array of shape shape. Shape must be a [D x 2] array,
and for each k (0 <= k < D), the [k 0] element must be less than or equal to the [k 1]
element. If init is given, all the elements are initialized by it. Otherwise, the initial value of
the elements are undefined.

(make-array (shape 0 2 0 2 0 2) 5)

⇒ #,(<array> (0 2 0 2 0 2) 5 5 5 5 5 5 5 5)

[Function]make-u8array shape :optional init
[Function]make-s8array shape :optional init

. . .

[Function]make-f32array shape :optional init
[Function]make-f64array shape :optional init

{gauche.array} Like make-array, but creates and returns an uniform numeric array.

[Function]shape bound . . .
[SRFI-25] {gauche.array} Takes even number of exact integer arguments, and returns a
two-dimensional array that is suitable for representing the shape of an array.

(shape 0 2 1 3 3 5)

⇒ #,(<array> (0 3 0 2) 0 2 1 3 3 5)

(shape)

⇒ #,(<array> (0 0 0 2))

[Function]array shape init . . .
[SRFI-25] {gauche.array} Creates an array of shape shape, initializing its elements by init
. . . .

(array (shape 0 2 1 3) ’a ’b ’c ’d)

⇒ #,(<array> (0 2 1 3) a b c d)

[Function]u8array shape init . . .
[Function]s8array shape init . . .

. . .

Chapter 9: Library modules - Gauche extensions 303

[Function]f32array shape init . . .
[Function]f64array shape init . . .

{gauche.array} Like array, but creates and returns an uniform numeric array initialized
by init

(u8array (shape 0 2 0 2) 1 2 3 4)

⇒ #,(<u8array> (0 2 0 2) 1 2 3 4)

[Function]array-rank array
[SRFI-25] {gauche.array} Returns the number of dimensions of an array array.

(array-rank (make-array (shape 0 2 0 2 0 2))) ⇒ 3

(array-rank (make-array (shape))) ⇒ 0

[Function]array-shape array
{gauche.array} Returns a shape array of array.

[Function]array-start array dim
[Function]array-end array dim
[Function]array-length array dim

[SRFI-25+] {gauche.array} Array-start returns the inclusive lower bound of index of
dim-th dimension of an array array. Array-end returns the exclusive upper bound. And
array-length returns the difference between two. Array-start and array-end are defined
in SRFI-25.

(define a (make-array (shape 1 5 0 2)))

(array-start a 0) ⇒ 1

(array-end a 0) ⇒ 5

(array-length a 0) ⇒ 4

(array-start a 1) ⇒ 0

(array-end a 1) ⇒ 2

(array-length a 1) ⇒ 2

[Function]array-size array
{gauche.array} Returns the total number of elements in the array array.

(array-size (make-array (shape 5 9 1 3))) ⇒ 8

(array-size (make-array (shape))) ⇒ 1

(array-size (make-array (shape 0 0 0 2))) ⇒ 0

[Function]array-ref array k . . .
[Function]array-ref array index

[SRFI-25] {gauche.array} Gets the element of array array. In the first form, the element
is specified by indices k In the second form, the element is specified by an index object
index, which must be a vector or an one-dimensional array.

[Function]array-set! array k . . . value
[Function]array-set! array index value

[SRFI-25] {gauche.array} Sets the element of array array to value. In the first form, the
element is specified by indices k In the second form, the element is specified by an index
object index, which must be a vector or an one-dimensional array.

[Function]share-array array shape proc
[SRFI-25] {gauche.array} Creates and returns a new array of shape shape, that shares the
backing storage with the given array array. The procedure proc maps the indices of the new
array to the indices to the original array, i.e. proc must be a n-ary procedure that returns

Chapter 9: Library modules - Gauche extensions 304

m values, where n is the dimension of the new array and m is the one of the original array.
Furthermore, proc must be an affine function; each mapping has to be a linear combination of
input arguments plus optional constant. (Share-array optimizes the mapping function based
on the affinity assumption, so proc won’t be called every time the new array is accessed).

[Function]array-for-each-index array proc :optional index
{gauche.array} Calls proc with every index of array. If no index argument is provided,
proc is called as (proc i j k ...), in which (i,j,k,. . .) walks over the index. It begins from
the least index value of each dimension, and latter dimension is incremented faster.

gosh> (define a (array (shape 0 2 0 2) 1 2 3 4))

a

gosh> a

#,(<array> (0 2 0 2) 1 2 3 4)

gosh> (array-for-each-index a (^(i j) (print i","j)))

0,0

0,1

1,0

1,1

This form of passing indexes is simple but not very efficient, though. For better performance,
you can pass an index object to an optional argument index, which is modified for each
index and passed to proc. The index object must be mutable, and either a vector, an one-
dimensional array, an s8vector, an s16vector or an s32vector. The length of the index object
must match the rank of the array. Using index object is efficient since the loop won’t allocate.
Don’t forget that the index object is destructively modified within the loop.

gosh> (array-for-each-index a (cut format #t "~s\n" <>) (vector 0 0))

#(0 0)

#(0 1)

#(1 0)

#(1 1)

gosh> (array-for-each-index a (cut format #t "~s\n" <>) (s8vector 0 0))

#s8(0 0)

#s8(0 1)

#s8(1 0)

#s8(1 1)

The procedure returns an unspecified value.

[Function]shape-for-each shape proc :optional index
{gauche.array} Calls proc with all possible indexes represented by the shape shape. The
optional index argument works the same way as array-for-each-index. Returns an un-
specified value.

gosh> (shape-for-each (shape 0 2 0 2) (^(i j) (print i","j)))

0,0

0,1

1,0

1,1

[Function]tabulate-array shape proc :optional index
{gauche.array} Calls proc over each index represented by the shape shape, and creates
an array from the result of proc. The optional index object can be used in the same way
as array-for-each-index. The following example creates an identity matrix of the given
shape:

Chapter 9: Library modules - Gauche extensions 305

(tabulate-array (shape 0 3 0 3) (^(i j) (if (= i j) 1 0)))

⇒ #,(<array> (0 3 0 3) 1 0 0 0 1 0 0 0 1)

[Function]array-retabulate! array proc :optional index
[Function]array-retabulate! array shape proc :optional index

{gauche.array} Calls proc over each index of the given array, and modifies the array’s
element by the returned value of proc. The optional index object can be used in the same
way as array-for-each-index. The second form takes a shape; it must match the array ’s
shape. It is redundant, but may allow some optimization in future in case shape is a literal.
Returns an unspecified value.

[Function]array-map proc array0 array1 . . .
[Function]array-map shape proc array0 array1 . . .

{gauche.array} The arguments array0, array1, . . . must be arrays with the same shape. For
each set of corresponding elements of the input arrays, proc is called, and a new array of the
same shape is created by the returned values. The second form takes a shape argument, which
must match the shape of input array(s). It is redundant, but may allow some optimization
in future in case shape is a literal.

(array-map - (array (shape 0 2 0 2) 1 2 3 4))

⇒ #,(<array> (0 2 0 2) -1 -2 -3 -4)

[Function]array-map! array proc array0 array1 . . .
[Function]array-map! array shape proc array0 array1 . . .

{gauche.array} Like array-map, but the results of proc are stored by the given array, whose
shape must match the shape of input array(s). Returns unspecified value.

[Function]array->vector array
[Function]array->list array

{gauche.array} Returns a fresh vector or a fresh list of all elements in array.

(array->vector

(tabulate-array (shape 1 3 1 4)

(^(i j) (+ (* 10 i) j))))

⇒ #(11 12 13 21 22 23)

[Function]array-concatenate a b :optional dimension
{gauche.array} Concatenates arrays at the specified dimension. The sizes of the specified
dimension of two arrays must match, although the shapes can be different. Arrays can be of
any ranks, but two ranks must match.

;; [a b] [a b]

;; [c d] (+) => [c d]

;; [e f] [e f]

(array-concatenate

(array (shape 0 2 0 2) ’a ’b ’c ’d)

(array (shape 0 1 0 2) ’e ’f))

⇒ #,(<array> (0 3 0 2) a b c d e f)

;; [a b] [e] [a b e]

;; [c d] (+) [f] => [c d f]

(array-concatenate

(array (shape 0 2 0 2) ’a ’b ’c ’d)

(array (shape 0 2 0 1) ’e ’f)

1)

⇒ #,(<array> (0 2 0 3) a b e c d f)

Chapter 9: Library modules - Gauche extensions 306

;; The index range can differ, as far as the sizes match

(array-concatenate

(array (shape 0 2 0 2) ’a ’b ’c ’d)

(array (shape 1 3 0 1) ’e ’f) 1)

⇒ #,(<array> (0 2 0 3) a b e c d f)

[Function]array-transpose array :optional dim1 dim2
{gauche.array} The given array must have a rank greater than or equal to 2. Transpose
the array’s dim1-th dimension and dim2-th dimension. The default is 0 and 1.

[Function]array-rotate-90 array :optional dim1 dim2
{gauche.array} The given array must have a rank greater than or equal to 2. We regard
the array as a matrix with dim1-th dimension as rows and dim2-th dimension as columns,
and returns a fresh array whose content is filled by rotating array 90 degree clockwise. The
defaults of dim1 and dim2 are 0 and 1, respectively.

;; [1 2 3] [4 1]

;; [4 5 6] => [5 2]

;; [6 3]

(array-rotate-90 (array (shape 0 2 0 3) 1 2 3 4 5 6))

⇒ #,(<array> (0 3 0 2) 4 1 5 2 6 3)

If array has a rank greater than 2, the array is treated as a matrix of subarrays.

[Function]array-flip array :optional dimension
[Function]array-flip! array :optional dimension

{gauche.array} Flips the content of the array across the dimension-th dimension. (default
is 0). array-flip! modifies the content of array and return it. array-flip doesn’t modify
array but creates a fresh array with the flipped content and returns it.

;; [1 2 3] => [4 5 6]

;; [4 5 6] [1 2 3]

(array-flip (array (shape 0 2 0 3) 1 2 3 4 5 6))

⇒ #,(<array> (0 2 0 3) 4 5 6 1 2 3)

;; [1 2 3] => [3 2 1]

;; [4 5 6] [6 5 4]

(array-flip (array (shape 0 2 0 3) 1 2 3 4 5 6) 1)

⇒ #,(<array> (0 2 0 3) 3 2 1 6 5 4)

[Function]identity-array dimension :optional class
{gauche.array} Returns a fresh identity array of rank 2, with the given dimension. You can
pass one of array classes to class to make the result the instance of the class; the default class
is <array>.

(identity-array 3)

⇒ #,(<array> (0 3 0 3) 1 0 0 0 1 0 0 0 1)

(identity-array 3 <f32array>)

⇒ #,(<f32array> (0 3 0 3) 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0)

[Function]array-inverse array
{gauche.array} Regards the array as a matrix, and returns its inverse matrix; array must
be 2-dimensional, and must have square shape. If array doesn’t satisfy these conditions, an
error is thrown.

If array isn’t a regular matrix, #f is returned.

Chapter 9: Library modules - Gauche extensions 307

[Function]determinant array
[Function]determinant! array

{gauche.array} Regards the array as a matrix, and calculates its determinant; array must
be 2-dimensional, and must have square shape. If array doesn’t satisfy these conditions, an
error is thrown.

determinant! destructively modifies the given array during calculation. It is faster than
determinant, which copies array before calculation to preserve it.

[Function]array-mul a b
{gauche.array} Arrays a and b must be rank 2. Regarding them as matrices, multiply them
together. The number of rows of a and the number of columns of b must match.

;; [6 5]

;; [1 2 3] x [4 3] => [20 14]

;; [4 5 6] [2 1] [56 41]

(array-mul (array (shape 0 2 0 3) 1 2 3 4 5 6)

(array (shape 0 3 0 2) 6 5 4 3 2 1))

⇒ #,(<array> (0 2 0 2) 20 14 56 41)

[Function]array-expt array pow
{gauche.array} Raises array to the power of pow ; array must be a square matrix, and pow
must be a nonnegative exact integer.

[Function]array-div-left a b
[Function]array-div-right a b

{gauche.array} Inverse of array-mul; array-div-left rrturns a matrix M such that
(array-mul B M) equals to A, and array-div-right returns a matrix M such that (array-mul
M B) equals to A. A and B must be a 2-dimensional square matrix. If B isn’t regular, an error
is thrown.

[Function]array-add-elements array array-or-scalar . . .
[Function]array-add-elements! array array-or-scalar . . .
[Function]array-sub-elements array array-or-scalar . . .
[Function]array-sub-elements! array array-or-scalar . . .
[Function]array-mul-elements array array-or-scalar . . .
[Function]array-mul-elements! array array-or-scalar . . .
[Function]array-div-elements array array-or-scalar . . .
[Function]array-div-elements! array array-or-scalar . . .

{gauche.array} Element-wise arithmetics. The second argument and after must be an array
of the same shape of the first argument, or a number; if it is a number, it is interpreted as an
array of the same shape of the first argument, and each element of which is the given number.

Returns an array of the same shape of the first argument, where each element is the re-
sult of addition, subtraction, multiplication or division of the corresponding elements of the
arguments.

The linear-update version (procedures whose name ends with !) may reuse the storage of the
first array to calculate the result. The first array must be mutable. The caller must still use
the returned value instead of counting on the side effects.

(array-add-elements (array (shape 0 2 0 2) 1 2 3 4)

(array (shape 0 2 0 2) 5 6 7 8)

10)

⇒ #,(<array> (0 2 0 2) 16 18 20 22)

Chapter 9: Library modules - Gauche extensions 308

(array-div-elements (array (shape 0 2 0 2) 1 3 5 7)

100

(array (shape 0 2 0 2) 2 4 6 8))

⇒ #,(<array> (0 2 0 2) 1/200 3/400 1/120 7/800)

You can mix different types of arrays as long as their shapes are the same. The result is the
same type as the first argument.

(array-mul-elements (make-u8array (shape 0 2 0 2) 3)

(array (shape 0 2 0 2) 1 3 5 7))

⇒ #,(<u8array> (0 2 0 2) 3 9 15 21)

9.2 gauche.base - Importing gauche built-ins

[Module]gauche.base
This module exports Gauche built-in procedures and syntaxes, so that they can be imported
to other modules that don’t inherit gauche module.

All the bindings available in the gauche module are exported, except import, which is re-
named to gauche:import to avoid conflict with R7RS import.

The module extends gauche.keyword, so also exports all the keywords—the bindings from
gauche.keyword— so that the code imports gauche.base can access to self-bound keywords
without inheriting the keyword module.

Typical Gauche code doesn’t need this module, for built-ins are available by default through
inheritance. A newly created module inherits the gauche module by default. (See Section 4.13.5
[Module inheritance], page 72, for the details.)

Sometimes you need a module that doesn’t inherit the gauche module, yet you want to use
Gauche built-in features. Particulary, R7RS libraries and programs require any bindings to be
explicitly imported, so R7RS’s import and define-library sets up the module not to inherit
the gauche module. In R7RS code, you need (import (gauche base)) to use Gauche’s built-in
features.

Another use case is to eliminate some built-in bindings, yet keep the rest of bindings accessi-
ble, in your module. For example, the following setup creates almost-gauche module that has
almost all default bindings except string-scan and string-split:

(define-module almost-gauche

(use scheme.r5rs)

(use gauche.base :except (string-scan string-split)

:rename ((gauche:import import)))

(extend)

)

(select-module almost-gauche)

;; your code here

Note the empty extend; it empties the module’s inheritance. (The :rename option of
gauche.base is just to get the original name of import back in almost-gauche module; if
you don’t use import directly, you won’t need it.)

9.3 gauche.cgen - Generating C code

Significant part of Gauche is written in Gauche or S-expression based DSL. During the building
process, they are converted into C sources and then compiled by C compiler. The gauche.cgen
module and its submodules expose the functionality Gauche build process is using to the general
use.

Chapter 9: Library modules - Gauche extensions 309

Required features for a C code generator differ greatly among applications, and too much
scaffolding could be a constraint for the module users. So, instead of providing a single
solid framework, we provide a set of loosely coupled modules so that you can combine nec-
essary features freely. In fact, some of Gauche build process only use gauche.cgen.unit and
gauche.cgen.literal (see src/builtin-syms.scm, for example).

[Module]gauche.cgen
This is a convenience module that extends gauche.cgen.unit, gauche.cgen.literal,
gauche.cgen.type and gauche.cgen.cise together.

Usually you can just use gauche.cgen and don’t need to think about individual submodules.
The following subsections are organized by submodules only for the convenience of explanation.

9.3.1 Generating C source files

One of the tricky issues about generating C source is that you have to put several fragments of
code in different parts of the source file, even you want to say just one thing—that is, sometimes
you have to put declaration before the actual definition, plus some setup code that needs to be
run at initialization time.

Creating a frame

[Class]<cgen-unit>
{gauche.cgen} A cgen-unit is a unit of C source generation. It corresponds to one .c file,
and optionally one .h file. During the processing, a "current unit" is kept in a parameter
cgen-current-unit, and most cgen APIs implicitly work to it.

The following slot are for public use. They are used to tailor the output. Usually you set
those slots at initialization time. The effect is undefined if you change them in the middle of
the code generation process.

[Instance Variable of <cgen-unit>]name
A string to name this unit. This is used for the default name of the generated files
(name.c and name.h) and the suffix of the default name of initialization function. Other
cgen modules may use this to generate names. Avoid using characters that are not valid
for C identifiers.

You can override those default names by setting the other slots.

[Instance Variable of <cgen-unit>]c-file
[Instance Variable of <cgen-unit>]h-file

The name of the C source file and header file, in strings. If they are #f (by default), the
value of name slot is used as the file name, with extension .c or .h is attached, respectively.

To get the file names to be generated, use cgen-unit-c-file and cgen-unit-h-file

generic functions, instead of reading these slots.

[Instance Variable of <cgen-unit>]preamble
A list of strings to be inserted at the top of the generated sources. The default value is
("/* Generated by gauche.cgen */"). Each string appears in its own line.

[Instance Variable of <cgen-unit>]init-prologue
[Instance Variable of <cgen-init>]init-epilogue

A string to start or to end the initialization function, respectively. The default value of
init-prologue is "void Scm_Init_NAME(void) {" where NAME is the value of the name

slot. The default value of init-epilogue is just "}". Each string appears in its own line.

To get the default initialization function name, use cgen-unit-init-name generic func-
tion.

Chapter 9: Library modules - Gauche extensions 310

To customize initialization function name, arguments and/or return type, set
init-prologue.

The content of initialization function is filled by the code fragments registered by
cgen-init.

[Parameter]cgen-current-unit
A parameter to keep the current cgen-unit.

A typical flow of generating C code is as follows:

1. Create a <cgen-unit> and make it the current unit.

2. Call code insertion APIs with code fragments. Fragments are accumulated in the current
unit.

3. Call emit method on the unit, which generates a C file and optionally a header file.

[Generic Function]cgen-emit-c cgen-unit
[Generic Function]cgen-emit-h cgen-unit

{gauche.cgen} Write the accumulated code fragments in cgen-unit to a C source file and
C header file. The name of the files are determined by calling cgen-unit-c-file and
cgen-unit-h-file, respectively. If the files already exist, its content is overwritten; you
can’t gradually write to the files. So, usually these procedures are called at the last step of
the code generation.

We’ll explain the details of how each file is organized under “Filling the content” section
below.

[Generic Function]cgen-unit-c-file cgen-unit
[Generic Function]cgen-unit-h-file cgen-unit

{gauche.cgen} Returns a string that names C source and header file for cgen-unit, respec-
tively. The default method first looks at c-file or h-file slot of the cgen-unit, and if it is
#f, use the value of name slot and appends an extension .c or .h.

[Generic Function]cgen-unit-init-name cgen-unit
{gauche.cgen} Returns a string that names the initialization function generated to C. It is
used to create the default init-prologue value.

Filling the content

There are four parts to which you can add C code fragment. Within each part, code fragments
are rendered in the same order as added.

extern This part is put into the header file, if exists.

decl Placed at the beginning of the C source, after the standard prologue.

body Placed in the C source, following the ’decl’ part.

init Placed inside the initialization function, which appears at the end of the C source.

The following procedures are the simple way to put a souce code fragments in an appropriate
part:

[Function]cgen-extern code . . .
[Function]cgen-decl code . . .
[Function]cgen-body code . . .
[Function]cgen-init code . . .

{gauche.cgen} Put code fragments code . . . to the appropriate parts. Each fragment must
be a string.

Chapter 9: Library modules - Gauche extensions 311

This is a minimal example to show the typical usage. After running this code you’ll get
my-cfile.c and my-cfile.h in the current directory.

(use gauche.parameter)

(use gauche.cgen)

(define *unit* (make <cgen-unit> :name "my-cfile"))

(parameterize ([cgen-current-unit *unit*])

(cgen-decl "#include <stdio.h>")

(cgen-init "printf(stderr, \"initialization function\\n\");")

(cgen-body "void foo(int n) { printf(stderr, \"got %d\\n\", n); }")

(cgen-extern "void foo(int n);")

)

(cgen-emit-c *unit*)

(cgen-emit-h *unit*)

These are handy escaping procedures; they are useful even if you don’t use other parts of the
cgen modules.

[Function]cgen-safe-name string
[Function]cgen-safe-name-friendly string
[Function]cgen-safe-string string
[Function]cgen-safe-comment string

{gauche.cgen} Escapes characters invalid in C identifiers, C string literals or C comments.

With cgen-safe-name, characters other than ASCII alphabets and digits are converted to a
form _XX, where XX is hexadecimal notation of the character code. (Note that the character
_ is also converted.) So the returned string can be used safely as a C identifier. The mapping
is injective, that is, if the source strings differ, the result string always differ.

On the other hand, cgen-safe-name-friendly convers the input string into more readable
C identifier. -> becomes _TO (e.g. char->integer becomes char_TOinteger), other - and
_ become _, ? becomes P (e.g. char? becomes charP), ! becomes X (e.g. set! becomes
setX), < and > become _LT and _GT respectively. Other special characters except _ are
converted to _XX as in cgen-safe-name. The mapping is not injective; e.g. both read-line

and read_line map to read_line. Use this only when you think some human needs to read
the generated C code (which is not recommended, by the way.)

If you want to write out a Scheme string as a C string literal, you can use cgen-safe-

string. It escapes control characters and non-ascii characters. If the Scheme string contains
a character beyond ASCII, it is encoded in Gauche’s native encoding. (NB: It also escapes
?, to avoid accidenal formation of C trigraphs).

Much simpler is cgen-safe-comment, which just converts /* and */ into / * and * / (a
space between those two characters), so that it won’t terminate the comment inadvertently.
(Technically, escaping only */ suffice, but some simple-minded C parser might be confused
by /* in the comments). The conversion isn’t injective as well.

(cgen-safe-name "char-alphabetic?")

⇒ "char_2dalphabetic_3f"

(cgen-safe-name-friendly "char-alphabetic?")

⇒ "char_alphabeticP"

(cgen-safe-string "char-alphabetic?")

⇒ "\"char-alphabetic\\077\""

(cgen-safe-comment "*/*"

Chapter 9: Library modules - Gauche extensions 312

⇒ "* / *"

If you want to conditionalize a fragment by C preprocessor #ifdefs, use the following macro:

[Macro]cgen-with-cpp-condition cpp-expr body . . .
{gauche.cgen} Code fragments submitted in body . . . are protected by #if cpp-expr and
#endif.

If cpp-expr is a string, it is emitted literally:

(cgen-with-cpp-condition "defined(FOO)"

(cgen-init "foo();"))

;; will generate:

#if defined(FOO)

foo();

#endif /* defined(FOO) */

You can also construct cpp-expr by S-expr.

<cpp-expr> : <string>

| (defined <cpp-expr>)

| (not <cpp-expr>)

| (<n-ary-op> <cpp-expr> <cpp-expr> ...)

| (<binary-op> <cpp-expr> <cpp-expr>)

<n-ary-op> : and | or | + | * | - | /

<binary-op> : > | >= | == | < | <= | !=

| logand | logior | lognot | >> | <<

Example:

(cgen-with-cpp-condition ’(and (defined FOO)

(defined BAR))

(cgen-init "foo();"))

;; will generate:

#if ((defined FOO)&&(defined BAR))

foo();

#endif /* ((defined FOO)&&(defined BAR)) */

You can nest cgen-with-cpp-condition.

Submitting code fragments for more than one parts

When you try to abstract code generation process, calling individual procedures for each parts
(e.g. cgen-body or cgen-init) becomes tedious, since such higher-level constructs are likely to
require generating code fragments to various parts. Instead, you can create a customized class
that handles submission of fragments to appropriate parts.

[Class]<cgen-node>
{gauche.cgen} A base class to represent a set of code fragments.

The state of C preprocessor condition (set by with-cgen-cpp-condition) is captured when
an instance of the subclass of this class is created, so generating appropriate #ifs and #endifs
are automatically handled.

You subclass <cgen-node>, then define method(s) to one or more of the following generic
functions:

Chapter 9: Library modules - Gauche extensions 313

[Generic Function]cgen-emit-xtrn cgen-node
[Generic Function]cgen-emit-decl cgen-node
[Generic Function]cgen-emit-body cgen-node
[Generic Function]cgen-emit-init cgen-node

{gauche.cgen} These generic functions are called during writing out the C source within
cgen-emit-c and cgen-emit-h. Inside these methods, anything written out to the current
output port goes into the output file.

While generating .h file by cgen-emit-h, cgen-emit-xtrn method for all submitted nodes
are called in order of submission.

While generating .c file by cgen-emit-c, cgen-emit-decl method for all submitted nodes
are called first, then cgen-emit-body method, then cgen-emit-init method.

If you don’t specialize any one of these method, it doesn’t generate code in that part.

Once you define your subclass and create an instance, you can submit it to the current cgen
unit by this procedure:

[Function]cgen-add! cgen-node
{gauche.cgen} Submit cgen-node to the current cgen unit. If the current unit is not set,
cgen-node is simply ignored.

In fact, the procedures cgen-extern, cgen-decl, cgen-body and cgen-init are just a con-
venience wrapper to create an internal subclass specialized to generate code fragment only to
the designated part.

9.3.2 Generating Scheme literals

Sometimes you want to refer to a Scheme constant value in C code. It is trivial if the value is a
simple thing like Scheme boolean (SCM_TRUE, SCM_FALSE), characters (SCM_MAKE_CHAR(code)),
small integers (SCM_MAKE_INT(value)), etc. You can directly write it in C code. However, once
you step outside of these simple values, it gets tedious quickly, involving static data declarations
and/or runtime initialization code.

For example, to get a Scheme value of a list of symbols (a b c), you have to (1) create
ScmStrings for the names of the symbols, (2) pass them to Scm_Intern to get Scheme symbols,
then (3) call Scm_Conses (or a convenience macro SCM_LIST3) to build a list.

With gauche.cgen, those code can be generated automatically.

NOTE: If you use cgen-literal, make sure you call (cgen-decl "#include <gauche.h>")

to include gauche.h before the first call of cgen-literal, which may insert declarations that
needs gauche.h.

[Function]cgen-literal obj
{gauche.cgen} Returns an <cgen-literal> object for a Scheme object obj, and submit
necessary declarations and initialization code to the current cgen unit.

For the above example, you can just call (cgen-literal ’(a b c)) and the C code to set
up the Scheme literal of the list of three symbols will be generated.

The result of cgen-literal is an instance of <cgen-literal>; the detail of the class isn’t
for public use, but you can use it to refer the created literal in C code.

[Generic Function]cgen-cexpr cgen-literal
{gauche.cgen} Returns a C code expression fragment of type ScmObj, which represents the
Scheme literal value.

The following example creates a C function printabc that prints the literal value (a b c),
created by cgen-literal.

(define *unit* (make <cgen-unit> :name "foo"))

Chapter 9: Library modules - Gauche extensions 314

(parameterize ((cgen-current-unit *unit*))

(let1 lit (cgen-literal ’(a b c))

(cgen-body

(format "void printabc() { Scm_Printf(SCM_CUROUT, \"%S\", ~a); }"

(cgen-c-name lit)))))

(cgen-emit-c *unit*)

If you examine the generated file foo.c, you’ll get a general idea of how it is handled.

One advantage of cgen-literal is that it tries to share the same literal whenever possible.
If you call (cgen-literal ’(a b c)) twice in the same cgen unit, you’ll get one instance of
cgen-literal. If you call (cgen-literal ’(b c)) then, it will share the tail of the original list
(a b c). So you can just use cgen-literal whenever you need to have Scheme literal values,
without worrying about generating excessive amount of duplicated code.

Certain Scheme objects cannot be generated as a literal; for example, an opened port can’t,
since it carries lots of runtime information.

(There’s a machinery to allow programmers to extend the cgen-literal behavior for new types.
The API isn’t fixed yet, though.)

9.3.3 Conversions between Scheme and C

In the C world, any Scheme object is uniformly of type ScmObj. But it is often the case that
you need to narrow down to the specific type and convert it to a C value. Gauche maintains a
database of how to typecheck and map Scheme value to C value and vice versa.

Note that the mapping isn’t one-to-one: Scheme <integer> can be mapped to C’s short,
long, unsigned int, or even just ScmObj if the C routine wants to cover bignums. So each
mapping has its own name. For historical reasons, each mapping is called stub type. The names
of stub types look like Scheme type but its semantics differ from Scheme type. Remember: Each
stub type represents a specific mapping between a Scheme type and a C type.

Each stub type has a C-predicate, a boxer and an unboxer, each of them is a Scheme string for
the name of a C function or C macro. A C-predicate takes ScmObj object and returns C boolean
value that if the given object has a valid type and range for the stub type. A boxer takes C
object and converts it to a Scheme object; it usually involves wrapping or boxing the C value
in a tagged pointer or object, hence the name. An unboxer does the opposite: takes a Scheme
object and convert it to a C value. The Scheme object must be checked by the C-predicate
before being passed to the unboxer.

The following table shows the predefined stub types. Note that the most of aggregate types
has one to one mappings. The difficult ones are numeric types and strings. Scheme numbers
can represent much wider range of numbers than C, so you have to narrow down according to
the capability of C routine. Scheme strings have byte size and character length, and the body
may not be NULL-terminated; so the <string> stub type maps Scheme string to ScmString*.
For the convenience, you can use <const-cstring>, which creates NUL-terminated C string;
beware that it may incur some copying cost.

Stub type Scheme C Notes

<fixnum> <integer> int Integers within fixnum range

<integer> <integer> ScmObj Any exact integers

<real> <real> double Value converted to double

<number> <number> ScmObj Any numbers

<int> <integer> int Integers representable in C

<int8> <integer> int

Chapter 9: Library modules - Gauche extensions 315

<int16> <integer> int

<int32> <integer> int

<short> <integer> short

<long> <integer> long

<uint> <integer> uint Integers representable in C

<uint8> <integer> uint

<uint16> <integer> uint

<uint32> <integer> uint

<ushort> <integer> ushort

<ulong> <integer> ulong

<float> <real> float Unboxed value casted to float

<double> <real> double Alias of <real>

<boolean> <boolean> int Boolean value

<char> <char> ScmChar Note: not a C char

<void> - void (Used only as a return type.

Scheme function returns #<undef>)

<string> <string> ScmString* Note: not a C string

<const-cstring> <string> const char* For arguments, string is unboxed

by Scm_GetStringConst.

For return values, C string is boxed

by SCM_MAKE_STR_COPYING.

<const-cstring-safe> <string> const char* Like <const-cstring>,

but when converting from Scheme,

reject a string with NUL chars in it.

<pair> <pair> ScmPair*

<list> <list> ScmObj

<string> <string> ScmString*

<symbol> <symbol> ScmSymbol*

<keyword> <keyword> ScmKeyword*

<vector> <vector> ScmVector*

<uvector> <uvector> ScmUVector*

<s8vector> <s8vector> ScmS8Vector*

<u8vector> <u8vector> ScmU8Vector*

<s16vector> <s16vector> ScmS16Vector*

<u16vector> <u16vector> ScmU16Vector*

<s32vector> <s32vector> ScmS32Vector*

<u32vector> <u32vector> ScmU32Vector*

<s64vector> <s64vector> ScmS64Vector*

<u64vector> <u64vector> ScmU64Vector*

<f16vector> <f16vector> ScmF16Vector*

<f32vector> <f32vector> ScmF32Vector*

<f64vector> <f64vector> ScmF64Vector*

<hash-table> <hash-table> ScmHashTable*

<tree-map> <tree-map> ScmTreeMap*

Chapter 9: Library modules - Gauche extensions 316

<char-set> <char-set> ScmCharSet*

<regexp> <regexp> ScmRegexp*

<regmatch> <regmatch> ScmRegMatch*

<port> <port> ScmPort*

<input-port> <input-port> ScmPort*

<output-port> <output-port> ScmPort*

<procedure> <procedure> ScmProcedure*

<closure> <closure> ScmClosure*

<promise> <promise> ScmPromise*

<class> <class> ScmClass*

<method> <method> ScmMethod*

<module> <module> ScmModule*

<thread> <thread> ScmVM*

<mutex> <mutex> ScmMutex*

<condition-variable> <condition-variable> ScmConditionVariable*

A stub type can have a maybe variation, denoted by ? suffix; e.g. <string>?. It is a union
type of the base type and boolean false (for <string>?, it can be either <string> or #f.) In
the C world, boolean false is mapped to NULL pointer. It is convenient to pass a C value that
allowed to be NULL back and forth—if you pass #f from the Scheme world it comes out NULL
to the C world, and vice versa. The maybe variation is only meaningful when the C type is a
pointer type.

[Class]<cgen-type>
{gauche.cgen} An instance of this class represents a stub type. It can be looked up by name
such as <const-cstring> by cgen-type-from-name.

[Function]cgen-type-from-name name
{gauche.cgen} Returns an instance of <cgen-type> that has name. If the name is unknown,
#f is returned.

[Function]cgen-box-expr cgen-type c-expr
[Function]cgen-unbox-expr cgen-type c-expr
[Function]cgen-pred-expr cgen-type c-expr

{gauche.cgen} c-expr is a string denotes a C expression. Returns a string of C expression
that boxes, unboxes, or typechecks the c-expr according to the cgen-type.

;; suppose foo() returns char*

(cgen-box-expr

(cgen-type-from-name ’<const-cstring>)

"foo()")

⇒ "SCM_MAKE_STR_COPYING(foo())"

9.3.4 CiSE - C in S expression

Some low-level routines in Gauche are implemented in C, but they’re written in S-expression.
We call it “C in S expression”, or CiSE.

The advantage of using S-expression is its readability, obviously. Another advantage is that
it allows us to write macros as S-expr to S-expr translation, just like the legacy Scheme macros.
That’s a powerful feature—effectively you can extend C language to suit your needs.

The gauche.cgen.cise module provides a set of tools to convert CiSE code into C code to
be passed to the C compiler. It also has some support to overcome C quirks, such as preparing
forward declarations.

Chapter 9: Library modules - Gauche extensions 317

Currently, we don’t do rigorous check for CiSE; you can pass a CiSE that yields invalid C
code, which will cause the C compiler to emit errors. The translater inserts line directives by
default so the C compiler error message points to the location of original (CiSE) source instead
of generated code; however, sometimes you need to look at the generated code to figure out
what went wrong. We hope this will be improved in future.

In Gauche source code, CiSE is extensively used in precompiled Scheme files and recognized by
the precompiler (precomp). However, gauche.cgen.cise is an independent module only relies
on gauche.cgen basic features, so you can plug it to your own C code generating programs.

9.3.4.1 CiSE overview

Before diving into the details, it’s easier to grasp some basic concepts.

A CiSE fragment is an S-expression that follows CiSE syntax (see Section 9.3.4.2 [CiSE
syntax], page 317). A CiSE fragment can be translated to C code by cise-render to a C code
fragment. Note that some translation may not be local, meaning it may want to emit forward
declarations before other C code fragments. So, the full translation requires buffering—you
process all the CiSE fragments and saves output, emit forward declarations, then emit the saved
C code fragments. We have a wrapper procedure, cise-translate, to take care of it, but for
your purpose you may want to roll your own wrapper.

A CiSE macro is a Scheme code that translates a CiSE fragment to another CiSE fragment.
There are number of predefined CiSE macros. You can add your own CiSE macros by utilities
such as define-cise-stmt and define-cise-expr.

A CiSE ambient is a bundle of information that affects fragment translation. It contains
CiSE macro definitions, and also it keeps track of forward declarations.

9.3.4.2 CiSE syntax

9.3.4.3 CiSE procedures

[Parameter]cise-ambient
{gauche.cgen}

[Function]cise-default-ambient
{gauche.cgen}

[Function]cise-ambient-copy ambient
{gauche.cgen}

[Function]cise-ambient-decl-strings ambient
{gauche.cgen}

[Parameter]cise-emit-source-line
{gauche.cgen}

[Function]cise-render cise-fragment :optional port context
{gauche.cgen}

[Function]cise-render-to-string cise-fragment :optional context
{gauche.cgen}

[Function]cise-render-rec cise-fragment stmt/expr env
{gauche.cgen}

[Function]cise-translate inp outp :key environment
{gauche.cgen}

Chapter 9: Library modules - Gauche extensions 318

[Function]cise-register-macro! name expander :optional ambient
{gauche.cgen}

[Function]cise-lookup-macro name :optional ambient
{gauche.cgen}

[Macro]define-cise-stmt name [env] clause . . . [:where de↓nition . . .]
[Macro]define-cise-expr name [env] clause . . . [:where de↓nition . . .]
[Macro]define-cise-toplevel name [env] clause . . . [:where de↓nition . . .]

{gauche.cgen}

[Macro]define-cise-macro (name form env) body . . .
[Macro]define-cise-macro name name2

{gauche.cgen}

9.4 gauche.charconv - Character Code Conversion

[Module]gauche.charconv
This module defines a set of functions that converts character encoding schemes (CES) of the
given data stream.

This module is implicitly loaded when :encoding keyword argument is given to the file
stream creating functions (such as open-input-file and call-with-output-file).

As of release 0.5.6, Gauche natively supports conversions between typical Japanese charac-
ter encodings: ISO2022JP, ISO2022JP-3, EUC-JP (EUC-JISX0213), Shift JISX0213, UTF-
8 (Unicode 3.2). Conversions between other encodings are handled by iconv(3). See
Section 9.4.1 [Supported character encoding schemes], page 318, for details.

9.4.1 Supported character encoding schemes

A CES is represented by its name as a string or a symbol. Case is ignored. There may be several
aliases defined for a single encoding.

A CES name "none" is special. When Gauche’s native encoding is none, Gauche just treats
a string as a byte sequence, and it’s up to the application to interpret the sequence in an
appropriate encoding. So, conversion to and from CES "none" does nothing.

You can check whether the specific conversion is supported on your system or not, by the
following function.

[Function]ces-conversion-supported? from-ces to-ces
{gauche.charconv} Returns #t if conversion from the character encoding scheme (CES)
from-ces to to-ces is supported in this system.

Note that this procedure may return true even if system only supports partial conversion
between from-ces and to-ces. In such case, actual conversion might lose information by
coercing characters in from-ces which are not supported in to-ces. (For example, conversion
from Unicode to EUC-JP is "supported", although Unicode has characters that are not in
EUC-JP).

Also note that this procedure always returns #t if from-ces and/or to-ces is "none", for
conversion to/from CES "none" always succeeds (in fact, it does nothing).

;; see if you can convert the internal encoding to EUC-JP

(ces-conversion-supported? (gauche-character-encoding) "euc-jp")

Also there are two useful procedures to deal with CES names.

Chapter 9: Library modules - Gauche extensions 319

[Function]ces-equivalent? ces-a ces-b :optional unknown-value
{gauche.charconv} Returns true if two CESes ces-a and ces-b are equivalent to the knowl-
edge of the system. Returns false if they are not. If the system doesn’t know about equiva-
lency, unknown-value is returned, whose default is #f.

CES "none" works like a wild card; it is "equivalent" to any CES. (Thus, ces-equivalent?
is not transitive. The intended use of ces-equivalent? is to compare two given CES names
and see if conversion is required or not).

(ces-equivalent? ’eucjp "EUC-JP") ⇒ #t

(ces-equivalent? ’shift_jis "EUC-JP") ⇒ #f

(ces-equivalent? "NoSuchEncoding" ’utf-8 ’?) ⇒ ?

[Function]ces-upper-compatible? ces-a ces-b :optional unknown-value
{gauche.charconv} Returns true if a string encoded in CES ces-b can also be regarded as a
string encoded in ces-a without conversion, to the knowledge of the system. Returns false if
not. Returns unknown-value if the system can’t determine which is the case.

Like ces-equivalent?, CES "none" works like a wildcard. It is upper-compatible to any
CES, and any CES is upper-compatible to "none".

(ces-upper-compatible? "eucjp" "ASCII") ⇒ #t

(ces-upper-compatible? "eucjp" "utf-8") ⇒ #f

(ces-upper-compatible? "utf-8" "NoSuchEncoding" ’?) ⇒ ?

Conversion between common japanese CESes (EUC JP, Shift JIS, UTF-8 and ISO2022-JP)
of the character set JIS X 0201 and JIS X 0213 is handled by Gauche’s built-in algorithm (see
below for details). When other CES name is given, Gauche uses iconv(3) if it is linked.

When Gauche’s conversion routine encounters a character that can’t be mapped, it replaces
the character for "geta mark" (U+3013) if it’s a multibyte character in the input encoding, or
for ’?’ if it’s a singlebyte character in the input encoding. If that happens in iconv, handling of
such character depends on iconv implementation (glibc implementation returns an error).

If the conversion routine encounters an input sequence that is illegal in the input CES, an
error is signaled.

Details of Gauche’s native conversion algorithm: Between EUC JP, Shift JIS and ISO2022JP,
Gauche uses arithmetic conversion whenever possible. This even maps the undefined codepoint
properly. Between Unicode (UTF-8) and EUC JP, Gauche uses lookup tables. Between Unicode
and Shift JIS or ISO2022JP, Gauche converts the input CES to EUC JP, then convert it to the
output CES. If the same CES is specified for input and output, Gauche’s conversion routine just
copies input characters to output characters, without checking the validity of the encodings.

EUC_JP, EUCJP, EUCJ, EUC_JISX0213

Covers ASCII, JIS X 0201 kana, JIS X 0212 and JIS X 0213 character sets. JIS X
0212 character set is supported merely because it uses the code region JIS X 0213
doesn’t use, and JIS X 0212 characters are not converted properly to Shift JIS and
UTF-8. Use JIS X 0213.

SHIFT_JIS, SHIFTJIS, SJIS

Covers Shift JISX0213, except that 0x5c and 0x7e is mapped to ASCII character
set (REVERSE SOLIDUS and TILDE), instead of JIS X 0201 Roman (YEN SIGN
and OVERLINE).

UTF-8, UTF8

Unicode 3.2. Note that some JIS X 0213 characters are mapped to Extension B
(U+20000 and up). Some JIS X 0213 characters are mapped to two unicode char-
acters (one base character plus a combining character).

Chapter 9: Library modules - Gauche extensions 320

ISO2022JP, CSISO2022JP, ISO2022JP-1, ISO2022JP-2, ISO2022JP-3

These encodings differ a bit (except ISO2022JP and CSISO2022JP, which are syn-
onyms), but Gauche handles them same. If one of these CES is specified as input,
Gauche recognizes escape sequences of any of CES. ISO2022JP-2 defines several
non-Japanese escape sequences, and they are recognized by Gauche, but mapped to
substitution character (’?’ or geta mark).

For output, Gauche assumes ISO2022JP first, and uses ISO2022JP-1 escape se-
quence to put JIS X 0212 character, or uses ISO2022JP-3 escape sequence to put
JIS X 0213 plane 2 character. Thus, if the string contains only JIS X 0208 charac-
ters, the output is compatible to ISO2022JP. Precisely speaking, JIS X 0213 specifies
some characters in JIS X 0208 codepoint that shouldn’t be mixed with JIS X 0208
characters; Gauche output those characters as JIS X 0208 for compatibility. (This
is the same policy as Emacs-Mule’s iso2022jp-3-compatible mode).

9.4.2 Autodetecting the encoding scheme

There are cases that you don’t know the CES of the input, but you know it is one of several
possible encodings. The charconv module has a mechanism to guess the input encoding. There
can be multiple algorithms, and each algorithm has the name (wildcard CES). Right now, there’s
only one algorithm implemented:

"*JP" To guess the character encoding from japanese text, among either ISO2022-JP(-
1,2,3), EUCJP, SHIFT JIS or UTF-8.

The wildcard CES can be used in place of CES name for some conversion functions.

[Function]ces-guess-from-string string scheme
{gauche.charconv} Guesses the CES of string by the character guessing scheme scheme (e.g.
"*JP"). Returns CES name that can be used by other charconv functions. It may return #f

if the guessing scheme finds no possible encoding in string. Note that if there may be more
than one possible encoding in string, the guessing scheme returns one of them, usually in
favor of the native CES.

9.4.3 Conversion ports

[Function]open-input-conversion-port source from-code :key to-code bu↑er-size
owner?

{gauche.charconv} Takes an input port source, which feeds characters encoded in from-code,
and returns another input port, from which you can read characters encoded in to-code.

If to-code is omitted, the native CES is assumed.

bu↑er-size is used to allocate internal buffer size for conversion. The default size is about 1
kilobytes and it’s suitable for typical cases.

If you don’t know the source’s CES, you can specify CES guessing scheme, such as "*JP", in
place of from-code. The conversion port tries to guess the encoding, by prefetching the data
from source up to the buffer size. It signals an error if the code guessing routine finds no
appropriate CES. If the guessing routine finds ambiguous input, however, it silently assume
one of possible CES’s, in favor of the native CES. Hence it is possible that the guessing
is wrong if the buffer size is too small. The default size is usually enough for most text
documents, but it may fail if the large text contains mostly ASCII characters and multibyte
characters appear only at the very end of the document. To be sure for the worst case, you
have to specify the buffer size large enough to hold entire text.

By default, open-input-conversion-port leaves source open. If you specify true value to
owner?, the function closes source after it reads EOF from the port.

Chapter 9: Library modules - Gauche extensions 321

For example, the following code copies a file unknown.txt to a file eucjp.txt, converting
unknown japanese CES to EUC-JP.

(call-with-output-file "eucjp.txt"

(lambda (out)

(copy-port (open-input-conversion-port

(open-input-file "unknown.txt")

"*jp" ;guess code
:to-code "eucjp"

:owner? #t) ;close unknown.txt afterwards
out)))

[Function]open-output-conversion-port sink to-code :key from-code bu↑er-size
owner?

{gauche.charconv} Creates and returns an output port that converts given characters from
from-code to to-code and feed to an output port sink. If from-code is omitted, the native
CES is assumed. You can’t specify a character guessing scheme (such as "*JP") to neither
from-code nor to-code.

bu↑er-size specifies the size of internal conversion buffer. The characters put to the returned
port may stay in the buffer, until the port is explicity flushed (by flush) or the port is closed.

By default, the returned port doesn’t closes sink when itself is closed. If a keyword argument
owner? is provided and true, however, it closes sink when it is closed.

[Function]ces-convert-to return-type source from-code :optional to-code
[Function]ces-convert source from-code :optional to-code

{gauche.charconv} Convert source, which is a string or an u8vector of multibyte encoding
in from-code, to a string or u8vector encoded in to-code. If to-code is omitted, the native
CES is assumed.

In ces-convert-to, you can specify the return type by return-type argument; it must be
either a class object <string> or <u8vector>. On the other hand, ces-convert always
returns a string, regardless of the type of source.

If to-code is different from the native CES and a string is returned, it can be an incomplete
string. It’s for the backward compatibility—in general, we recommend to use u8vector to
represent multibyte sequence in CES other than the native encoding.

from-code can be a name of character guessing scheme (e.g. "*JP").

[Function]call-with-input-conversion iport proc :key encoding
conversion-bu↑er-size

[Function]call-with-output-conversion oport proc :key encoding
conversion-bu↑er-size

{gauche.charconv} These procedures can be used to perform character I/O with different
encoding temporary from the original port’s encoding.

call-with-input-conversion takes an input port iport which uses the character encoding
encoding, and calls proc with one argument, a conversion input port. From the port, proc
can read characters in Gauche’s internal encoding. Note that once proc is called, it has to
read all the characters until EOF; see the note below.

call-with-output-conversion takes an output port oport which expects the character
encoding encoding, and calls proc with one argument, a temporary conversion output port.
To the port, proc can write characters in Gauche’s internal encoding. When proc returns,
or it exits with an error, the temporary conversion output port is flushed and closed. The
caller of call-with-output-conversion can continue to use oport with original encoding
afterwards.

Chapter 9: Library modules - Gauche extensions 322

Both procedure returns the value(s) that proc returns. The default value of encoding is
Gauche’s internal encoding. Those procedures don’t create a conversion port when it is not
necessary. If conversion-bu↑er-size is given, it is used as the bu↑er-size argument when the
conversion port is open.

You shouldn’t use iport/oport directly while proc is active—character encoding is a stateful
process, and mixing I/O from/to the conversion port and the underlying port will screw up
the state.

Note: for the call-with-input-conversion, you can’t use iport again unless proc reads
EOF from it. It’s because a conversion port needs to buffer the input, and there’s no way to
undo the buffered input to iport when proc returns.

[Function]with-input-conversion iport thunk :key encoding conversion-bu↑er-size
[Function]with-output-conversion oport thunk :key encoding

conversion-bu↑er-size
{gauche.charconv} Similar to call-with-*-conversion, but these procedures call thunk
without arguments, while the conversion port is set as the current input or output port,
respectively. The meaning of keyword arguments are the same as call-with-*-conversion.

[Function]wrap-with-input-conversion port from-code :key to-code owner?
bu↑er-size

[Function]wrap-with-output-conversion port to-code :key from-code owner?
bu↑er-size

{gauche.charconv} Convenient procedures to avoid adding unnecessary conversion port.
Each procedure works like open-input-conversion-port and open-output-conversion-

port, respectively, except if system knows no conversion is needed, no conversion port is
created and port is returned as is.

When a conversion port is created, port is always owned by the port. When you want
to close the port, always close the port returned by wrap-with-*-conversion, instead the
original port. If you close the original port first, the pending conversion won’t be flushed.
(Some conversion requires trailing sequence that is generated only when the conversion port
is closing, so simply calling flush isn’t enough.)

The bu↑er-size argument is passed to the open-*-conversion-port.

9.5 gauche.collection - Collection framework

[Module]gauche.collection
This module provides a set of generic functions (GFs) that iterate over various collec-
tions. The Scheme standard has some iterative primitives such as map and for-each, and
scheme.list (see Section 10.3.1 [R7RS lists], page 482, adds a rich set of such functions, but
they work only on lists.

Using the method dispatch of the object system, this module efficiently extends those func-
tions for other collection classes such as vectors and hash tables. It also provides a simple
way for user-defined class to adapt those operations. So far, the following operations are
defined.

Mapping fold, fold2, fold3, map, map-to, map-accum, for-each

Selection and searching
find, find-min, find-max, find-min&max, filter, filter-to, remove,
remove-to, partition, partition-to group-collection

Conversion
coerce-to

Chapter 9: Library modules - Gauche extensions 323

Miscellaneous
size-of, lazy-size-of

Fundamental iterator creator
call-with-iterator, call-with-builder, with-iterator, with-builder,
call-with-iterators.

Those operations work on collections and its subclass, sequences. A collection is a certain
form of a set of objects that you can traverse all the object in it in a certain way. A sequence
is a collection that all its elements are ordered, so that you can retrieve its element by index.

The following Gauche built-in objects are treated as collections and/or sequences.

<list> A sequence.

<vector> A sequence.

<string> A sequence (of characters)

<hash-table>

A collection. Each element is a pair of a key and a value.

<s8vector>, <u8vector>, ... <f64vector>

A sequence (methods defined in srfi-4 module, see Section 11.2 [Homogeneous
vectors], page 517).

See Section 9.28 [Sequence framework], page 412, for it adds more sequence specific methods.

The methods that needs to return a set of objects, i.e. map, filter, remove and partition.
returns a list (or lists). The corresponding “-to” variant (map-to, filter-to, remove-to
and partition-to. takes a collection class argument and returns the collection of the class.

9.5.1 Mapping over collection

These generic functions extends the standard mapping procedures. See also Section 9.28.3
[Mapping over sequences], page 414, if you care the index as well as elements.

[Generic function]fold proc knil coll coll2 . . .
{gauche.collection} This is a natural extension of fold (see Section 6.6.6 [Other list pro-
cedures], page 125).

For each element Ei in the collection coll, proc is called as (proc Ei Ri-1), where Ri-1 is the
result of (i-1)-th invocation of proc for i > 0, and R0 is knil. Returns the last invocation of
proc.

(fold + 0 ’#(1 2 3 4)) ⇒ 10

(fold cons ’() "abc") ⇒ (#\c #\b #\a)

If the coll is a sequence, it is guaranteed that the elements are traversed in order. Otherwise,
the order of iteration is undefined.

Note: We don’t provide fold-right on collections, since the order of elements doesn’t matter,
so only fold is sufficient for meaningful traversal. However, sequences do have fold-right;
see Section 9.28.3 [Mapping over sequences], page 414.

You can fold more than one collection, although it doesn’t make much sense unless all of the
collections are sequences. Suppose E(k, i) for i-th element of k-th collection. proc is called
as

(proc E(0,i) E(1,i) ... E(K-1,i) Ri-1)

Different types of collections can be mixed together.

(fold acons ’() "abc" ’#(1 2 3))

⇒ ((#\c 3) (#\b 2) (#\a 1))

Chapter 9: Library modules - Gauche extensions 324

;; calculates dot product of two vectors
(fold (lambda (a b r) (+ (* a b) r)) 0

’#(3 5 7) ’#(2 4 6))

⇒ 68

When more than one collection is given, fold terminates as soon as at least one of the
collections exhausted.

[Generic function]fold2 proc knil1 knil2 coll coll2 . . .
[Generic function]fold3 proc knil1 knil2 knil3 coll coll2 . . .

{gauche.collection} Like fold, but they can carry two and three state values instead of
one, respectively. The state values are initialized by knilN. The procedure proc is called with
each element of collN, and the state values. It must return two (fold2) or three (fold3)
values, which will be used as the state values of next iteration. The values returned in the
last iteration will be the return values of fold2 and fold3.

(fold2 (lambda (elt a b) (values (min elt a) (max elt b)))

256 0 ’#u8(33 12 142 1 74 98 12 5 99))

⇒ 1 and 142 ;; find minimum and maximum values

See also map-accum below.

[Generic function]map proc coll coll2 . . .
{gauche.collection} This extends the built-in map (see Section 6.6.5 [Walking over lists],
page 121). Apply proc for each element in the collection coll, and returns a list of the results.

If the coll is a sequence, it is guaranteed that the elements are traversed in order. Otherwise,
the order of iteration is undefined.

If more than one collection is passed, proc is called with elements for each collection. In such
case, map terminates as soon as at least one of the collection is exhausted. Note that passing
more than one collection doesn’t make much sense unless all the collections are sequences.

(map (lambda (x) (* x 2)) ’#(1 2 3))

⇒ #(2 4 6)

(map char-upcase "abc")

⇒ (#\A #\B #\C)

(map + ’#(1 2 3) ’#(4 5 6))

⇒ (5 7 9)

map always returns a list. If you want to get the result in a different type of collection,
use map-to described below. If you wonder why (map char-upcase "abc") doesn’t return
"ABC", read the discussion in the bottom of this subsection.

[Generic function]map-to class proc coll coll2 . . .
{gauche.collection} This works the same as map, except the result is returned in a col-
lection of class class. Class must be a collection class and have a builder interface (see
Section 9.5.4 [Fundamental iterator creators], page 328).

(map-to <vector> + ’#(1 2 3) ’#(4 5 6))

⇒ #(5 7 9)

(map-to <string> char-upcase "def")

⇒ "DEF"

(map-to <vector> char=? "bed" "pet")

⇒ #(#f #t #f)

Chapter 9: Library modules - Gauche extensions 325

[Generic function]map-accum proc seed coll1 coll2 . . .
{gauche.collection} Collects results of proc over collections, while passing a state value.
proc is called like this:

(proc elt1 elt2 ... seed)

Where elt1 elt2 . . . are the elements of coll1 coll2 It must return two values; the first
value is collected into a list (like map), while the second value is passed as seed to the next
call of proc.

When one of the collections is exhausted, map-accum returns two values, the list of the first
return values from proc, and the second return value of the last call of proc.

If the given collections are sequences, it is guaranteed that proc is applied in order of the
sequence.

This is similar to Haskell’s mapAccumL, but note that the order of proc’s argument and return
values are reversed.

[Generic function]for-each proc coll coll2 . . .
{gauche.collection} Extension of built-in for-each (see Section 6.6.5 [Walking over lists],
page 121). Applies proc for each elements in the collection(s). The result of proc is discarded.
The return value of for-each is undefined.

If the coll is a sequence, it is guaranteed that the elements are traversed in order. Otherwise,
the order of iteration is undefined.

If more than one collection is passed, proc is called with elements for each collection. In such
case, for-each terminates as soon as one of the collection is exhausted. Note that passing
more than one collection doesn’t make much sense unless all the collections are sequences.

[Generic Function]fold$ proc
[Generic Function]fold$ proc knil
[Generic Function]map$ proc
[Generic Function]for-each$ proc

{gauche.collection} Partial-application version of fold, map and for-each.

Discussion: It is debatable what type of collection map should return when it operates on the
collections other than lists. It may seem more “natural” if (map * ’#(1 2) ’#(3 4)) returns a
vector, and (map char-upcase "abc") returns a string.

Although such interface seems work for simple cases, it’ll become problematic for more gen-
eral cases. What type of collection should be returned if a string and a vector are passed?
Furthermore, some collection may only have iterator interface but no builder interface, so that
the result can’t be coerced to the argument type (suppose you’re mapping over database records,
for example). And Scheme programmers are used to think map returns a list, and the result of
map are applied to the procedures that takes list everywhere.

So I decided to add another method, map-to, to specify the return type explicitly The idea of
passing the return type is taken from CommonLisp’s map function, but taking a class metaobject,
map-to is much flexible to extend using method dispatch. This protocol (“-to” variant takes a
class metaobject for the result collection) is used throughout the collection framework.

9.5.2 Selection and searching in collection

[Generic function]find pred coll
{gauche.collection} Applies pred for each element of a collection coll until pred returns
a true value. Returns the element on which pred returned a true value, or #f if no element
satisfies pred.

Chapter 9: Library modules - Gauche extensions 326

If coll is a sequence, it is guaranteed that pred is applied in order. Otherwise the order of
application is undefined.

(find char-upper-case? "abcDe") ⇒ #\D

(find even? ’#(1 3 4 6)) ⇒ 4

(find even? ’(1 3 5 7)) ⇒ #F

[Generic function]find-min coll :key key compare default
[Generic function]find-max coll :key key compare default

{gauche.collection} Returns a minimum or maximum element in the collection coll.

A one-argument procedure key, whose default is identity, is applied for each element to
obtain a comparison value. Then a comparison value is compared by a two-argument pro-
cedure compare, whose default is <. If the collection has zero or one element, the compare
procedure is never called.

When the collection is empty, a value given to default is returned, whose default is #f.

(find-min ’((a . 3) (b . 9) (c . -1) (d . 7)) :key cdr) ⇒ (c . -1)

[Generic function]find-min&max coll :key key compare default default-min
default-max

{gauche.collection} Does find-min and find-max simultaneously, and returns two values,
the minimum element and the maximum element. The keyword arguments key, compare,
and default are the same as find-min and find-max. Alternatively you can give default
values for minimum and maximum separately, by default-min and default-max.

[Generic function]filter pred coll
{gauche.collection} Returns a list of elements of collection coll that satisfies the predicate
pred. If the collection is a sequence, the order is preserved in the result.

(filter char-upper-case? "Hello, World")

⇒ (#\H #\W)

(filter even? ’#(1 2 3 4)) ⇒ (2 4)

[Generic function]filter-to class pred coll
{gauche.collection} Same as filter, but the result is returned as a collection of class
class.

(filter-to <vector> even? ’#(1 2 3 4)) ⇒ #(2 4)

(filter-to <string> char-upper-case? "Hello, World")

⇒ "HW"

[Generic function]remove pred coll
{gauche.collection} Returns a list of elements of collection coll that does not satisfy the
predicate pred. If the collection is a sequence, the order is preserved in the result.

(remove char-upper-case? "Hello, World")

⇒ (#\e #\l #\l #\o #\, #\space #\o #\r #\l #\d)

(remove even? ’#(1 2 3 4)) ⇒ (1 3)

[Generic function]remove-to class pred coll
{gauche.collection} Same as remove, but the result is returned as a collection of class
class.

(remove-to <vector> even? ’#(1 2 3 4)) ⇒ #(1 3)

(remove-to <string> char-upper-case? "Hello, World")

⇒ "ello, orld"

Chapter 9: Library modules - Gauche extensions 327

[Generic function]partition pred coll
{gauche.collection} Does filter and remove the same time. Returns two lists, the first
consists of elements of the collection coll that satisfies the predicate pred, and the second
consists of elements that doesn’t.

(partition char-upper-case? "PuPu")

⇒ (#\P #\P) and (#\u #\u)

(partition even? ’#(1 2 3 4))

⇒ (2 4) and (1 3)

[Generic function]partition-to class pred coll
{gauche.collection} Same as partition, except the results are returned in the collections
of class class.

(partition-to <string> char-upper-case? "PuPu")

⇒ "PP" and "uu"

(partition-to <vector> even? ’#(1 2 3 4))

⇒ #(2 4) and #(1 3)

[Generic function]group-collection coll :key key test
{gauche.collection} Generalized partition. Groups elements in coll into those who has
the same key value, and returns the groups as of lists. Key values are calculated by applying
the procedure key to each element of coll. The default value of key is identity. For each
element of coll, key is applied exactly once. The equal-ness of keys are compared by test
procedure, whose default is eqv?.

If coll is a sequence, then the order of elements in each group of the result is the same order
in coll.

(group-collection ’(1 2 3 2 3 1 2 1 2 3 2 3))

⇒ ((1 1 1) (2 2 2 2 2) (3 3 3 3))

(group-collection ’(1 2 3 2 3 1 2 1 2 3 2 3) :key odd?)

⇒ ((1 3 3 1 1 3 3) (2 2 2 2 2))

(group-collection ’(("a" 2) ("b" 5) ("c" 1) ("b" 3) ("a" 6))

:key car :test string=?)

⇒ ((("a" 2) ("a" 6)) (("b" 5) ("b" 3)) (("c" 1)))

See also group-sequence in gauche.sequence (see Section 9.28.4 [Other operations over
sequences], page 415), which only groups adjacent elements.

9.5.3 Miscellaneous operations on collection

[Generic function]size-of coll
{gauche.collection} Returns the number of elements in the collection. Default method
iterates over the collection to calculate the size, which is not very efficient and may diverge if
the collection is infinite. Some collection classes overload the method for faster calculation.

[Generic function]lazy-size-of coll
{gauche.collection} Returns either the size of the collection, or a promise to calculate
it. The intent of this method is to avoid size calculation if it is expensive. In some cases,
the caller wants to have size just for optimization, and it is not desirable to spend time to
calculate the size. Such caller uses this method and just discards the information if it is a
promise.

Chapter 9: Library modules - Gauche extensions 328

[Generic function]coerce-to class coll
{gauche.collection} Convert a collection coll to another collection which is an instance of
class. If coll is a sequence and class is a sequence class, the order is preserved.

(coerce-to <vector> ’(1 2 3 4))

⇒ #(1 2 3 4)

(coerce-to <string> ’#(#\a #\b #\c))

⇒ "abc"

9.5.4 Fundamental iterator creators

These are fundamental methods on which all the rest of iterative method are built. The method
interface is not intended to be called from general code, but suitable for building other iterator
construct. The reason why I chose this interface as fundamental methods are explained at the
bottom of this subsection.

[Generic function]call-with-iterator collection proc :key start
{gauche.collection} A fundamental iterator creator. This creates two procedures from
collection, both take no argument, and then call proc with those two procedures. The first
procedure is terminate predicate, which returns #t if the iteration is exhausted, or #f if there
are still elements to be visited. The second procedure is an incrementer, which returns one
element from the collection and sets the internal pointer to the next element. The behavior
is undefined if you call the incrementer after the terminate predicate returns #t.

If the collection is actually a sequence, the incrementer is guaranteed to return elements in
order, from 0-th element to the last element. If a keyword argument start is given, however,
the iteration begins from start-th element and ends at the last element. If the collection is
not a sequence, the iteration order is arbitrary, and start argument has no effect.

An implementation of call-with-iterator method may limit the extent of the iterator inside
the dynamic scope of the method. For example, it allocates some resource (e.g. connect to a
database) before calling proc, and deallocates it (e.g. disconnect from a database) after proc
returns.

This method returns the value(s) proc returns.

(call-with-iterator ’(1 2 3 4 5)

(lambda (end? next)

(do ((odd-nums 0))

((end?) odd-nums)

(when (odd? (next)) (inc! odd-nums)))))

⇒ 3

See also with-iterator macro below, for it is easier to use.

[Macro]with-iterator (collection end? next args . . .) body . . .
{gauche.collection} A convenience macro to call call-with-iterator.

(with-iterator (coll end? next args ...) body ...)

≡
(call-with-iterator coll

(lambda (end? next) body ...)

args ...)

[Function]call-with-iterators collections proc
{gauche.collection} A helper function to write n-ary iterator method. This function ap-
plies call-with-iterator for each collections, and makes two lists, the first consists of
terminate predicates and the second of incrementers. Then proc is called with those two
lists. Returns whatever proc returns.

Chapter 9: Library modules - Gauche extensions 329

[Generic function]call-with-builder collection-class proc :key size
{gauche.collection} A fundamental builder creator. Builder is a way to construct a col-
lection incrementally. Not all collection classes provide this method.

Collection-class is a class of the collection to be built. This method creates two procedures,
adder and getter, then calls proc with those procedures. Adder procedure takes one argument
and adds it to the collection being built. Getter takes no argument and returns a built
collection object. The effect is undefined if adder is called after getter is called.

A keyword argument size may be specified if the size of the result collection is known. Certain
collections may be built much more efficiently if the size is known; other collections may just
ignore it. The behavior is undefined if more than size elements are added, or the collection
is retrieved before size elements are accumulated.

If the collection class is actually a sequence class, adder is guaranteed to add elements in
order. Otherwise, the order of elements are insignificant.

Some collection class may take more keyword arguments to initialize the collection.

This method returns the value(s) proc returned.

(call-with-builder <list>

(lambda (add! get)

(add! ’a) (add! ’b) (add! ’c) (get)))

⇒ (a b c)

(call-with-builder <vector>

(lambda (add! get)

(add! ’a) (add! ’b) (add! ’c) (get)))

⇒ #(a b c)

See also with-builder macro below, for it is much easier to use.

[Macro]with-builder (collection add! get args . . .) body . . .
{gauche.collection} A convenience macro to call call-with-builder.

(with-builder (coll add! get args ...) body ...)

≡
(call-with-builder coll

(lambda (add! get) body ...)

args ...)

Discussion: Other iterator methods are built on top of call-with-iterator and call-with-
builder. By implementing those methods, you can easily adapt your own collection class to
all of those iterative operations. Optionally you can overload some of higher-level methods for
efficiency.

It is debatable that which set of operations should be primitives. I chose call-with-iterator
style for efficiency of the applications I see most. The following is a discussion of other possible
primitive iterators.

fold It is possible to make fold a primitive method, and build other iterator method
on top of it. Collection-specific iterating states can be kept in the stack of fold,
thus it runs efficiently. The method to optimize a procedure that uses fold as
a basic iterator construct. However, it is rather cumbersome to derive generator-
style interface from it. It is also tricky to iterate irregularly over more than one
collections.

CPS Passes iteratee the continuation procedure that continues the iteration. The iteratee
just returns when it want to terminate the iteration. It has resource management
problem described in Oleg Kiselyov’s article ([OLEG2], page 764).

Chapter 9: Library modules - Gauche extensions 330

Iterator object
Like C++ iterator or Common Lisp generator. Easy to write loop. The problem is
that every call of checking termination or getting next element must be dispatched.

Series Common Lisp’s series can be very efficient if the compiler can statically analyze the
usage of series. Unfortunately it is not the case in Gauche. Even if it could, the
extension mechanism doesn’t blend well with Gauche’s object system.

Macros Iterator can be implemented as macros, and that will be very efficient; e.g.
Scheme48’s iterator macro. It uses macros to extend, however, and that doesn’t
blend well with Gauche’s object system.

The current implementation is close to the iterator object approach, but using closures instead
of iterator objects so that avoiding dispatching in the inner loop. Also it allows the iterator
implementor to take care of the resource problem.

9.5.5 Implementing collections

The minimum requirements of the collection class implementation is as follow:

• The class inherits <collection> abstract class.

• A method call-with-iterator is implemented.

This makes iterator methods such as map, for-each, find and filter to work.

In order to make the constructive methods (e.g. map-to to create your collection), you have to
implement call-with-builder method as well. Note that call-with-builder method must
work a sort of class method, dispatched by class, rather than normal method dispatched by
instance. In Gauche, you can implement it by using a metaclass. Then the minimal code will
look like this:

(define-class <your-collection-meta> (<class>) ())

(define-class <your-collection> (<collection>)

(...) ;; slots
:metaclass <your-collection-meta>)

(define-method call-with-iterator

((coll <your-collection>) proc . options)

...

)

(define-method call-with-builder

((coll <your-collection-meta>) proc . options)

...

)

Optionally, you can overload other generic functions to optimize performance.

9.6 gauche.config - Configuration parameters

[Module]gauche.config
This module allows the Scheme program to access the configuration information the same as
you can get from the gauche-config program.

[Function]gauche-config option
{gauche.config} Returns the configured value of the option.

Chapter 9: Library modules - Gauche extensions 331

See the manpage of gauche-config, or run gauche-config without any argument from the
shell, to find out the valid options.

(gauche-config "--cc")

⇒ "gcc"

(gauche-config "-L")

⇒ "-L/usr/lib/gauche/0.6.5/i686-pc-linux-gnu"

(gauche-config "-l")

⇒ "-ldl -lcrypt -lm -lpthread"

9.7 gauche.configure - Generating build files

[Module]gauche.configure
This is a utility library to write a configure script. It is used to check the system properties
and generates build files (usually Makefile) from templates.

The primary purpose is to replace autoconf-generated configure shell scripts in Gauche
extension pakcages.

The advantage of using autoconf is that it generates a script that runs on most vanilla unix,
for it only uses minimal shell features and basic unix commands. However, when you configure
Gauche extension, you sure have Gauche already, so you don’t need to limit yourself with
minimal environment.

Writing a configure script directly in Gauche means developers don’t need an extra step to
generate configure before distribution. They can directly check in configure in the source
repo, and anybody who pulls the source tree can run configure at once without having
autoconf.

Currently, gauche.configure only covers small subset of autoconf, though, so if you need
to write complex tests you may have to switch back to autoconf. We’ll add tests as needed.

The core feature of gauche.configure is the ability to generate files (e.g. Makefile) from
templates (e.g. Makefile.in) with replacing parameters. We follow autoconf convension, so
the replacement parameters in a template is written like @VAR@. You should be able to reuse
Makefile.in used for autoconf without changing them.

The API corresponds to autoconf’s AC_* macros, while we use cf- prefix instead.

9.7.1 Structure of configure script and build files

A configure script tests running system’s properties to determine values of parameters, then
read one or more template build files, and write out one output build file for each, replacing
parameters for the assigned values.

By convention, a template file has a suffix .in, and the corresponding output file is named
without the suffix. For example, Makefile.in is a template that generates Makefile.

Templates may contain parameters, noted @PARAMETER_NAME@. This is a fragment of a typical
Makefile template:

GAUCHE_PACKAGE = "@GAUCHE_PACKAGE@"

SOEXT = @SOEXT@

LOCAL_PATHS = "@LOCAL_PATHS@"

foo.$(SOEXT): $(foo_SRCS)

$(GAUCHE_PACKAGE) compile \

--local=$(LOCAL_PATHS) --verbose foo $(foo_SRCS)

When processed by configure, @GAUCHE_PACKAGE@, @SOEXT@ and @LOCAL_PATHS@ are re-
placed with appropriate values. If you know autoconf, you are already familiar with this.

Chapter 9: Library modules - Gauche extensions 332

The Gauche configure script is structurally similar to autoconf’s configure.in, but you can
use full power of Scheme. Here’s an abridged version of sample configure script:

#!/usr/bin/env gosh

(use gauche.configure)

;; Argument declarations

(cf-arg-with ’local

(cf-help-string

"--with-local=PATH:PATH..."

"For each PATH, add PATH/include to the include search

paths and PATH/lib to the library search paths. Useful if you have some

libraries installed in non-standard places. ")

(^[with-local]

(unless (member with-local ’("yes" "no" ""))

(cf-subst ’LOCAL_PATHS with-local)))

(^[] (cf-subst ’LOCAL_PATHS "")))

;; Initialization

(cf-init)

;; Tests & other parameter settings

(cf-path-prog ’GOSH "gosh")

;; Output

(cf-make-gpd)

(cf-echo (cf$ ’PACKAGE_VERSION) > "VERSION")

(cf-output "Makefile")

Instead of writing the calls to cf-* APIs in the toplevel as shown above, you can organize
operations in procedures if you like. No matter how you organize them, you have to execute the
following four steps in the script:

1. Extra argument declarations (optional): Declare --with-PACKAGE and/or --enable-

FEATURE options you want to handle, by cf-with-arg and cf-enable-arg, respectively.

2. Initialization. Call to cf-init sets up global context and parses command-line arguments
passed to configure. It also process package metainformation in package.scm, if it exists.

3. Tests and other parameter settings (optional): Check system characteristics and sets up
substitution parameters and/or C preprocessor definitions.

4. Output generation. Call cf-output to process template files.

Most cf-* API corresponds to autoconf’s AC_* or AS_* macros. We need argument declara-
tions before cf-init so that it can generate help message including custom arguments in one
pass.

9.7.2 Configure API

Initialization

[Function]cf-init :optional package-name package-version maintainer-email
homepage-url

{gauche.configure} Initialize the configure system. This must be called once in the config-
ure script, before any feature-test procedures. First, it checks if a file named package.scm

is in the same directory as the configure script, and reads the Gauche package description

Chapter 9: Library modules - Gauche extensions 333

from it. The package description contains package name, version, dependencies, etc. See
Section 9.20 [Package metainformation], page 383, for the details.

It then parse the command-line arguments, sets up the configure environment, and (if
package.scm defines dependencies) check if the system has required packages.

The optional arguments are only supported for the backward compatibility if you don’t have
package.scm, you need at least to provide package-name and package-version to tell what
package you’re configuring. They are used as the value of configure variable PACKAGE_NAME

and PACKAGE_VERSION. The other optional arguments, maintainer-email and homepage-url,
are used to initialize PACKAGE_BUGREPORT and PACKAGE_URL. These arguments are compatible
to autoconf’s AC_INIT macro.

We recommend to always use package.scm and omit all the optional arguments, because
it allows you to maintain the package metainformation in one place. When package.scm is
read, PACKAGE_BUGREPORT is initialized by the first entry of maintainers slot of the package
description, and PACKAGE_URL is initialized by its homepage slot. See Section 9.20 [Package
metainformation], page 383, for description of slots of the package description.

Note that if there’s package.scm and you provide the optional arguments, they must match,
or cf-init raises an error. It is to catch an error during transition in which you forgot to
update either one.

Command-line arguments

[Function]cf-arg-enable feature help-string :optional proc-if-given
proc-if-not-given

[Function]cf-arg-with package help-string :optional proc-if-given proc-if-not-given
{gauche.configure} Make the configure script accept feature selection argument and pack-
age selection argument, respectively. The corresponding autoconf macros are AC_ARG_ENABLE
and AC_ARG_WITH.

Those procedures must be executed before calling cf-init.

The feature and package arguments must be a symbol.

A feature selection argument is in a form of either --enable-feature=val, --enable-

feature, or --disable-feature. The latter two are equivalent to --enable-feature=yes

and --enable-feature=no, respectively. It is to select an optional feature provided with the
package itself.

A package selection argument is in a form of either --with-package=val, --with-package
and --without-package. The latter two are equivalent to --with-package=yes and --with-
package=no, respectively. It is to select an external software package to be used with this
package.

When cf-init finds these arguments, it adds entry of feature or package to the global
tables, with the value val. Those global tables can be accessed with cf-feature-ref and
cf-package-ref procedures below.

The help-string argument must be a string and is used as is to list the help of the option in
part of usage message displayed by configure --help. You can use cf-help-string below
to create a help string that fits nicely in the usage message.

If optional proc-if-given argument is given, it must be a procedure that accepts one argument,
val. It is called when cf-init finds one of those arguments.

If optional proc-if-not-given argument is given, it must be a procedure that accepts no argu-
ments. It is called when cf-init doesn’t find any of those arguments.

Chapter 9: Library modules - Gauche extensions 334

[Function]cf-help-string item description
{gauche.configure} Return a string formatted suitable to show as an option’s help message.
The result can be passed to help-string argument of cf-arg-enable and cf-arg-with. This
corresponds to autoconf’s AS_HELP_STRING.

Call it as follows, and it’ll indent and fill the description nicely.

(cf-help-string "--option=ARG" "Give ARG as the value of option")

[Function]cf-feature-ref name
[Function]cf-package-ref name

{gauche.configure} Lookup a symbol name from the global feature table and the global
package table, respectively. These can be called after cf-init.

For example, if you’ve called cf-arg-enable with foofeature, and the user has invoked
the configure script with --with-foofeature=full, then (cf-feature-ref ’foofeature)

returns "full". If the user hasn’t given the command-line argument, #f is returned.

Messages

The cf-init procedure opens the default log drain that goes to config.log, and you can use
log-format to write to it (See Section 9.15 [User-level logging], page 364, for the details of
logging).

However, to have consistent message format conveniently, the following procedures are pro-
vided. They emits the message both to log files and the current output port (in slightly different
formats so that the console messages align nicely visually.)

[Function]cf-msg-checking fmt arg . . .
{gauche.configure} Writes out “checking XXX...” message. The fmt and arg . . . argu-
ments are passed to format to produce the “XXX” part.

For the current output port, this does not emit the trailing newline, expecting cf-msg-result
will be called subsequently.

Here’s an excerpt of the source that uses cf-msg-checking and cf-msg-result:

(define (compiler-can-produce-executable?)

(cf-msg-checking "whether the ~a compiler works" (~ (cf-lang)’name))

(rlet1 result ($ run-compiler-with-content

(cf-lang-link-m (cf-lang))

(cf-lang-null-program-m (cf-lang)))

(cf-msg-result (if result "yes" "no"))))

This produces a console output like this:

checking whether the C compiler works... yes

while the log file records more info:

checking: whether the C compiler works

... whatever logging message from run-compiler-with-content ...

result: yes

This corresponds to autoconf’s AC_MSG_CHECKING.

[Function]cf-msg-result fmt arg . . .
{gauche.configure} The fmt and arg . . . are passed to format, and the formatted message
and newline is written out. For the log file, it records “result: XXX” where XXX is the
formatted message. Supposed to be used with cf-msg-checking.

This corresponds to autoconf’s AC_MSG_RESULT.

Chapter 9: Library modules - Gauche extensions 335

[Function]cf-msg-warn fmt arg . . .
[Function]cf-msg-error fmt arg . . .

{gauche.configure} Produces “Warning: XXX” and “Error: XXX” messages, respectively.
The fmt and arg . . . are passed to format to generate XXX part. These corresponds to
autoconf’s AC_MSG_WARN and AC_MSG_ERROR.

[Function]cf-echo arg . . . [> ↓le][>> ↓le]
{gauche.configure} Convenience routine to replace shell’s echo command.

If the argument list ends with > file or >> file, where ↓le is a string file name, then
this works just like shell’s echo; that is, args except the last two are written to ↓le, space
separated, newline terminated. Using > supersedes ↓le, while >> appends to it.

If the argument list doesn’t end with those redirection message, it writes out the argument
to both the current output port and the log file, space separated, newline terminated. For
the log file, the message is prefixed with “Message:”.

Parameters and definitions

The configure script maintains two global tables, definition tables and substitution tables.
Definition tables is used for C preprocessor definitions, and substitution tables are used for
@PARAMETER@ substitutions.

[Function]cf-define symbol :optional value
{gauche.configure} Registers C preprocessor definition of symbol with value. Value can
be any Scheme objects, but it is emitted to a command line (in -DSYMBOL=VALUE form) or in
config.h (in #define SYMBOL VALUE form) using display, so you want to avoid including
funny characters. If value is omitted, 1 is assumed.

This corresponds to autoconf’s AC_DEFINE.

[Function]cf-subst symbol value
{gauche.configure} Registers substitution parameter symbol with value. Value can be
any Scheme objects; it’s display representation is used to substitute @SYMBOL@ in the
template.

This corresponds to autoconf’s AC_SUBST, but we require the value (while autoconf can refer
to the shell variable value as default).

[Function]cf-have-subst? symbol
{gauche.configure} Returns true iff symbol has a substitution registered by cf-subst.

[Function]cf-arg-var symbol
{gauche.configure} Lookup the environment variable symbol and if it is found, use its
value as the substitution value. For example, if you call (cf-arg-var ’MYCFLAGS), then the
user can provide the value of @MYCFLAGS@ as MYCFLAGS=-g ./configure.

This corresponds to autoconf’s AC_ARG_VAR, but we lack the ability of setting the help string.
That’s because cf-arg-var must be run after cf-init, but the help message is constructed
within cf-init.

[Function]cf-ref symbol :optional default
{gauche.configure} This looks up the value of the substitution parameter symbol. If there’s
no such substitution parameter registered, it returns default when it’s provided, otherwise
throws an error.

[Function]cf$ symbol
{gauche.configure} Looks up the value of the substitution parameter cf-ref, but it returns
empty string if it’s unregistered. Useful to use within string interpolation, e.g. #"gosh ~(cf$

GOSHFLAGS)".

Chapter 9: Library modules - Gauche extensions 336

Predefined tests

[Function]cf-check-prog sym prog-or-progs :key value default paths ↓lter
[Function]cf-path-prog sym prog-or-progs :key value default paths ↓lter

{gauche.configure} Check if a named executable program exists in search paths, and if it
exists, sets the substitution parameter sym to the name of the found program. The name to
search is specified by prog-or-progs, which is either a string or a list of strings.

The difference of cf-check-prog and cf-path-prog is that cf-check-prog uses the base-
name of the found program, while cf-path-prog uses its full path. These corresponds to
autoconf’s AC_CHECK_PROG, AC_CHECK_PROGS, AC_PATH_PROG and AC_PATH_PROGS.

For example, the following feature test searches either one of cc, gcc, tcc or pcc in PATH and
sets the substitution parameter MY_CC to the name of the found one.

(cf-check-prog ’MY_CC ’("cc" "gcc" "tcc" "pcc"))

If multiple program names is given, the search is done in the following order: First, we search
for the first item (cc, in the above example) for each of paths, then the second, etc. For exam-
ple, if we have /usr/local/bin:/usr/bin:/bin in PATH and we have /usr/local/bin/tcc
and /usr/bin/gcc, the above feature test sets MY_CC to "gcc". If you use cf-path-prog

instead, MY_CC gets "/usr/bin/gcc".

If no program is found, sym is set to the keyword argument default if it is given, otherwise
sym is left unset.

If the value keyword argument is given, its value is used instead of the found program name
to be set to sym.

The list of search paths is taken from PATH environment variable. You can override the list
by the paths keyword argument, which must be a list of directory names. It may contain
nonexistent directory names, which are siently skipped.

The ↓lter keyword argument, if given, must be a predicate that takes full pathname of the
executable program. It is called when the procedure finds matching executable; the ↓lter
procedure may reject it by returning #f, in which case the procedure keeps searching.

Note: If the substitution parameter sym is already set at the time these procedure is called,
these procedures do nothing. Combined with cf-arg-var, it allows the configure script caller
to override the feature test. For example, suppose you have the following in the configure

script:

(cf-arg-var ’GREP)

(cf-path-prog ’GREP ’("egrep" "fgrep" "grep"))

A user can override the test by calling configure like this:

$./configure GREP=mygrep

[Function]cf-prog-cxx
{gauche.configure} A convenience feature test to find C++ compiler. This searches popular
names of C++ compilers from the search paths, sets the substitution parameter CXX to the
compiler’s name, then tries to compile a small program with it to see it can generate an
executable.

This corresponds to autoconf’s AC_PROG_CXX.

CXX is cf-arg-var’ed in this procedure. If a user provide the value when he calls configure,
the searching is skipped, but the check of generating an executable is still performed.

If the substitution parameter CXXFLAGS is set, its value is used to check if the compiler can
generate an executable. CXXFLAGS is cf-arg-var’ed in this procedure.

This procedure also emulates autoconf’s AC_PROG_CXX behavior— if CXX is not set, but CCC
is set, then we set CXX by the value of CCC and skip searching.

Chapter 9: Library modules - Gauche extensions 337

[Function]cf-check-header header :key includes
{gauche.configure} Check if a header file header exists and usable, by compiling a source
program of the current language that includes the named header file. This is intended to
be used as a predicate—returns #t if the header is usable, #f if not. This corresponds to
autoconf’s AC_CHECK_HEADER.

If header requires other headers being included or preprocessor symbosl defined before it, you
can pass a list of strings to be emitted before the check in the includes keyword arguments.
The given strings are just concatenated and used as a C program fragment. The default value
is provided by cf-includes-default.

The following example sets C preprocessor symbol HAVE_CRYPT_H to 1 if crypt.h is available.
(Note: For this kind of common task, you can use cf-check-headers below. The advantage
of using cf-check-header is that you can write other actions in Scheme depending on the
result.)

(when (cf-check-header "crypt.h")

(cf-define "HAVE_CRYPT_H" 1))

[Function]cf-check-headers headers :key includes if-found if-not-found
{gauche.configure} Codify a common pattern of checking the availability of headers and
sets C preprocessor definitions. This corresponds to autoconf’s AC_CHECK_HEADERS.

See this example:

(cf-check-headers ’("unistd.h" "stdint.h" "inttypes.h" "rpc/types.h"))

This checks availability of each of listed headers, and sets C preprocessor definition HAVE_

UNISTD_H, HAVE_STDINT_H, HAVE_INTTYPES_H and HAVE_RPC_TYPES_H to 1 if the correspond-
ing header file is available.

A list of strings given to includes are emitted to the C source file before the inclusion of the
testing header. You can give necessary headers and/or C preprocessor definitions there; if
omitted, cf-includes-default provides the default list of such headers.

The keyword argument if-found and if-not-found are procedures to be called when a header
is found to be available or to be unavailable, respectively. The procedure receives the name
of the header.

The name of the C preprocessor definition is derived from the header name by upcasing it
and replacing non-alphanumeric characters for _. Note that this substitution is not injective:
Both gdbm/ndbm.h and gdbm-ndbm.h yield GDBM_NDBM_H. If you need to distinguish such files
you have to use cf-check-header.

[Function]cf-includes-default
{gauche.configure} Returns a list of strings that are included in the check program by
default. It is actually a combination of C preprocessor #ifdefs and #includes, and would
probably be better to be called cf-prologue-default or something, but the corresponding
autoconf macro is AC_INCLUDES_DEFAULT so we stick to this name.

Usually you don’t need to call this explicitly. Not giving the includes argument to cf-check-
header and cf-check-headers will make cf-includes-default called implicitly.

Running compiler

The gauche.configuremodule provides a generic mechanism to construct a small test program,
compile it, and run it. Currently we only support C and C++; we’ll add support for other
languages as needed.

[Parameter]cf-lang
{gauche.configure}

Chapter 9: Library modules - Gauche extensions 338

[Function]cf-lang-program prologue body
{gauche.configure} Returns a string tree that consists a stand-alone program for the cur-
rent language. Prologue and body must be a string tree. Prologue comes at the beginning
of the source, and body is included in the part of the program that’s executed. If the current
language is C, the code fragment:

(use text.tree)

(write-tree (cf-lang-program "#include <stdio.h>\n" "printf(\"()\");\n"))

would produce something like this:

#include <stdio.h>

int main(){

printf("()");

; return 0;

}

[Function]cf-lang-io-program
{gauche.configure} This is a convenience routine. It returns a string tree of a program in
the current language, that creates a file named conftest.out, then exits with zero status on
success, or nonzero status on failure.

[Function]cf-lang-call prologue func-name
{gauche.configure}

[Function]cf-try-compile prologue body
{gauche.configure}

[Function]cf-try-compile-and-link prologue body
{gauche.configure}

Output

[Function]cf-output ↓le . . .
{gauche.configure}

[Function]cf-show-variables :key formatter
{gauche.configure}

[Function]cf-make-gpd
{gauche.configure}

9.8 gauche.dictionary - Dictionary framework

[Module]gauche.dictionary
A dictionary is an abstract class for objects that can map a key to a value. This module
provides some useful generic functions for dictionaries, plus generic dictionary classes built
on top of other dictionary classes.

9.8.1 Generic functions for dictionaries

These generic functions are useful to implement algorithms common to any dictionary-like ob-
jects, a data structure that maps discrete, finite set of keys to values. (Theoretically we can
think of continuous and/or infinite set of keys, but implementation-wise it is cleaner to limit the
dictionary

Chapter 9: Library modules - Gauche extensions 339

Among built-in classes, <hash-table> and <tree-map> implement the dictionary interface.
All the <dbm> classes provided by dbm module also implement it.

To make your own class implement the dictionary interface, you have to provide at least
dict-get, dict-put!, dict-delete!, dict-fold and dict-comparator. (You can omit
dict-delete! if the datatype doesn’t allow deleting entries.) Other generic functions have
default behavior built on top of these. You can implement other methods as well, potentially to
gain better performance.

(Note: Dictionaries are also collections, so you can use collection methods as well; for example,
to get the number of entries, just use size-of).

[Generic function]dict-get (dict <dictionary>) key :optional default
{gauche.dictionary} Returns the value corresponding to the key. If the dictionary doesn’t
have an entry with key, returns default when it is provided, or raises an error if not.

[Generic function]dict-put! (dict <dictionary>) key value
{gauche.dictionary} Puts the mapping from key to value into the dictionary.

[Generic function](setter dict-get) (dict <dictionary>) key value
{gauche.dictionary} This works the same as dict-put!.

[Generic function]dict-exists? (dict <dictionary>) key
{gauche.dictionary} Returns #t if the dictionary has an entry with key, #f if not.

[Generic function]dict-delete! (dict <dictionary>) key
{gauche.dictionary} Removes an entry with key form the dictionary. If the dictionary
doesn’t have such an entry, this function is noop.

[Generic function]dict-clear! (dict <dictionary>)
{gauche.dictionary} Empties the dictionary. Usually this is much faster than looping over
keys to delete them one by one.

[Generic function]dict-comparator (dict <dictionary>)
{gauche.dictionary} Should return a comparator used to compare keys.

[Generic function]dict-fold (dict <dictionary>) proc seed
{gauche.dictionary} Calls a procedure proc over each entry in a dictionary dict, passing a
seed value. Three arguments are given to proc; an entry’s key, an entry’s value, and a seed
value. Initial seed value is seed. The value returned from proc is used for the seed value of
the next call of proc. The result of the last call of proc is returned from dict-fold.

If dict is <ordered-dictionary>, proc is called in the way to keep the following associative
order, where the key is ordered from K0 (minimum) to Kn (maximum), and the corresponding
values is from V0 to Vn:

(proc Kn Vn (proc Kn-1 Vn-1 ... (proc K0 V0 seed)))

[Generic function]dict-fold-right (dict <ordered-dictionary>) proc seed
{gauche.dictionary} Like dict-fold, but the associative order of applying proc is reversed
as follows:

(proc K0 V0 (proc K1 V1 ... (proc Kn Vn seed)))

This generic function is only defined on <ordered-dictionary>.

[Generic function]dict-for-each (dict <dictionary>) proc
{gauche.dictionary} Calls proc with a key and a value of every entry in the dictionary
dict. For ordered dictionaries, proc is guaranteed to be called in the increasing order of keys.

Chapter 9: Library modules - Gauche extensions 340

[Generic function]dict-map (dict <dictionary>) proc
{gauche.dictionary} Calls proc with a key and a value of every entry in the dictionary
dict, and gathers the result into a list and returns it. For ordered dictionaries, the result is
in the increasing order of keys (it doesn’t necessarily mean proc is called in that order).

[Generic function]dict-keys (dict <dictionary>)
[Generic function]dict-values (dict <dictionary>)

{gauche.dictionary} Returns a list of all keys or values of a dictionary dict, respectively.
For ordered dictionaries, the returned list is in the increasing order of keys.

[Generic function]dict->alist (dict <dictionary>)
{gauche.dictionary} Returns a list of pairs of key and value in the dictionary. The order
of pairs is undefined.

[Generic function]dict-push! (dict <dictionary>) key value
{gauche.dictionary} A shorthand way to say (dict-put! dict key (cons value (dict-

get dict key ’()))). A concrete implementation may be more efficient (e.g. it may not
search key twice.)

[Generic function]dict-pop! (dict <dictionary>) key :optional fallback
{gauche.dictionary} If (dict-get dict key) is a pair p, the entry value is replaced with
(cdr p) and the procedure returns (car p). If no entry for key is in the table, or the entry
isn’t a a pair, the table isn’t modified, and fallback is returned if given, or an error is raised.

[Generic function]dict-update! (dict <dictionary>) key proc :optional fallback
{gauche.dictionary} Works like the following code, except that the concrete implementa-
tion may be more efficient by looking up key only once.

(rlet1 x (proc (dict-get dict key fallback))

(dict-put! dict key x))

[Macro]define-dict-interface dict-class method proc method2 proc2 . . .
{gauche.dictionary} Many dictionary-like datatypes already has their own procedures that
directly corresponds to the generic dictionary API, and adding dictionary interface tends to
become a simple repetition of define-methods, like this:

(define-method dict-put! ((dict <my-dict>) key value)

(my-dict-put! key value))

The define-dict-interface macro is a convenient way to define those methods in a batch.
Each method argument is a keyword that corresponds to dict-method, and proc is the name
of the datatype-specific procedure. Here’s the definition of dict interface for <tree-map> and
you’ll get the idea. You don’t need to provide every dictionary interface.

(define-dict-interface <tree-map>

:get tree-map-get

:put! tree-map-put!

:delete! tree-map-delete!

:clear! tree-map-clear!

:comparator tree-map-comparator

:exists? tree-map-exists?

:fold tree-map-fold

:fold-right tree-map-fold-right

:for-each tree-map-for-each

:map tree-map-map

:keys tree-map-keys

:values tree-map-values

Chapter 9: Library modules - Gauche extensions 341

:pop! tree-map-pop!

:push! tree-map-push!

:update! tree-map-update!

:->alist tree-map->alist)

9.8.2 Generic dictionaries

[Class]<bimap>
{gauche.dictionary} Provides a bidirectional map (bimap), a relation between two set of
values, of which you can lookup both ways.

Internally, a bimap consists of two dictionaries, left map and right map. Think a bimap as
a relation between xs and ys. The left map takes an x as a key and returns corresponding y
as its value. The right map takes an y as a key and returns corresponding x as its value.

Currently, <bimap> only supports strict one-to-one mapping. Mutating interface (bimap-*-
put!, bimap-*-delete! etc) modifies both left and right maps to maintain this one-to-one
mapping. (In future, we may provide an option to make many-to-one and many-to-many
mappings).

A bimap can be used as a dictionary, with the generic dictionary functions such as dict-get.
In such cases, the left map takes precedence; that is, the key given to dict-get etc. is
regarded as the key to the left map.

[Function]make-bimap left-map right-map :key on-con'ict
{gauche.dictionary} Creates a new bimap consists of two dictionaries, left-map and right-
map. It is the caller’s responsibility to choose appropriate type of dictionaries; for example,
if you want to create a relation between a string and a number, you man want to create it
like this:

(make-bimap (make-hash-table ’string=?) ; string -> number

(make-hash-table ’eqv?)) ; number -> string

The keyword argument on-con'ict specifies what will happen when the added entry would
conflict the existing entries. The following values are allowed:

:supersede

This is the default behavior. Duplicate relations are silently removed in order
to maintain one-to-one mapping. For example, suppose a bimap between strings
and numbers has had ("foo", 1) and ("bar", 2). When you try to put ("bar",
2) with this option, the first two entries are removed. Returns #t.

:error Raises an error when duplicate relations are found.

#f When duplicate relations are found, does nothing and returns #f.

Note: At this moment, an attempt to add a relation exactly same as the existing one is
regareded as a conflict. This limitation may be lifted in future.

[Function]bimap-left bimap
[Function]bimap-right bimap

{gauche.dictionary} Returns the left or right map of bimap, respectively. Do not mutate
the returned map, or you’ll break the consistency of the bimap.

[Function]bimap-left-get bimap key :optional default
[Function]bimap-right-get bimap key :optional default

{gauche.dictionary} Lookup the value corresponding to the key in the left or right map
of bimap. If no entry is found for key, default is returned if provided, otherwise an error is
raised.

Chapter 9: Library modules - Gauche extensions 342

[Function]bimap-left-exists? bimap key
[Function]bimap-right-exists? bimap key

{gauche.dictionary} Returns #f if the left or right map of bimap has an entry of the key,
#t otherwise.

[Function]bimap-put! bimap x y :key on-con'ict
{gauche.dictionary} Put a relation (x, y) into the bimap. After this, (bimap-left-get
x) will return y, and (bimap-left-get y) will return x.

If the bimap already have relations with x and/or y, the conflict is handled according to
the value of on-con'ict; see make-bimap for the possible values and their meanings. The on-
con'ict keyword argument can override the bimap’s default setting specified at its creation
time.

[Function]bimap-left-delete! bimap key
[Function]bimap-right-delete! bimap key

{gauche.dictionary} Deletes an relation with the given left key or right key from bimap.
Both left and right maps are modified so that the consistency is maintained. If there’s no
relations with given key, these are noop.

9.9 gauche.fcntl - Low-level file operations

[Module]gauche.fcntl
Provides an interface to fcntl(2), including advisory file locking.

[Function]sys-fcntl port-or-fd operation :optional arg
{gauche.fcntl} Performs certain operation on the file specified by port-or-fd, which should
be a port object or an integer that specifies a system file descriptor. If it is a port, it must
be associated to the opened file (i.e. port-type returns file, see Section 6.22.3 [Common
port operations], page 204).

The operation is specified by an integer operation. Several variables are defined for valid
operation.

F_GETFD Returns flags associated to the file descriptor of port-or-fd. The optional argu-
ment arg is not used. The return value is an integer whose definition is system
specific, except one flag, FD_CLOEXEC, which indicates the file descriptor should
be closed on exec. See the manual entry of fcntl(2) of your system for the
details.

F_SETFD Sets the file descriptor flags given as arg to port-or-fd. For example, the portable
way of setting FL_CLOEXEC flag is as follows:

(sys-fcntl port F_SETFD

(logior FD_CLOEXEC

(sys-fcntl port F_GETFD)))

F_GETFL Returns flags associated to the open files specified by port-or-fd. The flags in-
cludes the following information:

• File access mode. When masked by O_ACCMODE, it’s either one of O_RDONLY,
O_WRONLY or O_RDWR.

• File creation options. O_CREAT, O_EXCL and/or O_TRUNC.

• Whether appending is allowed or not, by O_APPEND

• Whether I/O is blocking or non-blocking, by O_NONBLOCK.

• Whether it grabs terminal control, by O_NOCTTY.

Chapter 9: Library modules - Gauche extensions 343

The system may define system-specific flags.

F_SETFL Sets flags to the open files specified by port-or-fd. Among the flags listed above,
only O_NONBLOCK and O_APPEND can be changed.

Note that F_GETFD/F_SETFD concern flags associated to the file descriptor itself,
while F_GETFL/F_SETFL concern flags associated to the opened file itself. This
makes difference when more than one file descriptor points to the same opened
file.

F_DUPFD Creates new file descriptor that points to the same file referred by port-or-fd.
An integer must be provided as arg, and that specifies the minimum value of file
descriptor to be assigned.

F_GETLK The third argument must be provided and be an instance of <sys-flock> object
described below. It searches the lock information specified by arg, and modifies
arg accordingly.

F_SETLK

F_SETLKW The third argument must be provided and be an instance of <sys-flock> object
described below. Sets the advisory file lock according to arg. If the lock is
successfully obtained, #t is returned. If the other process has the lock conflicting
the request, F_SETLK returns #f, while F_SETLKW waits until the lock is available.

F_GETOWN Returns the process id or process group that will receive SIGIO and SIGURG
signals for events on the file descriptor. Process group is indicated by a negative
value. This flag is only available on the systems that has this feature (BSD and
Linux have this).

F_SETOWN Sets the process id or process group that will receive SIGIO and SIGURG signals
for events on the file descriptor. Process group is indicated by a negative value.
This flag is only available on the systems that has this feature (BSD and Linux
have this). Check out fcntl(2) manpage of your system for the details.

Other value for operation causes an error.

[Builtin Class]<sys-flock>
{gauche.fcntl} A structure represents POSIX advisory record locking. Advisory record
locking means the system may not prevents the process from operating on files that it doesn’t
have an appropriate lock. All the processes are expected to use fcntl to check locks before
it operates on the files that may be shared.

The following slots are defined.

Note that fcntl lock is per-process, per-file. If you try to lock the same file more than once
within the same process, it always succeeds. But it’s not a recursive lock, so the process loses
any locks to the file as soon as any of such lock is released, or any of such file is closed. It
makes fcntl lock difficult to use in libraries. See with-lock-file (see Section 12.23.5 [Lock
files], page 644) for an alternative way to realize inter-process locks.

[Instance Variable of <sys-flock>]type
An integer represents lock type. Following variables are predefined for the valid values:

F_RDLCK Read locking

F_WRLCK Write locking

F_UNLCK

To remove a lock by F_SETLK, or to indicate the record is not locked by F_

GETLK.

Chapter 9: Library modules - Gauche extensions 344

[Instance Variable of <sys-flock>]whence
Indicates from where start is measured.

[Instance Variable of <sys-flock>]start
The offset of beginning of the locked region.

[Instance Variable of <sys-flock>]len
The number of bytes to lock. Zero means “until EOF”.

[Instance Variable of <sys-flock>]pid
An integer process id that holding the lock; used only by F_GETLK.

9.10 gauche.generator - Generators

[Module]gauche.generator
A generator is merely a procedure with no arguments and works as a source of a series of
values. Every time it is called, it yeilds a value. The EOF value indicates the generator is
exhausted. For example, read-char can be seen as a generator that generates characters
from the current input port.

It is common practice to abstract the source of values in such a way, so it is useful to define
utility procedures that work on the generators. This module provides them.

Srfi-121 (Generators) is a subset of this module. Since gauche.generator predates srfi-121,
we have different names for some procedures; for the compatibility, we provide both names.
Srfi-151 (Generators and accumulators) adds some more generator procedures, which is also
included (but accumulator procedures are left to srfi-158. See Section 11.34 [Generators and
accumulators], page 578.)

A generator is very lightweight, and handy to implement simple on-demand calculations.
However, keep in mind that it is side-effecting construct; you can’t safely backtrack, for example.
For more functional on-demand calculation, you can use lazy sequences (see Section 6.19.2 [Lazy
sequences], page 185), which is actually built on top of generators.

The typical pattern of using generator is as follows: First you create a source or sources
of the values, using one of generator constructors (see Section 9.10.1 [Generator constructors],
page 344) or rolling your own one. You may connect generator operators that modifies the
stream of generated items as you wish (see Section 9.10.2 [Generator operations], page 348).
Eventually you need to extract actual values from the geneator to consume; there are utitlity
procedures provided (see Section 9.10.3 [Generator consumers], page 353). Overall, you create
a pipeline (or DAG) of generators that works as lazy value-propagation network.

9.10.1 Generator constructors

A generator isn’t a special datatype but just an ordinary procedure, so you can make a generator
with lambdas. This module provides some common generator constructors for the convenience.

If you want to use your procedure as a generator, note that a generator can be invoked many
times even after it returns EOF once. You have to code it so that once it returns EOF, it keeps
returning EOF for the subsequent calls.

The result of generator constructors is merely a procedure, and printing it doesn’t show much.
In the examples in this section we use generator->list to convert the generator to the list.
See Section 9.10.3 [Generator consumers], page 353, for the description of generator->list.

[Function]null-generator
{gauche.generator} An empty generator. Returns just an EOF object when called.

Chapter 9: Library modules - Gauche extensions 345

[Function]circular-generator arg . . .
[SRFI-158] {gauche.generator} Returns an infinite generator that repeats the given argu-
ments.

(generator->list (circular-generator 1 2 3) 10)

⇒ (1 2 3 1 2 3 1 2 3 1)

Note that the above example limits the length of the converted list by 10; otherwise
generator->list won’t return.

[Function]giota :optional (count +inf.0) (start 0) (step 1)
{gauche.generator} Like iota (see Section 6.6.3 [List constructors], page 117), creates a
generator of a series of count numbers, starting from start and increased by step.

(generator->list (giota 10 3 2))

⇒ (3 5 7 9 11 13 15 17 19 21)

If both start and step are exact, the generator yields exact numbers; otherwise it yields
inexact numbers.

(generator->list (giota +inf.0 1/2 1/3) 6)

⇒ (1/2 5/6 7/6 3/2 11/6 13/6)

(generator->list (giota +inf.0 1.0 2.0) 5)

⇒ (1.0 3.0 5.0 7.0 9.0)

[Function]grange start :optional (end +inf.0) (step 1)
{gauche.generator} Similar to giota, creates a generator of a series of numbers. The series
begins with start, increased by step, and continues while the number is below end.

(generator->list (grange 3 8))

⇒ (3 4 5 6 7)

[Function]generate proc
{gauche.generator} Creates a generator from coroutine.

The proc argument is a procedure that takes one argument, yield. When called, generate
immediately returns a generator G. When G is called, the proc runs until it calls yield.
Calling yield causes to suspend the execution of proc and G returns the value passed to
yield.

Once proc returns, it is the end of the series—G returns eof object from then on. The return
value of proc is ignored.

The following code creates a generator that produces a series 0, 1, and 2 (effectively the same
as (giota 3) and binds it to g.

(define g

(generate

(^[yield] (let loop ([i 0])

(when (< i 3) (yield i) (loop (+ i 1)))))))

(generator->list g) ⇒ (0 1 2)

[Function]list->generator lis :optional start end
[Function]vector->generator vec :optional start end
[Function]reverse-vector->generator vec :optional start end
[Function]string->generator str :optioanl start end
[Function]uvector->generator uvec :optional start end
[Function]bytevector->generator u8vector :optional start end

[SRFI-158+] {gauche.generator} Returns a generator that yields each item in the given
argument. A generator returned from reverse-* procedures runs in reverse order. Srfi-121

Chapter 9: Library modules - Gauche extensions 346

defines these except uvector->generator, which can take any type of uniform vectors. The
srfi-121 version, bytevector->generator, limits the argument to u8vector.

(generator->list (list->generator ’(1 2 3 4 5)))

⇒ (1 2 3 4 5)

(generator->list (vector->generator ’#(1 2 3 4 5)))

⇒ (1 2 3 4 5)

(generator->list (reverse-vector->generator ’#(1 2 3 4 5)))

⇒ (5 4 3 2 1)

(generator->list (string->generator "abcde"))

⇒ (#\a #\b #\c #\d #\e)

(generator->list (uvector->generator ’#u8(1 2 3 4 5)))

⇒ (1 2 3 4 5)

The generator is exhausted once all items are retrieved; the optional start and end arguments
can limit the range the generator walks across; start specifies the left bound and end specifies
the right bound.

For forward generators, the first value the generator yields is start-th element, and it ends
right before end-th element. For reverse generators, the first value is the item right next
to the end-th element, and the last value is the start-th element. at the last element, and
reverse generators ends at the first element.

(generator->list (vector->generator ’#(a b c d e) 2))

⇒ (c d e)

(generator->list (vector->generator ’#(a b c d e) 2 4))

⇒ (c d)

(generator->list (reverse-vector->generator ’#(a b c d e) 2))

⇒ (e d c b)

(generator->list (reverse-vector->generator ’#(a b c d e) 2 4))

⇒ (d c)

(generator->list (reverse-vector->generator ’#(a b c d e) #f 2))

⇒ (b a)

[Function]bits->generator n :optional start end
[Function]reverse-bits->generator n :optional start end

{gauche.generator} These procedures take an exact integer and treat it as a sequence of
boolean values (0 for false and 1 for true), as bits->list does (see Section 11.32 [Bitwise oper-
ations], page 572). Bits->generator takes bits from LSB, while reverse-bits->generator
takes them from MSB.

(generator->list (bits->generator #b10110))

⇒ (#f #t #t #f #t)

(generator->list (reverse-bits->generator #b10110))

⇒ (#t #f #t #t #f)

The optional start and/or end arguments are used to specify the range of bitfield, LSB being
0. Unlike list->generator etc, start specifies the rightmost position (inclusive) and end
specfies the leftmost position (exclusive). It is consistent with other procedures that accesses
bit fields in integers (see Section 11.32 [Bitwise operations], page 572).

(generator->list (bits->generator #x56 0 4)

⇒ (#f #t #t #f) ; takes bit 0, 1, 2 and 3

(generator->list (bits->generator #x56 4 8)

⇒ (#t #f #t #f) ; takes bit 4, 5, 6 and 7

(generator->list (reverse-bits->generator #x56 4 8)

⇒ (#f #t #f #t) ; takes bit 7, 6, 5 and 4

Chapter 9: Library modules - Gauche extensions 347

Note: SRFI-151’s make-bitwise-generator is similar to bits->generator, except that it
produces an infinite generator. See Section 11.32 [Bitwise operations], page 572.

[Function]port->sexp-generator input-port
[Function]port->line-generator input-port
[Function]port->char-generator input-port
[Function]port->byte-generator input-port

{gauche.generator} Returns a generator that reads characters or bytes from the given
port, respectively. They’re just (cut read input-port), (cut read-line input-port),
(cut read-char input-port) and (cut read-byte input-port), respectively, but we pro-
vide them for completeness.

[Generic function]x->generator obj
{gauche.generator} A generic version to convert any collection obj to a generator that
walks across the obj. Besides, if obj is an input port, port->char-generator is called.

[Function]file->generator ↓lename reader . open-args
{gauche.generator} Opens a file ↓lename, and returns a generator that reads items from
the file by a procedure reader, which takes one argument, an input port. The arguments
open-args are passed to open-input-file

The file is closed when the generator is exhausted. If a generator is abandoned before being
read to the end, then the file is kept open until the generator is garbage-collected. If you
want to make sure the file is closed by a certain point of time, you might want to use a reader
procedure as a generator within the dynamic extent of with-input-from-file etc.

[Function]file->sexp-generator ↓lename . open-args
[Function]file->char-generator ↓lename . open-args
[Function]file->line-generator ↓lename . open-args
[Function]file->byte-generator ↓lename . open-args

{gauche.generator} Returns a generator that reads a series of sexps, characters, lines and
bytes from a file ↓lename, respectively. These are versions of file->generator specialized
by read, read-char, read-line and read-byte as the reader argument.

Like file->generator, open-args are passed to open-input-file (see Section 6.22.4 [File
ports], page 207). The file is closed when the generator is exhausted.

[Function]gunfold p f g seed :optional tail-gen
{gauche.generator} A generator constructor similar to unfold (see Section 10.3.1 [R7RS
lists], page 482).

P is a predicate that takes a seed value and determines where to stop. F is a procedure that
calculates a value from a seed value. G is a procedure that calculates the next seed value
from the current seed value. Tail-gen is a procedure that takes the last seed value and returns
a generator that generates the tail.

For each call of the resulting generator, p is called with the current seed value. If it returns
a true, then we see we’ve done, and tail-gen is called (if it is given) to get a generator for
the tail. Otherwise, we apply f on the current seed value to get the value to generate, and
use g to update the seed value.

(generator->list (gunfold (^s (> s 5)) (^s (* s 2)) (^s (+ s 1)) 0))

⇒ ’(0 2 4 6 8 10)

SRFI-158 compatible procedures

[Function]generator item . . .
[SRFI-158] {gauche.generator} Returns a generator that generates item

Chapter 9: Library modules - Gauche extensions 348

[Function]make-iota-generator count :optional start step
[SRFI-158] {gauche.generator} Same as giota, except that the count argument is required.

[Function]make-range-generator start :optional end stop
[SRFI-158] {gauche.generator} Same as grange.

[Function]make-coroutine-generator proc
[SRFI-158] {gauche.generator} Same as generate.

[Function]make-for-each-generator for-each obj
[SRFI-158] {gauche.generator}Given collection obj and walker for-each, creates a generator
that retrieves one item at a time from the collection. Trivially defined as follows:

(define (make-for-each-generator for-each coll)

(generate (^[yield] (for-each yield coll))))

If obj is mutated before the returned generator walks all the values, the behavior depends on
how the for-each procedure handles the situation; it may or may not be safe. In general it’s
better to avoid mutation until the generator returns EOF. Once the generator is exhausted,
though, it is safe to mutate obj.

[Function]make-unfold-generator stop? mapper successor seed
[SRFI-158] {gauche.generator} This is the same as gunfold, except it doesn’t take optional
tail-gen argument.

9.10.2 Generator operations

The following procedures take generators (noted as gen and gen2) and return a generator. For
the convenience, they also accept any collection to gen and gen2 parameters; if a collection is
passed where a generator is expected, it is implicitly coerced into a generator.

(NB: This is Gauche’s extension. For portable srfi-121/srfi-158 programs, you shouldn’t rely
on this behavior; instead, explicitly convert collections to generators.)

[Function]gcons* item . . . gen
[SRFI-158] {gauche.generator} Returns a generator that adds items in front of gen.

(generator->list (gcons* ’a ’b (giota 2)))

⇒ (a b 0 1)

[Function]gappend gen . . .
[SRFI-158] {gauche.generator} Returns a generator that yields the items from the first
given generator, and once it is exhausted, use the second generator, and so on.

(generator->list (gappend (giota 3) (giota 2)))

⇒ (0 1 2 0 1)

(generator->list (gappend))

⇒ ()

[Function]gconcatenate gen
{gauche.generator} The gen argument should generate generators and/or sequences. Re-
turns a generator that yields elements from the first generator/sequence, then the second
one, then the third, etc.

It is similar to (apply gappend (generator->list gen)), except that gconcatenate can
work even gen generates infinite number of generators.

($ generator->list $ gconcatenate

$ list->generator ‘(,(giota 3) ,(giota 2)))

⇒ (0 1 2 0 1)

Chapter 9: Library modules - Gauche extensions 349

[Function]gflatten gen
[SRFI-158] {gauche.generator} The argument gen is a generator that yields lists. This
procedure returns a generator that’s yield each element of the lists one at a time.

Example: The game Tetris determines the next dropping piece (tetrimino) by the following
algorithm: Take a bag of tetriminos with one for each kind (O, I, T, S, Z, L, J), permute it,
and draw one by one; once the bag is empty, take another bag and repeat. The algorithm
can be implemented by a pipeline of generates as follows. (Tetris is a registered trademark
of The Tetris Company).

(use gauche.generator)

(use data.random) ; for permutations-of

(define g

($ gflatten $ permutations-of

$ (circular-generator ’(O I T S Z L J))))

(generator->list g 21)

⇒
(L O Z T J S I J L Z T I O S T L Z S I J O)

Note the subtle difference of this example and the example in gconcatenate above—
gconcatenate takes a generator of generators, while gflatten takes a generator of lists.

If we use Haskell-ish type notation, you can see the subtle differences of those similar proce-
dures:

gappend :: (Generator a, Generator a, ...) -> Generator a

(pa$ apply append) :: [(Generator a)] -> Generator a

gconcatenate :: Generator Generator a -> Generator a

gflatten :: Generator [a] -> Generator a

[Function]gmerge less-than gen gen2 . . .
[SRFI-158] {gauche.generator} Creates a generator that yields elements out of input gen-
erators, with the order determined by a procedure less-than. The procedure is called as
(less-than a b) and must return #t iff the element a must precede the element b.

Each input generator must yield an ordered elements by itself; otherwise the result won’t be
ordered.

If only one generator is given, it is just returned (after coercing the input to a generator). In
that case, less-than won’t be called at all.

(generator->list (gmerge < ’(1 3 8) ’(5) ’(2 4)))

⇒ ’(1 2 3 4 5 8)

[Function]gmap proc gen gen2 . . .
[SRFI-158] {gauche.generator} Returns a generator that yields a value returned by proc
applied on the values from given generators. The returned generator terminates when any of
the given generator is exhausted.

NB: This differs from generator-map (see Section 6.18.9 [Folding generated values], page 183)
which consumes all values at once and returns the results as a list, while gmap returns a
generator immediately without consuming input.

[Function]gmap-accum proc seed gen gen2 . . .
{gauche.generator} A generator version of map-accum (see Section 9.5.1 [Mapping over
collection], page 323), mapping with states.

The proc argument is a procedure that takes as many arguments as the input generators plus
one. It is called as (proc v v2 ... seed) where v, v2, . . . are the values yielded from the

Chapter 9: Library modules - Gauche extensions 350

input generators, and seed is the current seed value. It must return two values, the yielding
value and the next seed.

NB: This is called gcombine in srfi-121.

[Function]gcombine proc seed gen gen2 . . .
[SRFI-158] {gauche.generator} An alias of gmap-accum, provided for the compatibility of
srfi-121.

[Function]gfilter pred gen
[Function]gremove pred gen

[SRFI-158] {gauche.generator} Returns a generator that yields the items from the source
generator gen, except those who makes pred answers false (gfilter) or those who makes
pred answers a true value (gremove)

(generator->list (gfilter odd? (grange 0)) 6)

⇒ (1 3 5 7 9 11)

(generator->list (gremove odd? (grange 0)) 6)

⇒ (0 2 4 6 8 10)

[Function]gdelete item gen :optional =
[SRFI-158] {gauche.generator} Return a generator that yields the items from the source
generator gen, except those are the same as item. The comparison is done by the procedure
passed to =, which defaults to equal?.

;; Note: This example relies on auto-coercing list to generator.

;; SRFI-121 requires list->generator for the second argument.

(generator->list (gdelete 3 ’(1 2 3 4 3 2 1)))

⇒ (1 2 4 2 1)

[Function]gdelete-neighbor-dups gen :optional =
[SRFI-158] {gauche.generator} Returns a generator that yields the items from the source
generator gen, but the consecutive items of the same value is omitted. The comparison is
done by the procedure passed to =, which defaults to equal?.

;; Note: This example relies on auto-coercing list to generator.

;; SRFI-121 requires string->generator for the second argument.

(generator->list (gdelete-neighbor-dups "mississippi"))

⇒ (#\m #\i #\s #\i #\s #\i #\p #\i)

[Function]gfilter-map proc gen gen2 . . .
[SRFI-158] {gauche.generator} Works the same as (gfilter values (gmap proc gen gen2

...)), only slightly efficiently.

[Function]gstate-filter proc seed gen
[SRFI-158] {gauche.generator} This allows stateful filtering of a series. The proc argument
must be a procedure that takes a value V from the source generator and a seed value. It
should return two values, a boolean flag and the next seed value. If it returns true for
the boolean flag, the generator yields V. Otherwise, the generator keeps calling proc, with
updating the seed value, until it sees the true flag value or the source generator is exhausted.

The following example takes a generator of oscillating values and yields only values that are
greater than their previous value.

(generator->list

(gstate-filter (^[v s] (values (< s v) v)) 0

(list->generator ’(1 2 3 2 1 0 1 2 3 2 1 0 1 2 3))))

⇒ (1 2 3 1 2 3 1 2 3)

Chapter 9: Library modules - Gauche extensions 351

[Function]gbuffer-filter proc seed gen :optional tail-gen
{gauche.generator} This procedure allows n-to-m mapping between elements in input and
output— that is, you can take a look at several input elements to generate one or more output
elements.

The procedure proc receives the next input element and accumulated seed value. It returns
two values: A list of output values, and the next seed value. If you need to look at more
input to generate output, you can return an empty list as the first value.

If the input reaches the end, tail-gen is called with the current seed value; it should return
a list of last output values. If omitted, the output ends when the output of the last call to
proc is exhausted (the last seed value is discarded).

Suppose you have a text file. Each line contains a command, but if the line ends with
backslash, next line is treated as a continuation of the current line. The following code
creates a generator that returns logical lines, that is, the lines after such line continuations
are taken care of.

(gbuffer-filter (^[v s]

(if-let1 m (#/\\$/ v)

(values ’() (cons (m ’before) s))

(values ‘(,(string-concatenate-reverse (cons v s))) ’())))

’()

(file->line-generator "input-file.txt")

(^[s] ‘(,(string-concatenate-reverse s))))

[Function]gtake gen k :optional padding
[Function]gdrop gen k

[SRFI-158] {gauche.generator} Returns a generator that takes or drops initial k elements
from the source generator gen.

Those won’t complain if the source generator is exhausted before generating k items. By
default, the generator returned by gtake terminates as the source ends, but if you give the
optional padding argument, then the returned generator does yield k items, using the value
given to padding to fill the rest.

Note: If you pass padding, gtake always returns a generator that generates exactly k elements
even the input generator is already exhausted—there’s no general way to know whether you’ve
reached the end of the input. If you need to take k items repeatedly from the input generator,
you may want to use gslices below.

Note for the compatibility: Until 0.9.4, gtake takes two optional arguments, ↓ll? and padding.
That is consistent with Gauche’s builtin take*, but incompatible to srfi-121’s gtake. We
think srfi-121’s interface is more compact and intuitive, so we renamed the original one to
gtake* (emphasizing the similarity to take*), and made gtake compatible to srfi-121. To
ease transition, the current gtake allows two optional arguments (four in total), in which case
we assume the caller wants to call gtake*; so the code that gives two optional arguments to
gtake would work in both pre-0.9.4 and 0.9.5.

[Function]gtake* gen k :optional ↓ll? padding
{gauche.generator} A variation of gtake; instead of single optional padding argument,
this takes two optional arguments just like take* (See Section 6.6.4 [List accessors and
modifiers], page 118.) Up to 0.9.4 this version is called gtake. This is provided for the
backward compatibility.

[Function]gtake-while pred gen
[Function]gdrop-while pred gen

[SRFI-158] {gauche.generator} The generator version of take-while and drop-while

(see Section 6.6.4 [List accessors and modifiers], page 118). The generator returned from

Chapter 9: Library modules - Gauche extensions 352

gtake-while yields items from the source generator as far as pred returns true for each. The
generator returned from gdrop-while first reads items from the source generator while pred
returns true for them, then start yielding items.

[Function]gslices gen k :optional (↓ll? #f) (padding #f)
{gauche.generator} The generator version of slices (see Section 6.6.4 [List accessors and
modifiers], page 118). This returns a generator, that yields a list of k items from the input
generator gen at a time.

(generator->list (gslices (giota 7) 3))

⇒ ((0 1 2) (3 4 5) (6))

The ↓ll? and padding arguments controls how the end of input is handled, just like gtake.
When ↓ll? is #f (default), the last item from output generator may not have k items if the
input is short to fill them, as shown in the above example. If ↓ll? is true and the input is
short to complete k items, padding argument is used to fill the rest.

(generator->list (gslices (giota 6) 3 #t ’x))

⇒ ((0 1 2) (3 4 5))

(generator->list (gslices (giota 7) 3 #t ’x))

⇒ ((0 1 2) (3 4 5) (6 x x))

[Function]ggroup gen k :optional padding
[SRFI-158] {gauche.generator} Returns a generator lists of k elements taken from gen. If
padding is omitted, it works just as (gslices gen k). If padding is given, it works just as
(gslices gen k #t padding).

This is defined in srfi-158, and more portable than gslices.

[Function]grxmatch regexp gen
{gauche.generator} The gen argument must be, after coerced, a generator that yields
characters.

A generator returned from this procedure tries to match regexp from the character sequence
generated by gen, and once it matches, remember the position after the match and returns
#<rxmatch> object. If no more match is found, the generator is exhausted.

($ generator->list

$ gmap rxmatch-substring

$ grxmatch #/\w+/ "The quick brown fox jumps over the lazy dog.")

⇒ ("The" "quick" "brown" "fox" "jumps" "over" "the" "lazy" "dog")

Note: This procedure is efficient if gen is a string, in which case we actually bypass coercing
it to a generator. If gen is other than a string, the current implementation may need to
apply regexp as many times as O(n^2) where n is the entire length of the character sequence
generated by gen, although the coefficient is small. This may be improved in future, but be
careful using this function on very large input.

Note also that, when gen is not a string, rxmatch is applied on some buffered partial input.
So rxmatch-after of the returned match does not represents the whole “rest of input” after
the match, but merely the rest of strings within the buffer.

[Function]gindex vgen igen
[SRFI-158] {gauche.generator} Both arguments are generators. The igen generator must
yield monotonically increasing series of exact nonnegative integers.

Returns a generator that generates items from vgen indexed by the numbers from igen,
exhausted when either source generator is exhausted.

An error is thrown when igen yields a value that doesn’t conform the condition.

;; This example takes advantage of Gauche’s auto-coercing

Chapter 9: Library modules - Gauche extensions 353

;; list to generator. For portable srfi-121 programs,

;; you need list->generator for each argument:

(generator->list (gindex ’(a b c d e) ’(0 2 3)))

⇒ (a c d)

[Function]gselect vgen bgen
[SRFI-158] {gauche.generator} Both arguments are generators. Creates and returns a
generator that yields a value from vgen but only the corresponding value from bgen is true.

The returned generator is exhausted when one of the source generators is exhausted.

;; This example takes advantage of Gauche’s auto-coercing

;; list to generator. For portable srfi-121 programs,

;; you need list->generator for each argument:

(generator->list (gselect ’(a b c d e) ’(#t #t #f #t #f)))

⇒ (a b d)

Combined with a bitgenerator, you can use gselect to extract items using bitmask:

(generator->list (gselect ’(a b c d e)

(reverse-bits->generator #x1a)))

⇒ (a b d)

9.10.3 Generator consumers

Some generator consumers are built-in. See Section 6.18.9 [Folding generated values], page 183,
for generator-fold, generator-fold-right, generator-for-each, generator-map, and
generator-find.

[Function]generator->list generator :optional k
[Function]generator->reverse-list generator :optional k

[SRFI-158] {gauche.generator} Reads items from generator and returns a list of them (or a
reverse list, in case of generator->reverse-list). By default, this reads until the generator
is exhausted. If an optional argument k is given, it must be a nonnegative integer, and the
list ends either k items are read, or the generator is exhausted.

Be careful not to pass an infinite generator to this without specifying k—this procedure won’t
return but hogs all the memory before crash.

[Function]generator-map->list proc gen gen2 . . .
[SRFI-158] {gauche.generator} The proc argument must be a procedure that takes as many
arguments as the number of given generators.

Returns a list, each of whose element is created by applying proc on each element from given
generators gen gen2 The list ends when any of the generator is exhausted.

Note that the list is created eagerly—if all of the generators are infinite, this procedure never
returns.

[Function]generator->vector gen :optional k
[Function]generator->string gen :optional k

[SRFI-158] {gauche.generator} Extracts items from the generator gen up to k items or
until it exhausts, and create a fresh vector or string from the extracted items.

When k is omitted, gen is called until it exhausts; note that if gen is infinite generator this
procedure won’t return.

For generator->string, gen must yield a character, or an error is reported.

Chapter 9: Library modules - Gauche extensions 354

[Function]generator->uvector gen :optional k class
[Function]generator->bytevector gen :optional k

[SRFI-158] {gauche.generator} Extracts items from the generator gen up to k items or
until it exhausts, and create a fresh uniform vector of class class filled with those items. If k
is omitted, gen is read until it exhausts.

If class is specified, it must be one of the uniform vector classes (see Section 9.35 [Uniform
vectors], page 447). When omitted, <u8vector> is assumed.

Generator->bytevector works like generator->uvector except that the class is fixed to
<u8vector>.

The generator must always produce numeric values acceptable to be an element of the spec-
ified uvector; otherwise an error is signalled.

[Function]generator->vector! vector at gen
[SRFI-158] {gauche.generator} Fill vector from index at with the value yielded from gen.
It terminates when gen is exhausted or the index reaches at the end of the vector. Returns
the number of items generated.

(define v (vector ’a ’b ’c ’d ’e))

(generator->vector! v 2 (giota))

⇒ 3

v ⇒ #(a b 0 1 2)

[Function]generator->uvector! uvector at gen
[Function]generator->bytevector! u8vector at gen

{gauche.generator} Like generator->vector!, fill a uniform vector uvector starting from
index at with elements read from a generator gen. It terminates when gen is exhausted or
the index reaches at the end of the vector. Returns the number of items generated.

Any type of uvector can be passed to generator->uvector!, while
generator->bytevector! can only accept u8vector.

The generator must always produce numeric values acceptable to be an element of the spec-
ified uvector; otherwise an error is signalled.

[Macro]glet* (binding . . .) body body2 . . .
{gauche.generator} This captures a monadic pattern frequently appears in the generator
code. It is in a similar spirit of and-let*, but returns as soon as the evaluating expression
returns EOF, instead of #f as and-let* does.

The binding part can be either (var expr) or (expr). The actual definition will explain
this syntax clearly.

(define-syntax glet*

(syntax-rules ()

[(_ () body body2 ...) (begin body body2 ...)]

[(_ ([var gen-expr] more-bindings ...) . body)

(let1 var gen-expr

(if (eof-object? var)

var

(glet* (more-bindings ...) . body)))]

[(_ ([gen-expr] more-bindings ...) . body)

(let1 var gen-expr

(if (eof-object? var)

var

(glet* (more-bindings ...) . body)))]))

Chapter 9: Library modules - Gauche extensions 355

[Macro]glet1 var expr body body2 . . .
{gauche.generator} This is to glet* as let1 is to let*. In other words, it is (glet* ([var

expr]) body body2 ...).

[Macro]do-generator (var gexpr) body . . .
{gauche.generator} This is a generator version of dolist and dotimes (see Section 4.6
[Binding constructs], page 50).

Gexpr is an expression that yields a generator. It is evaluated once. The resulting generator
is called repeatedly until it returns EOF. Every time the generator is called, body . . . are
evaluated in the scope where var is bound to the value yielded from the generator.

Like dolist and dotimes, this macro exists for side-effects. You can write the same thing
with for-each families, but sometimes this macro makes the imperative code more readable:

(do-generator [line (file->line-generator "filename")]

;; do some side-effecting stuff with line

)

[Function]generator-any pred gen
[Function]generator-every pred gen

[SRFI-158] {gauche.generator} Like any and every (see Section 6.6.5 [Walking over lists],
page 121), but works on a generator.

[Function]generator-count pred gen
[SRFI-158] {gauche.generator} Returns the number of items in a generator gen that satisfies
pred. As a side effect, gen is exhausted.

[Function]generator-unfold gen unfold arg . . .
[SRFI-158] {gauche.generator}

9.11 gauche.hook - Hooks

[Module]gauche.hook
Provides a hook object, which manages a list of closures to be called at certain time.

This API of hooks are upper-compatible of Guile’s, with the following extensions.

• Based on Gauche’s object system. Most APIs are methods so you can extend the hook
features.

• Hook object itself is applicable. You don’t need to use run-hook.

• The method to remove a procedure from a hook is called delete-hook!, for consistency
with SRFI-1 and others. remove-hook! is defined as an alias of delete-hook! for
compatibility with Guile.

[Class]<hook>
{gauche.hook} A hook class, which keeps a list of procedures to be called at once.

The object-apply method is defined on <hook> class, so you can "apply" a hook object as
if it were a procedure—which causes all the registered procedure to be invoked.

[Function]make-hook :optional (arity 0)
{gauche.generator} Creates a new hook object with given arity, which should be a non-
negative integer.

[Function]hook? obj
{gauche.generator} Returns true if obj is a hook object.

Chapter 9: Library modules - Gauche extensions 356

[Function]hook-empty? hook
{gauche.generator} Returns true if hook’s procedure list is empty.

[Method]add-hook! (hook <hook>) proc :optional (append? #f)
{gauche.generator} Adds a procedure proc to hook. If append? is given and true, proc is
added at the end of the list. Otherwise, proc is added at the front of the list. The proc has
to be called with the arity given at the make-hook.

[Method]delete-hook! (hook <hook>) proc
[Method]remove-hook! (hook <hook>) proc

{gauche.generator} Removes proc from the procedure list of hook. Remove-hook! is an
alias of delete-hook! just for compatibility with Guile.

[Method]reset-hook! (hook <hook>)
{gauche.generator} Empties hook’s procedure list.

[Method]hook->list (hook <hook>)
{gauche.generator} Returns a copy of hook’s procedure list.

[Method]run-hook (hook <hook>) arg . . .
{gauche.generator} Calls hook’s procedures in order, with arguments arg The number
of arguments must match the arity given at make-hook.

9.12 gauche.interactive - Utilities for interactive session

[Module]gauche.interactive
Provides useful utilities for the interactive session.

This module is automatically loaded when you run gosh interactively.

This module also sets autoloads for functions defined in gauche.reload module (see
Section 9.26 [Reloading modules], page 410), so that those functions can be used by default
in interactive development.

[Macro]apropos pattern :optional module
{gauche.interactive} Show a list of defined variables whose name matches pattern. If you
give a module or a module name module, only the variables defined in that module are listed.
Without module, the variables "visible" from the current module are listed.

pattern may be a symbol or a regexp object. If it is a symbol, the variables whose name
contains the substring that matches the symbol’s name are listed. If it is a regexp object,
the variables whose name matches the regexp are listed.

Some examples:

;; List variables that contains "string" in their name
(apropos ’string)

;; Search in srfi-14 module
(apropos ’char ’srfi-14)

[Generic Function]describe :optional obj
[Generic Function]d :optional obj

{gauche.interactive} Prints the detail information about a Scheme object obj. The default
method shows obj’s class, and if it has any slots, the list of slot names and their values.
You can specialize this method for customized display. Some built-in types has specialized
methods (see how an integer is described in the example below).

Chapter 9: Library modules - Gauche extensions 357

If obj is omitted, the last evaluation result bound to *1 in REPL is used. (see Section 3.2.1
[Working in REPL], page 19)

gosh> (sys-stat "Makefile")

#<<sys-stat> 0x1e7de60>

gosh> (d)

#<<sys-stat> 0x1e7de60> is an instance of class <sys-stat>

slots:

type : regular

perm : 436

mode : 33204

ino : 3242280

dev : 2097

rdev : 0

nlink : 1

uid : 500

gid : 500

size : 19894

atime : 1435379061

mtime : 1432954340

ctime : 1432954340

gosh> (d 1432954340)

1432954340 is an instance of class <integer>

(#x556925e4, ~ 1.4Gi, 2015-05-30T02:52:20Z as unix-time)

[Function]info symbol
{gauche.interactive} Displays an entry of the named function, syntax, module or class
from Gauche’s info document. If an environment variable INFOPATH is defined, this function
searches for the info file from the directories in it. Otherwise, this function guesses info file
location from the gosh’s library directory. If the info file can’t be found, an error is signaled.
So this function doesn’t work if you haven’t installed info file.

If no entry exactly matching with symbol is found, the procedure tries to look for similar
named entries:

gosh> (info ’stirng)

There is no entry for stirng.

Did you mean:

string>

string?

string=

string<

string

:string

(If you want to search entries using pattern, see info-serach below.)

If the current output port is a tty, the info page is displayed by a paging software. If
an environment variable PAGER is defined, it is used as a paging software. Otherwise, this
function looks for less and more in this order from the directories in PATH. If none of them
is found, or the output port is not a tty, this function just displays the page.

The first invocation of this function in a session takes some time to parse the info file.

NB: When you use less as a pager, make sure you set it to handle utf-8 characters (e.g.
setting LESSCHARSET environment variable to UTF-8), or you’ll see some escaped sequences
on the screen.

Chapter 9: Library modules - Gauche extensions 358

NB: If you invoke gosh within the build tree, using -ftest option, info reads the info files
in the build tree if they exist.

[Function]info-search regexp
{gauche.interactive} Lists info entries matching regexp. See info above about where the
info files are searched.

[Function]ed ↓lename-or-procedure :key editor load-after
{gauche.interactive} Invoke an external editor to open the named file, or the file con-
taining the definition of the given procedure (if it can be known). For the latter, it uses
source-location procedure to find out the source code location (see Section 6.26.1 [Debug-
ging aid], page 262).

The name of the editor to invoke is determined as follows:

1. The editor keyword argument.

2. The value of the variable *editor* in the user module, if defined. This is handy that
you can set this in your .gaucherc.

3. The value of the environment variable GAUCHE_EDITOR.

4. The value of the environment variable EDITOR.

If none of the above is defined or #f, the procedure prompts the user to type in the name of
the editor.

Once the editor name is obtained, it is invoked as a subprocess, with the following format:

EDITOR +lineno filename

The lineno is an integer line number, 1 being the first line. The editor is expected to locate
the cursor on the specified line.

Once the editor process exits, the procedure checks if the name file is updated. If so, it may
load the file, according to the value of the load-after keyword argument. It may take one of
the following values:

#t Load the file automatically if it’s updated.

#f Do not load the file.

ask The symbol ask cause the procedure to prompt the user whether it should load
the file. This is the default.

9.13 gauche.lazy - Lazy sequence utilities

[Module]gauche.lazy
This module provides utility procedures that yields lazy sequences. For the details of lazy
sequences, see Section 6.19.2 [Lazy sequences], page 185.

Since lazy sequences are forced implicitly and indistinguishable from ordinary lists, we don’t
need a separate set of procedures for taking lists and lazy sequences; we can use find to search
in both ordinary lists and lazy sequences.

However, we do need a separate set of procedures for returning either lists or lazy sequences.
For example, lmap can take any kind of sequences, and returns lazy sequence (and calls the
procedure on demand).

This distinction is subtle, so I reiterate it. You can use both map and lmap on lazy sequences.
If you want the result list at once, use map; it doesn’t have overhead of delayed calculation. If
you don’t know you’ll use the entire result, or you know the result will get very large list and
don’t want to waste space for an intermediate list, you want to use lmap.

Chapter 9: Library modules - Gauche extensions 359

[Function]x->lseq obj
{gauche.lazy} A convenience function to coerce obj to (possibly lazy) list. If obj is a list,
it is returned as it is. If obj is other type of collection, the return value is a lazy sequence
that iterates over the collection. If obj is other object, it is returned as it is (you can think
of it as a special case of dotted list).

If you try x->lseq in REPL, it looks as if it just converts the input collection to a list.

(x->lseq ’#(a b c)) ⇒ (a b c)

But that’s because the lazy sequence is forced by the output routine of the REPL.

[Function]lunfold p f g seed :optional tail-gen
{gauche.lazy} A lazy version of unfold (see Section 10.3.1 [R7RS lists], page 482). The
arguments p, f and g are procedures, each of which take one argument, the current seed
value. The predicate p determines when to stop, f creates each element, and g generates the
next seed value. The seed argument gives the initial seed value. If tail-gen is given, it should
also be a procedure that takes one argument, the last seed value (that is, the seed value (p

seed) returned #f). It must return a (possibly lazy) list, that forms the tail of the resulting
sequence.

(lunfold ($ = 10 $) ($ * 2 $) ($ + 1 $) 0 (^_ ’(end)))

⇒ (0 2 4 6 8 10 12 14 16 18 end)

[Function]lmap proc seq seq2 . . .
{gauche.lazy} Returns a lazy sequence consists of values calculated by applying proc to
every first element of seq seq2 . . . , every second element of them, etc., until any of the input
is exhausted. Application of proc will be delayed as needed.

;; If you use map instead of lmap, this won’t return

(use math.prime)

(take (lmap (pa$ * 2) *primes*) 10)

⇒ (4 6 10 14 22 26 34 38 46 58)

[Function]lmap-accum proc seed seq seq2 . . .
{gauche.lazy} The procedure proc takes one element each from seq seq2 . . . , plus the
current seed value. It must return two values, a result value and the next seed value. The
result of lmap-accum is a lazy sequence consists of the first values returned by each invocation
of proc.

(use math.prime)

(take (lmap-accum (^[p sum] (values sum (+ p sum))) 0 *primes*) 10)

⇒ (0 2 5 10 17 28 41 58 77 100)

This is a lazy version of map-accum (see Section 9.5.1 [Mapping over collection], page 323),
but lmap-accum does not return the final seed value. We only know the final seed value when
we have the result sequence to the end, so it can’t be calculated lazily.

[Function]lappend seq . . .
{gauche.lazy} Returns a lazy sequence which is concatenation of seq Unlike append,
this procedure returns immediately, taking O(1) time. It is useful when you want to append
large sequences but may use only a part of the result.

[Function]lconcatenate seqs
{gauche.lazy} The seqs argument is a sequence of sequences. Returns a lazy sequence that
is a concatenation of all the sequences in seqs.

This differs from (apply lappend seqs), for lconcatenate can handle infinite number of
lazy seqs.

Chapter 9: Library modules - Gauche extensions 360

[Function]lappend-map proc seq1 seq . . .
{gauche.lazy} Lazy version of append-map. This differs from a simple composition of lap-
pend and lmap, since (apply lappend (lmap proc seq1 seq ...)) would evaluate the result
of lmap to the end before passing it to lappend (it’s because apply need to determine the
list of arguments before calling lappend).

It also differs from (lconcatenate (lmap proc seq1 seq ...)) in the subtle way.

Remember that Gauche’s lazy sequence evaluates one element ahead? lconcatenate does
that to the result of lmap. To see the effect, let’s define a procedure with a debug print:

(define (p x) #?=(list x x))

You can see in the following example that (apply lappend (lmap ...)) wouldn’t delay any
of application of p:

gosh> (car (apply lappend (lmap p ’(1 2 3))))

(car (apply lappend (lmap p ’(1 2 3))))

#?="(standard input)":4:(list x x)

#?- (1 1)

#?="(standard input)":4:(list x x)

#?- (2 2)

#?="(standard input)":4:(list x x)

#?- (3 3)

1

How about lconcatenate?

gosh> (car (lconcatenate (lmap p ’(1 2 3))))

(car (lconcatenate (lmap p ’(1 2 3))))

#?="(standard input)":4:(list x x)

#?- (1 1)

#?="(standard input)":4:(list x x)

#?- (2 2)

1

Oops, even though we need only the first element, and the first result of lmap, (1 1), provides
the second element, too, p is already applied to the second input.

This is because the intermediate lazy list of the result of lmap is evaluated “one element
ahead”. On the other hand, lappend-map doesn’t have this problem.

gosh> (car (lappend-map p ’(1 2 3)))

(car (lappend-map p ’(1 2 3)))

#?="(standard input)":4:(list x x)

#?- (1 1)

1

[Function]linterweave seq . . .
{gauche.lazy} Returns a lazy seq of the first items from seq . . . , then their second items,
and so on. If the length of shortest sequence of seqs is N, the length of the resulting sequence is
(* N number-of-sequences). If all of seqs are infinite, the resulting sequence is also infinite.

(linterweave (lrange 0) ’(a b c d e) (circular-list ’*))

⇒ (0 a * 1 b * 2 c * 3 d * 4 e *)

[Function]lfilter proc seq
{gauche.lazy} Returns a lazy sequence that consists of non-false values calculated by ap-
plying proc on every elements in seq.

[Function]lfilter-map proc seq seq2 . . .
{gauche.lazy} Lazy version of filter-map.

Chapter 9: Library modules - Gauche extensions 361

[Function]lstate-filter proc seed seq
{gauche.lazy} Lazy sequence version of gstate-filter (see Section 9.10.2 [Generator op-
erations], page 348).

[Function]ltake seq n :optional ↓ll? padding
[Function]ltake-while pred seq

{gauche.lazy} Lazy versions of take* and take-while (see Section 6.6.4 [List accessors and
modifiers], page 118). Note that ltake works rather like take* than take, that is, it won’t
complain if the input sequence has less than n elements. Because of the lazy nature of ltake,
it can’t know whether input is too short or not before returning the sequence.

There are no ldrop and ldrop-while; you don’t need them. if you apply drop and
drop-while on lazy sequence, they return lazy sequence.

[Function]lrxmatch rx seq
{gauche.lazy} This is a lazy sequence version of grxmatch (see Section 9.10.2 [Generator
operations], page 348).

The seq argument must be a sequence of characters (including orginary strings). The return
value is a lazy sequence of <rxmatch> objects, each representing strings matching to the
regular expression rx.

This procedure is convenient to scan character sequences from lazy character sequences, but
it may be slow if you’re looking for rarely matching string from very large non-string input.
Unless seq is a string, lrxmatch buffers certain length of input, and if matching phrase isn’t
found, it extend the buffer and scan again from the beginning, since the match may span
from the end of previous chunk to the newly added portion.

[Function]lslices seq k :optional ↓ll? padding
{gauche.lazy} Lazy version of slices (see Section 6.6.4 [List accessors and modifiers],
page 118).

(lslices ’(a b c d e f) 2)

⇒ ((a b) (c d) (e f))

9.14 gauche.listener - Listener

[Module]gauche.listener
This module provides a convenient way to enable multiple read-eval-print loop (repl) concur-
rently.

An obvious way to run multiple repls is to use threads; creating as many threads as sessions
and calling read-eval-print-loop (see Section 6.21 [Eval and repl], page 202) from each
thread. Nevertheless, sometimes single threaded implementation is preferred. For instance,
you’re using a library which is not MT-safe, or your application already uses select/poll-based
dispatching mechanism.

To implement repl in the single-threaded selection-base application, usually you register a
handler that is called when data is available in the listening port. The handler reads the data
and add them into a buffer. Then it examines if the data in the buffer consists a complete
expression, and if so, it reads the expression from the buffer, evaluates it, then prints the
result to the reporting port. The <listener> class in this module provides this handler
mechanism, so all you need to do is to register the handler to your dispatching mechanism.

Note: it may also be desirable to buffer the output sometimes, but the current version doesn’t
implement it.

Chapter 9: Library modules - Gauche extensions 362

Listener API

[Class]<listener>
{gauche.listener} An object that maintains the state of a repl session. It has many external
slots to customize its behavior. Those slot values can be set at construction time by using
the keyword of the same name as the slot, or can be set by slot-set! afterwards. However,
most of them should be set before calling listener-read-handler.

[Instance Variable of <listener>]input-port
Specifies the input port from which the listener get the input. The default value is the
current input port when the object is constructed.

[Instance Variable of <listener>]output-port
Specifies the output port to which the listener output will go. The default value is the
current output port when the object is constructed.

[Instance Variable of <listener>]error-port
Specifies the output port to which the listener’s error messages will go. The default value
is the current error port when the object is constructed.

[Instance Variable of <listener>]reader
A procedure with no arguments. It should read a Scheme expression from the current
input port when called. The default value is system’s read procedure.

[Instance Variable of <listener>]evaluator
A procedure that takes two arguments, a Scheme expression and an environment specifier.
It should evaluate the expression in the given environment and returns zero or more
value(s). The default value is system’s eval procedure.

[Instance Variable of <listener>]printer
A procedure that takes zero or more argument(s) and prints them out to the current
output port. The default value is a procedure that prints each value by write, followed
by a newline.

[Instance Variable of <listener>]prompter
A procedure with no arguments. It should prints a prompt to the current output port.
The output is flushed by the listener object so this procedure doesn’t need to care about
it. The default procedure prints "listener> ".

[Instance Variable of <listener>]environment
An environment specifier where the expressions will be evaluated. The default value is the
value returned by (interaction-environment).

[Instance Variable of <listener>]finalizer
A thunk that will be called when EOF is read from input-port. During the execution
of ↓nalizer, the current input, output and error ports are restored to the ones when
listener-read-handler is called.

It can be #f if no such procedure is needed. The default value is #f.

[Instance Variable of <listener>]error-handler
A procedure that takes one argument, an error exception. It is called when an error occurs
during read-eval-print stage, with the same dynamic environment as the error is signaled.
The default value is a procedure that simply prints the error exception by report-error.

Chapter 9: Library modules - Gauche extensions 363

[Instance Variable of <listener>]fatal-handler
A procedure that takes one argument, an error exception. It is called when a fatal error
occurred (see below for the precise definition). If this handler is called, you should assume
you can no longer continue the listener session safely, even write messages to the client.
This handler is to log such condition or to clean up the listener. During the execution
of fatal-handler, the current input, output and error ports are restored to the ones when
listener-read-handler is called.

If fatal-handler returns #f, ↓nalizer is called afterwards. With this, you can implement a
common cleanup work in ↓nalizer. If fatal-handler returns a true value, ↓nalizer will not
be called.

[Method]listener-read-handler (listener <listener>)
{gauche.listener} Returns a thunk that is to be called when a data is available from
input-port of the listener.

The returned thunk (read handler) does the following steps. Note that the first prompt is
not printed by this procedure. See listener-show-prompt below.

1. Reads available data from input-port and appends it to the listener’s internal buffer.

2. Scans the buffer to see if it has a complete S-expression. If not, returns.

3. Reads the S-expression from the buffer. The read data is removed from the buffer.

4. Evaluates the S-expression, then prints the result to output-port.

5. Prints the prompt by prompter procedure to output-port, then flush output-port.

6. Repeats from 2.

[Method]listener-show-prompt (listener <listener>)
{gauche.listener} Shows a prompt to the listener’s output port, by using listener’s
prompter procedure. Usually you want to use this procedure to print the first prompt,
for instance, when the client is connected to the listener socket.

[Function]complete-sexp? str
{gauche.listener} Returns #t if str contains a complete S-expression. This utility proce-
dure is exported as well, since it might be useful for other purposes.

Note that this procedure only checks syntax of the expressions, and doesn’t rule out erroneous
expressions (such as containing invalid character name, unregistered SRFI-10 tag, etc.). This
procedure may raise an error if the input contains ’#<’ character sequence.

Error handling

There are a few error situations the listener handles diffetently.

• Fatal error - An error situation that the listener session can no longer go on safely. You
cannot even tell so to the listener client, since the connection to the client may be broken.
All you can do is to clean up the listener session (e.g. removes the handler). This case
happens in (1) a low-level system error occurrs during reading from input-port. (A syntax
error of the input isn’t count as fatal, and handled as REPL error described below.), (2) a
SIGPIPE signal is raised during writing to output-port, or (3) an unhandled error occurred
during executing error-handler.

When this situation happens, the fatal-handler is called if it is given. If fatal-handler returns
#f, or fatal-handler isn’t given, ↓nalizer is also called.

• Leaked error - If an error occurrs during executing fatal-handler or ↓nalizer, we don’t have
no more safety net. The error is ’leaked’ outside the listener handler, and should be handled
by the user of gauche.listener.

Generally this situation should be considered as a bug of the program; you should make
sure to catch foreseeable errors within fatal-handler and ↓nalizer.

Chapter 9: Library modules - Gauche extensions 364

• REPL error - Other errors are handled by error-handler.

Listener example

The following code snippet opens a server socket, and opens a Scheme interactive session when
a client is connected. (Note: this code is just for demonstration. Do not run this program on
the machine accessible from outside network!)

(use gauche.net)

(use gauche.selector)

(use gauche.listener)

(define (scheme-server port)

(let ((selector (make <selector>))

(server (make-server-socket ’inet port :reuse-addr? #t))

(cid 0))

(define (accept-handler sock flag)

(let* ((client (socket-accept server))

(id cid)

(input (socket-input-port client :buffering :none))

(output (socket-output-port client))

(finalize (lambda ()

(selector-delete! selector input #f #f)

(socket-close client)

(format #t "client #~a disconnected\n" id)))

(listener (make <listener>

:input-port input

:output-port output

:error-port output

:prompter (lambda () (format #t "client[~a]> " id))

:finalizer finalize))

(handler (listener-read-handler listener))

)

(format #t "client #~a from ~a\n" cid (socket-address client))

(inc! cid)

(listener-show-prompt listener)

(selector-add! selector input (lambda _ (handler)) ’(r))))

(selector-add! selector

(socket-fd server)

accept-handler

’(r))

(format #t "scheme server started on port ~s\n" port)

(do () (#f) (selector-select selector))))

9.15 gauche.logger - User-level logging

[Module]gauche.logger
Provides a simple interface to log the program’s activity. The information can be written to
the specified file, or to the system logger using syslog(3). When a file is used, syslog-like
prefix string is added to each message, which is configurable. It can also takes care of locking
of the file (see the description of lock-policy below).

Chapter 9: Library modules - Gauche extensions 365

[Class]<log-drain>
{gauche.logger} Represents the destination of log messages. There’s one implicit global
<log-drain> instance, which is used by default. However, you can create as many instances
by make method as you want, in case if you want to log to more than one destination.

[Instance Variable of <log-drain>]path
Designates destination of log output. It can be one of the following values.

string Pathname of the log file. The output is written to it.

current-error

#t The output goes to the current error port.

current-output

The output goes to the urrent output port.

syslog The output is sent to the system logger.

ignore Make log-format does nothing.

#f The output is turned to a string and returned from log-format.

By default, this slot is #f.

[Instance Variable of <log-drain>]prefix
Specifies the prefix string that is attached to the beginning of every message. If the
message spans to several lines, the prefix is attached to each line. The value of this slot
can also be a procedure that takes <log-drain> object and returns a string to be used as
the prefix. The procedure is called every time prefix is needed.

When the path slot is a symbol syslog, the value of this slot is ignored. System logger
will attach an appropriate prefix.

When the value of the prefix slot is a string, the following character sequences have special
meanings and replaced by log-format for appropriate information when written out.

~T Current time, in the format of "Mmm DD hh:mm:ss" where "Mmm" is an
abbreviated month, "DD" is the day of month, "hh", "mm" and "ss" are
hours (in 24 hour basis), minutes and seconds, respectively. This format is
compatible with system logs.

~Y Current 4-digit year.

~P The program name. The default value is the basename of (car

(command-line)) (see Section 6.25.2 [Command-line arguments], page 233),
but you can change it by the program-name slot described below.

~$ The process id of this program.

~U The name of the effective user of the process.

~H The hostname the process is running.

The default value of this slot is "~T ~P[~$]: ". For example, if a string "this is a log
message.\nline 2\nline 3" is given as the message, it produces something like the following
log entry.

Sep 1 17:30:23 myprogram[441]: this is a log message

Sep 1 17:30:23 myprogram[441]: line 2

Sep 1 17:30:23 myprogram[441]: line 3

[Instance Variable of <log-drain>]program-name
Specifies the program name written by ~P directive of the prefix slot.

Chapter 9: Library modules - Gauche extensions 366

[Instance Variable of <log-drain>]lock-policy
Specifies the way the log file should be locked. If the value of this slot is a symbol fcntl,
the log file is locked using fcntl() (see Section 9.9 [Low-level file operations], page 342).
If the value is a symbol file, the log file is locked by creating auxiliary lock file, whose
name is generated by appending ".lock" after the log file path. The logging process needs
a write permission to the log file directory. Note that if the process is killed forcibly during
writing the log file, a stale lock file may remain. Log-format silently removes the lock file
if it is unusually old (currently 10 minutes). If the value is #f, no locking is performed.

The default value is fcntl, except MacOSX which doesn’t support fcntl()-style locking
and thus file is default.

The locking isn’t performed if the destination is not a file.

[Instance Variable of <log-drain>]syslog-option
[Instance Variable of <log-drain>]syslog-facility
[Instance Variable of <log-drain>]syslog-priority

The value of these slots are used when the destination of the drain is the system logger.
See Section 9.29 [Syslog], page 420, for the detailed information about these values. The
default values of these slots are LOG_PID, LOG_USER and LOG_INFO, respectively.

[Function]log-open path :key pre↓x program-name
{gauche.logger} Sets the destination of the default log message to the path path. It can
be a string or a boolean, as described above. You can also set prefix and program name by
corresponding keyword arguments.

Despite its name, this function doesn’t open the specified file immediately. The file is opened
and closed every time log-format is called.

[Parameter]log-default-drain
{gauche.logger} When called with no argument, returns the current default log-drain
log-format uses when the explicit drain is omitted. It may return #f if the default log
drain hasn’t been opened by log-open.

Calling with new <log-drain> object or #f alters the default log-drain. You can also use
parameterize (Section 9.21 [Parameters], page 383) to change the log drain temporary.

[Method]log-format (format <string>) arg . . .
[Method]log-format (drain <log-drain>) (format <string>) arg . . .

{gauche.logger} Formats a log message by format and arg . . . , by using format (see
Section 6.22.8 [Output], page 217). In the first form, the output goes to the default des-
tination. In the second form, the output goes to the specfied drain.

The file is opened and closed every time. You can safely move the log file while your program
that touches the log file is running. Also log-format acquires a write lock of the log file by
sys-fcntl (see Section 9.9 [Low-level file operations], page 342).

If the first form of log-format is called before log-open is called, log-format does nothing.
It is useful to embed debug stubs in your code; once your code is past the debugging stage,
you just comment out log-open and the code runs without logging.

9.16 gauche.mop.propagate - Propagating slot access

[Module]gauche.mop.propagate
Provides a metaclass to add :propagated slot allocation option.

When a slot allocation has :propagated, access to the slot is redirected to other object’s
slot. It is handy for composite objects to keep external interface simple, for access to the slot
of inner objects can be disguised as if it is a slot of the parent object.

Chapter 9: Library modules - Gauche extensions 367

An example would work better than explanation. Suppose you have a <rect> class to
represent generic rectangular area, and you want to use it when you create a <viewport> class
by composition, instead of inheritance. A simple way would be as follows:

(define-class <rect> ()

((width :init-keyword :width)

(height :init-keyword :height)))

(define-class <viewport> ()

((dimension :init-form (make <rect>))

;; ... other slots ...

))

With this definition, whenever you want to access the viewport’s width or height, you have to
go through <rect> object, e.g. (~ viewport’dimension’width). This is not only cumbersome,
but the users of viewport class have to know that how the viewport is composed (it’s not
necessarily a bad thing, but sometimes you may want to hide it).

Using gauche.mop.propagate, you can define slots width and height in <viewport> class
that are proxies of <rect>’s slots.

(use gauche.mop.propagate)

(define-class <rect> ()

((width :init-keyword :width)

(height :init-keyword :height)))

(define-class <viewport> (<propagate-mixin>)

((dimension :init-form (make <rect>))

(width :allocation :propagated :propagate ’dimension

:init-keyword :width)

(height :allocation :propagated :propagate ’dimension

:init-keyword :height)))

With :propagated allocation, the slots are not actually allocated in <viewport> instance,
and accesses to the slots are redirected to the object in the slot specified by :propagate slot
option—in this case, the dimension slot. It is somewhat similar to the virtual slots, but it’s
more convenient for you don’t explicitly write procedures to redirect the access.

Now you can treat width and height as if they are slots of <viewport>. You can even make
them initialize via init-keyword (but you can’t use :init-form or :init-value; if you want
to specify default values, give the default values to the actual object).

gosh> (define vp (make <viewport> :width 640 :height 480))

vp

gosh> (d vp)

#<<viewport> 0xc5a1e0> is an instance of class <viewport>

slots:

dimension : #<<rect> 0xc5a130>

width : 640

height : 480

gosh> (set! (~ vp’width) 800)

#<undef>

gosh> (~ vp’width)

800

Here’s two classes that enables this feature. Usually all you have to do is to inherit
<propagate-mixin> class.

Chapter 9: Library modules - Gauche extensions 368

[Class]<propagate-meta>
{gauche.mop.propagate} Adds :propagated slot allocation. The propagated slot has to
have :propagate slot option which specifies the name of the slot that points to an object
that actually holds the value of the slot. If a slot has :propagated slot allocation but does
not have :propagate slot option, an error is signaled.

The :propagate slot option should have a value of either a symbol, or a list of two symbols.

If it is a symbol, it names the slot that contains an object, whose slot with the same name
of the propagate slot holds the value.

If it is a list of two symbols as (X Y), then the access to this propagated slot actually works
as (slot-ref (slot-ref obj X) Y).

If you want to make a propagated slot initializable by init-keywords, make sure the slot
holding the actual object comes before the propagated slots. Slot initialization proceeds in
the order of appearance by default, and you want the actual object is created before setting
values.

[Class]<propagate-mixin>
{gauche.mop.propagate} This is a convenience mixin class. Instead of giving :metaclass

<propagate-meta>, you can just inherit this calss to make propagated slots available.

9.17 gauche.mop.singleton - Singleton

[Module]gauche.mop.singleton
Provides a metaclass to define a singleton class.

[Class]<singleton-meta>
{gauche.mop.singleton} Creates a singleton class. A singleton class is a class that is guar-
anteed to create only one instance. The first invocation of make creates the single instance,
and further attempt of creation returns the same instance.

(define-class single () () :metaclass <singleton-meta>)

(define a (make single))

(define b (make single))

(eq? a b) ⇒ #t

The slots of the instance are initialized at the first invocation of make. Initargs of make are
effective only in the fist invocation, and ignored in the subsequent invocation.

The call of initialization in make is thread-safe.

[Method]instance-of (class <singleton-meta>) :rest initargs
{gauche.mop.singleton} This method just calls make with the passed arguments. It is more
obvious in the program that you’re dealing with singleton.

[Class]<singleton-mixin>
{gauche.mop.singleton} An instance of <singleton-meta>. Instead of specifying
<singleton-meta> as the :metaclass argument of define-class, you can inherit this
class to give your class the property of singleton.

Chapter 9: Library modules - Gauche extensions 369

9.18 gauche.mop.validator - Slot with validator

[Module]gauche.mop.validator
Provides a metaclass that adds :validator and :observer slot options.

[Class]<validator-meta>
{gauche.mop.validator} This metaclass adds a feature that you can specify callbacks that
are called before and after the slot value is set. For example, if you want to guarantee that a
certain slot always holds a string value, you can make a procedure be called before the slot is
modified, either by slot-ref or by a setter method. In the procedure you can either rejects
a value except string, or coerce the value to a string.

A validator procedure is a callback procedure that is called before the slot value is set. It
can be specified by :validator slot option. The procedure takes two values, the instance
and the value to be set. Whatever the procedure returns is set to the actual slot value.

A observer procedure is a callback procedure that is called after the slot value is set. It can
be specified by :observer slot option. The procedure also takes two values, the instance and
the new value. Result of the observer procedure is discarded.

See the following example:

(define-class <v> ()

((a :accessor a-of

:validator (lambda (obj value) (x->string value)))

(b :accessor b-of

:validator (lambda (obj value)

(if (integer? value)

value

(error "integer required for slot b")))))

:metaclass <validator-meta>)

(define v (make <v>))

(slot-set! v ’a ’foo)

(slot-ref v ’a) ⇒ "foo"

(set! (a-of v) 1234)

(a-of v) ⇒ "1234"

(slot-set! v ’b 55)

(slot-ref v ’b) ⇒ 55

(slot-set! v ’b 3.4) ⇒ error
(set! (b-of v) 3.4) ⇒ error

You can specify default slot value (:init-value etc.) with :validator. In that case, the
initialization method of the instance calls the validator with the specified default value, if
:init-keyword is not given.

(define-class <v> ()

((a :initform ’foo :init-keyword :a

:validator (lambda (obj value) (x->string value)))))

(slot-ref (make <v>) ’a) ⇒ "foo"

(slot-ref (make <v> :a 555) ’a) ⇒ "555"

It looks similar to the virtual slot, but note that a slot with validator has an actual storage
in the instance, while a virtual slot doesn’t.

Chapter 9: Library modules - Gauche extensions 370

It is also a good example of customizing how the slots are accessed using the metaobject
protocol. This feature is implemented by only a couple of dozen lines of code.

9.19 gauche.net - Networking

[Module]gauche.net
Provides a set of functions necessary for network communications based on BSD socket in-
terface.

The API is provided in two different levels. Lower level routines reflect traditional BSD
socket interface, such as bind(2). Higher level routines provides more convenient way to
create typical connection-oriented server/client sockets.

This module also provides APIs to obtain various information about hostnames, service ports,
and protocols.

Gauche can handle IPv6 if it is compiled with the --enable-ipv6 configuration option. To
check whether IPv6 is enabled or not, you can use cond-expand with gauche.net.ipv6

feature identifier after loading gauche.net, as shown below.

(use gauche.net)

(cond-expand

(gauche.net.ipv6

... code to use ipv6 ...)

(else

... ipv4 only code ...))

See Section 4.12 [Feature conditional], page 64, for the details of cond-expand.

Note: If you want to write a portable program using network, take a look at srfi-106 (see
Section 11.19 [Basic socket interface], page 550).

9.19.1 Socket address

Socket address objects

[Builtin Class]<sockaddr>
{gauche.net} An abstract base class of socket addresses. Each socket address family is
implemented as a subclass of this class.

Although socket addresses are built-in classes, you can use make method to create an instance
of a specific socket address family.

[Generic Function]sockaddr-family addr
{gauche.net} Returns a symbol that indicates the family of the socket address addr.

[Generic Function]sockaddr-name addr
{gauche.net} Returns a string which represents the content of the socket address addr.

[Builtin Class]<sockaddr-in>
{gauche.net} AF INET family socket address. To create an instance of this class, use make
method as follows:

(make <sockaddr-in> :host host :port port)

host can be a string, an integer IP address, a u8vector IP address, or one of the keywords
:any, :broadcast, :none or :loopback. If it is a string, it is either a host name or a
dotted IP notation. Gauche uses gethostbyname(3) to obtain the actual IP address from
host parameter. If it is a keyword :any, or :broadcast, the address uses INADDR_ANY, or

Chapter 9: Library modules - Gauche extensions 371

INADDR_BROADCAST respectively. The keyword :loopback is a synonym to the IPv4 loopback
address "127.0.0.1".

port must be a positive integer indicating the port number. See also make-sockaddrs below,
to create multiple socket addresses on the machine which may have more than one protocol
stack.

[Method]sockaddr-family (addr <sockaddr-in>)
{gauche.net} Returns a symbol inet.

[Method]sockaddr-name (addr <sockaddr-in>)
{gauche.net} Returns a string in the form "a.b.c.d:port", where "a.b.c.d" is dotted decimal
notion of the IP address and port is the port number.

[Method]sockaddr-addr (addr <sockaddr-in>)
[Method]sockaddr-port (addr <sockaddr-in>)

{gauche.net} Returns the IP address and the port number as an integer, respectively.

[Builtin Class]<sockaddr-un>
{gauche.net} AF UNIX family socket address. To create an instance of this class, use make
method as follows:

(make <sockaddr-un> :path path)

path must be a string specifying pathname of the socket.

[Method]sockaddr-family (addr <sockaddr-un>)
{gauche.net} Returns a symbol unix.

[Method]sockaddr-name (addr <sockaddr-un>)
{gauche.net} Returns a pathname of the socket address.

[Builtin Class]<sockaddr-in6>
{gauche.net} AF INET6 family socket address. This is only available if gauche is con-
figured with –enable-ipv6 configure option. The constructor and the slots are the same as
<sockaddr-in>. See also make-sockaddrs below, to create multiple socket addresses on the
machine which may have more than one protocol stack.

[Function]make-sockaddrs host port :optional proto
{gauche.net} This is a higher-level utility procedure to create all possible inet domain socket
addresses that point to host:port of protocol proto. Particularly, if the specified host has
both IPv4 and IPv6 addresses, and the running system supports both, then both IPv4 and
IPv6 socket addresses are returned. If host has multiple IP addresses, socket addresses are
created for each of these IP address. You can make your network application much more
portable among different network stack configurations.

Passing #f to host creates the local (server) address. You can also pass a service name (e.g.
"http") instead of an integer, to the port argument. The value of proto can be either a
symbol tcp or udp, and the default is tcp.

It always returns a list of socket addresses. If the lookup of host is failed, null list is returned.

Address and string conversion

[Function]inet-string->address address
{gauche.net} Converts string representating of the internet address address to an integer
address. If address is parsed successfully, returns two values: the integer address value and

Chapter 9: Library modules - Gauche extensions 372

the recognized protocol (the constant value 2 (= AF_INET) for IPv4 addresses, and 10 (=
AF_INET6) for IPv6 addresses). If address can’t be parsed, #f and #f are returned.

(inet-string->address "192.168.1.1")

⇒ 3232235777 and 2

(inet-string->address "::1")

⇒ 1 and 10

(inet-string->address "::192.168.1.1")

⇒ 3232235777 and 10

(inet-string->address "ffe0::1")

⇒ 340116213421465348979261631549233168385 and 10

(inet-string->address "::192.168.1.1")

⇒ 3232235777 and 10

[Function]inet-string->address! address buf
{gauche.net} Like inet-string->address, but fills the given u8vector buf by the parsed
address instead of returning it as an integer value. The integer representation of inet addresses
is likely to be a bignum, and you can avoid creating bignums with this function. The given
u8vector buf must be mutable. Returns the protocol on success, or #f on failure.

The caller must provide big enough buffer. If buf is larger than required, the result is filled
from the top of the u8vector and the rest of the vector remains intact.

(let* ((buf (make-u8vector 16 0))

(proto (inet-string->address! "192.168.1.1" buf)))

(list proto buf))

⇒ (2 #u8(192 168 1 1 0 0 0 0 0 0 0 0 0 0 0 0))

[Function]inet-address->string address protocol
{gauche.net} Converts the given address to its string representation of the protocol protocol,
which can be either 2 (the constant AF_INET) or 10 (the constant AF_INET6). An integer or a
u8vector can be used as address. If it is a u8vector, only the necessary portion of the vector
is read; i.e. the vector can be longer than the required length.

(inet-address->string 3232235777 AF_INET)

⇒ "192.168.1.1"

(inet-address->string ’#u8(192 168 1 1) AF_INET)

⇒ "192.168.1.1"

(inet-address->string 3232235777 AF_INET6)

⇒ "::c0a8:101"

9.19.2 High-level network functions

[Builtin Class]<socket>
{gauche.net} Abstracts a socket, a communication endpoint.

For a connection-oriented socket, you can access the communication channel by two ports
associated to the socket, one for input and another for output. socket-input-port and
socket-output-port returns those ports, respectively.

The following three functions are convenient ways to create a connection-oriented socket.
Those functions are to provide an easy methods for typical cases, but have less control. If you
need more than these functions provide, use low-level interface.

Chapter 9: Library modules - Gauche extensions 373

[Function]make-client-socket :optional address-spec . . .
{gauche.net} Creates and returns a client socket, connected to the address specified by
address-spec

(make-client-socket ’unix path)

The client socket is connected to the unix domain server socket of address path.

(make-client-socket ’inet host port)

The client socket is connected to the inet domain server socket with hostname
host and port port. TCP protocol is assumed. host can be either a hostname, or
a dotted decimal notation of IPv4 address. If gauche is compiled with –enable-
ipv6, IPv6 address notation can also be used. Port must be an exact integer
specifying a port number, or a string service name (e.g. "http").

If gauche is compiled with –enable-ipv6, and the hostname is given, and the
hostname has both IPv6 and IPv4 addresses, then IPv6 connection is tried first,
and IPv4 is used when IPv6 fails.

(make-client-socket host port)

This works the same as above. This form is for compatibility with STk.

(make-client-socket sockaddr)

If an instance of <sockaddr> is passed, a socket suitable for sockaddr is opened
and then connected to the given address.

This function raises an error if it cannot create a socket, or cannot connect to the specified
address.

(make-client-socket ’inet "www.w3.com" 80)

⇒ ;a socket connected to www.w3.com, port 80
(make-client-socket "127.0.0.1" 23)

⇒ ;a socket connected to localhost, port 23
(make-client-socket ’unix "/tmp/.sock"

⇒ ;a socket connected to a unix domain socket "/tmp/.sock"

[Function]make-server-socket :optional address-spec . . .
{gauche.net} Creates and returns a server socket, listening the address specified by address-
spec.

(make-server-socket ’unix path [:backlog num])

The socket is bound to a unix domain socket with a name path. The keyword
argument backlog is passed to socket-listen to specify the maximum number
of connection request the server can keep before accepting them. The default is
5. If your server is very busy and you see "connection refused" often, you might
want to increase it.

(make-server-socket ’inet port [:reuse-addr? flag] [:sock-init proc] [:backlog

num])

The socket is bound to an inet domain TCP socket, listening port port, which
must be a non-negative exact integer or a string service name (e.g. "http").
If port is zero, the system assigns one of available port numbers. If a keyword
argument reuse-addr? is given and true, SO_REUSEADDR option is set to the socket
before bound to the port. This allows the process to bind the server socket
immediately after other process releases the port.

Alternatively, you can pass a list of positive exact integers to port. In that case,
Gauche tries to bind each port in the list until it succeeds.

If keyword argument sock-init is given, it should be a procedure that takes two
arguments, a created socket and the socket address. The procedure is called just

Chapter 9: Library modules - Gauche extensions 374

after the socket is created. It is useful to set some special socket options. The
keyword argument backlog is the same as in unix sockets; see the description
above.

(make-server-socket port [:reuse-addr? flag] [:sock-init proc][:backlog num])

This is a synonym to the above form (except port must be an integer). This form
is backward-compatible with STk’s make-server-socket.

(make-server-socket sockaddr [:reuse-addr? flag][:sock-init proc][:backlog

num])

This form explicitly specifies the socket address to listen by an instance of
<sockaddr>.

(make-server-socket ’inet 8080)

⇒ #<socket (listen "0.0.0.0:8080")>

(make-server-socket 8080)

⇒ #<socket (listen "0.0.0.0:8080")>

(make-server-socket ’inet 0)

⇒ #<socket (listen "0.0.0.0:35628")>

(make-server-socket ’unix "/tmp/.sock")

⇒ #<socket (listen "/tmp/.sock")>

[Function]make-server-sockets host port :key reuse-addr? sock-init
{gauche.net} Creates one or more sockets that listen at port on all available network inter-
faces of host. You can specify a service name (such as "http") to port, as well as an integer
port number. Returns a list of opened, bound and listened sockets.

This procedure is particularly useful when the host has multiple protocol stacks, such as IPv4
and IPv6. In that case, this procedure may return a list of IPv4 socket(s) and IPv6 socket(s).
(On some OSes, single socket can listen both IPv4 and IPv6. On such platform, a list of
single socket will be returned.)

The meaning of keyword arguments are the same as of make-server-socket.

You can pass 0 to port, just like make-server-socket, to let the system choose an available
port number. If pass 0 as port and this procedure returns multiple sockets, it is guaranteed
that all the sockets share the same port number.

Several accessors are available on the returned socket object.

[Function]socket-address socket
{gauche.net} Returns a socket address associated with socket. If no address has been
associated to the socket, #f is returned.

[Function]socket-input-port socket :key (bu↑ering :modest)
[Function]socket-output-port socket :key (bu↑ering :line)

{gauche.net} Returns an input and output port associated with socket, respectively.

The keyword argument bu↑ering specifies the buffering mode of the port. See Section 6.22.4
[File ports], page 207, for explanation of the buffering mode.

[Function]socket-close socket
{gauche.net} Closes socket. All the ports associated to socket are closed as well. Note: as
of release 0.7.2, this procedure does not shutdown the connection. It is because socket may
be referenced by forked process(es) and you might want to close it without interfering the
existing connection. You can call socket-shutdown to shutdown the connection explicitly.

Chapter 9: Library modules - Gauche extensions 375

[Function]call-with-client-socket socket proc :key input-bu↑ering
output-bu↑ering

{gauche.net} socket must be a connected client socket. proc is called with two arguments,
an input port that reads from the socket and an output port that writes to the socket. The
socket is closed after proc returns or proc raises an error.

The keyword arguments input-bu↑ering and output-bu↑ering are, if given, passed as the
bu↑ering keyword arguments of socket-input-port and socket-output-port, respectively.

This is an example of usage of high-level socket functions, a very simple http client.

#!/usr/bin/env gosh

(use gauche.net)

(define (usage)

(display "Usage: swget url\n" (current-error-port))

(exit 1))

;; Returns three values: host, port, and path.

(define (parse-url url)

(rxmatch-let (rxmatch #/^http:\/\/([-A-Za-z\d.]+)(:(\d+))?(\/.*)?/ url)

(#f host #f port path)

(values host port path)))

(define (get url)

(receive (host port path) (parse-url url)

(call-with-client-socket

(make-client-socket ’inet host (string->number (or port "80")))

(lambda (in out)

(format out "GET ~a HTTP/1.0\r\n" path)

(format out "host: ~a\r\n\r\n" host)

(flush out)

(copy-port in (current-output-port))))))

(define (main args)

(if (= (length args) 2)

(get (cadr args))

(usage))

0)

9.19.3 Low-level socket interface

These functions provide APIs similar to the system calls. Those who are familiar to programming
with socket APIs will find these functions useful since you can have more detailed control over
the sockets.

[Function]make-socket domain type :optional protocol
{gauche.net} Returns a socket with specified parameters.

[Constant]PF_UNIX
[Constant]PF_INET
[Constant]PF_INET6

{gauche.net} These constants are bound to the system’s constants PF_UNIX, PF_INET and
PF_INET6. You can use those values for domain argument of make-socket.

(PF_INET6 is defined only if the underlying operating system supports IPv6.)

Chapter 9: Library modules - Gauche extensions 376

[Constant]AF_UNIX
[Constant]AF_INET
[Constant]AF_INET6

{gauche.net} These constants are bound to AF_UNIX, AF_INET and AF_INET6.

(AF_INET6 is defined only if the underlying operating system supports IPv6.)

[Constant]SOCK_STREAM
[Constant]SOCK_DGRAM
[Constant]SOCK_RAW

{gauche.net} These constants are bound to SOCK_STREAM, SOCK_DGRAM and SOCK_RAW, and
suitable to pass to the type argument of make-socket.

[Function]socket-fd socket
{gauche.net} Returns an integer system file descriptor of the underlying socket.

[Function]socket-status socket
{gauche.net} Returns a internal status of socket, by one of the following symbols.

none The socket is just created.
bound The socket is bound to an address by socket-bind

listening The socket is listening a connection by
socket-listen

connected The socket is connected by socket-connect or
socket-accept.

shutdown The socket is shutdown by socket-shutdown

closed The socket is closed by socket-close.

[Function]socket-bind socket address
{gauche.net} Binds socket to the local network address address. It is usually used to asso-
ciate specific address to the server port. If binding failed, an error is signaled (most likely
the address is already in use).

For the inet domain address, you can pass address with port=0; the system assigns the port
number and sets the actual address to the address slot of socket.

[Function]socket-listen socket backlog
{gauche.net} Listens socket. The socket must be already bound to some address. backlog
specifies maximum number of connection requests to be queued.

[Function]socket-accept socket
{gauche.net} Accepts a connection request coming to socket. Returns a new socket that is
connected to the remote entity. The original socket keeps waiting for further connections. If
there’s no connection requests, this call waits for one to come.

You can use sys-select to check if there’s a pending connection request.

[Function]socket-connect socket address
{gauche.net} Connects socket to the remote address address. This is the way for a client
socket to connect to the remote entity.

[Function]socket-shutdown socket how
{gauche.net} Shuts down connection of socket. If how is SHUT_RD (or 0), the receive channel
of socket is disallowed. If how is SHUT_WR (or 1), the send channel of socket is disallowed. If
how is SHUT_RDWR (or 2), both receive and send channels are disallowed. It is an error to call
this function on a non-connected socket.

If you shut down the send channel of the socket, the remote peer sees EOF from its receive
channel. This is useful if the remote peer expects EOF before sending something back to
you.

Chapter 9: Library modules - Gauche extensions 377

[Function]socket-getsockname socket
{gauche.net} Returns a <sockaddr> instance that is the local address of socket.

[Function]socket-getpeername socket
{gauche.net} Returns a <sockaddr> instance that is the peer address of socket.

[Function]socket-send socket msg :optional 'ags
[Function]socket-sendto socket msg to-address :optional 'ags.

{gauche.net} Interfaces to send(2) and sendto(2), respectively. Transmits the content
of msg through socket. msg can be either a string or a uniform vector; if you send binary
packets, uniform vectors are recommended.

Returns the nubmer of octets that are actually sent.

When socket-send is used, socket must already be connected. On the other hand,
socket-sendto can be used for non-connected socket, and the destination address is specified
by a <sockaddr> instance to-address.

The optional 'ags can be a bitwise OR of the integer constants MSG_*. See the system’s
manpage of send(2) and sendto(2) for the details.

[Function]socket-sendmsg socket msghdr :optional 'ags
{gauche.net} Sends a packet described by msghdr through socket using sendmsg(3). The
msghdr argument must be a string or u8vector, and it must be prepared as a binary repre-
sentation of struct msghdr. A reliable way to build a msghdr is to use socket-buildmsg

described below.

The 'ags argument is the same as socket-send and socket-sendto.

Returns number of octets sent.

This procedure is not yet supported under the Windows native platform. You can use the
feature identifier gauche.os.windows to check availability of this procedure (see Section 3.5
[Platform-dependent features], page 27).

[Function]socket-buildmsg addr iov control 'ags :optional buf
{gauche.net} Builds a binary representation of struct msghdr which is suitable to be given
to socket-sendmsg. You have to be familiar with sendmsg(3) system call to understand
this procedure.

The addr argument must be an instance of <sockaddr> or #f. If it is a sockaddr, the msg_

name field of the msghdr is filled with the address.

The iov argument must be a vector or #f. If it is a vector, each element must be either a
string or a u8vector. They are used to fill msg_iov field of the msghdr. Their contents will
be concatenated in the kernel to make a payload.

The control argument represents ancillary data, a.k.a. cmsg. It can be #f if you don’t need
ancillary data. Otherwise, it must be a list in the following form:

((level type data) ...)

Where level and type are exact integers, and data is either a string or a u8vector. The former
two are used to fill cmsg’s cmsg_level and cmsg_type fields. The data is for cmsg’s data
(cmsg_len is calculated from data).

The 'ags argument is used to fill msg_flags.

If the buf argument is #f or omitted, new memories are allocated to construct the msghdr. If
a mutable u8vector is given to buf, socket-buildmsg tries to use it to construct the msghdr
as much as possible; it allocates memory only if buf is used up.

Returns the constructed msghdr as a u8vector.

Chapter 9: Library modules - Gauche extensions 378

This procedure is not yet supported under the Windows native platform. You can use the
feature identifier gauche.os.windows to check availability of this procedure (see Section 3.5
[Platform-dependent features], page 27).

[Function]socket-recv! socket buf :optional 'ags
{gauche.net} Interface to recv(2). Receives a message from socket, and stores it into buf,
which must be a mutable uniform vector. Returns the number of bytes actually written.
socket must be already connected. If the size of buf isn’t enough to store the entire message,
the rest may be discarded depending on the type of socket.

The optional 'ags can be a bitwise OR of the integer constants MSG_*. See the system’s
manpage of recv(2) for the details.

[Function]socket-recvfrom! socket buf addrs :optional 'ags
{gauche.net} Interface to recvfrom(2). Receives a message from socket, which may be
unconnected, and stores it to a mutable uniform vector buf. Like socket-recv, if the size of
buf isn’t enough to store the entire message, the rest may be discarded depending on the
type of socket.

Returns two values; the number of bytes actually written into buf, and an instance of a
subclass of <sys-sockaddr> which shows the sender’s address.

The addrs argument must be a list of instances of socket addresses, optionally its last cdr
being #t (as a special case, if there’s zero addresses to pass, just #t may be given). The
content of each address doesn’t matter; if the protocol family of one of them matches the
sender’s address, the sender’s address is written into the passed sockaddr object. By listing
sockaddrs of possible families, you can count on socket-recvfrom! to allocate no memory
on successful operation. It is useful if you call socket-recvfrom! in a speed-sensitive inner
loop.

If the sender’s address family doesn’t match any of the addresses given to addrs, the behavior
depends on whether the list is terminated by () or #t. If it is terminated by (), (i.e. addrs
is a proper list), the sender’s address is simply discarded and socket-recvfrom! returns
#f as the second value. If the list is terminated by #t, socket-recvfrom! allocates a fresh
sockaddr object and returns it as the second value.

Two simple cases: If you pass () to addrs, the sender’s address is always discarded, which is
useful if socket is connected (that is, you already know your sender’s address). If you pass
#t to addrs, a new socket address object is always allocated for the sender’s address, which
is convenient if you don’t mind memory allocation.

The optional 'ags can be a bitwise OR of the integer constants MSG_*. See the system’s
manpage of recvfrom(2) for the details.

[Function]socket-recv socket bytes :optional 'ags
[Function]socket-recvfrom socket bytes :optional 'ags

{gauche.net} Like socket-recv! and socket-recvfrom!, but these returns the received
message as a (possibly incomplete) string, up to bytes size. Additionally, socket-recvfrom
always allocates a socket address object for the sender’s address.

The use of these procedures are discouraged, since they often returns incomplete strings
for binary messages. Using strings for binary data creates many pitfalls. Uniform vectors
(especially u8vectors) are for binary data. (The reason these procedures return strings is
merely historical.)

[Variable]MSG_CTRUNC
[Variable]MSG_DONTROUTE
[Variable]MSG_EOR
[Variable]MSG_OOB

Chapter 9: Library modules - Gauche extensions 379

[Variable]MSG_PEEK
[Variable]MSG_TRUNC
[Variable]MSG_WAITALL

{gauche.net} Pre-defined integer constants to be used as 'ags values for socket-send,
socket-sendto, socket-recv and socket-recvfrom. Some of these constants may not be
defined if the underlying operating system doesn’t provide them.

Further control over sockets and protocol layers is possible by getsockopt/setsockopt interface,
as described below.

[Function]socket-setsockopt socket level option value
[Function]socket-getsockopt socket level option rsize

{gauche.net} These are the interface to setsockopt() and getsockopt() calls. The interface
is a bit clumsy, in order to allow full access to those low-level calls.

socket must be a non-closed socket object. level and option is an exact integer to specify
the level of protocol stack and the option you want to deal with. There are several variables
pre-bound to system constants listed below.

To set the socket option, you can pass either an exact integer or a string to value. If it is an
integer, the value is passed to setsockopt(2) as C int value. If it is a string, the byte sequence
is passed as is. The required type of value depends on the option, and Gauche can’t know if
the value you passed is expected by setsockopt(2); it is your responsibility to pass the correct
values.

To get the socket option, you need to tell the maximum length of expected result by
rsize parameter, for Gauche doesn’t know the amount of data each option returns.
socket-getsockopt returns the option value as a byte string. If you know the option value
is an integer, you can pass 0 to rsize; in that case socket-getsockopt returns the value as
an exact integer.

Note about the name: I tempted to name these function socket-{set|get}opt or socket-
{set|get}-option, but I rather took the naming consistency. Hence duplicated "sock"s.

The following predefined variables are provided. Note that some of them are not available
on all platforms. See manpages socket(7), tcp(7) or ip(7) of your system to find out exact
specification of those values.

For “level” argument:

[Variable]SOL_SOCKET
[Variable]SOL_TCP
[Variable]SOL_IP

{gauche.net} These variables are bound to SOL_SOCKET, SOL_TCP and SOL_IP, respectively.

For “option” argument:

[Variable]SO_KEEPALIVE
{gauche.net} Expects integer value. If it is not zero, enables sending of keep-alive messages
on connection-oriented sockets.

[Variable]SO_OOBINLINE
{gauche.net} Expects integer value. If it is not zero, out-of-band data is directly placed into
the receive data stream. Otherwise out-of-band data is only passed when the MSG OOB flag
is set during receiving.

[Variable]SO_REUSEADDR
{gauche.net} Expects integer value. If it is not zero, socket-bind allows to reuse local
addresses, unless an active listening socket bound to the address.

Chapter 9: Library modules - Gauche extensions 380

[Variable]SO_TYPE
{gauche.net} Gets the socket type as an integer (like sock_stream). Can be only used with
socket-getsockopt.

[Variable]SO_BROADCAST
{gauche.net} Expects integer value. If it is not zero, datagram sockets are allowed to
send/receive broadcast packets.

[Variable]SO_PRIORITY
{gauche.net} Expects integer value, specifying the protocol-defined priority for all packets
to be sent on this socket.

[Variable]SO_ERROR
{gauche.net} Gets and clears the pending socket error as an integer. Can be only used with
socket-getsockopt.

[Function]inet-checksum packet size
{gauche.net} Calculates one’s complement of Internet Checksum (RFC1071) of the packet,
which must be given as a uniform vector. First size bytes of packet are used for calculation.
Returned value is in network byte order (big-endian). It is an error if size is greater than the
size of packet.

Note: The used algorithm assumes packet is not too big (< 64K).

9.19.4 Netdb interface

[Builtin Class]<sys-hostent>
{gauche.net} A class of objects for network hosts. Corresponding to struct hostent in C.
The following slots are available read-only.

[Instance Variable of <sys-hostent>]name
The formal name of the host (string).

[Instance Variable of <sys-hostent>]aliases
A list of alias names of the host (list of strings).

[Instance Variable of <sys-hostent>]addresses
A list of addresses (list of strings). Only ipv4 address is supported currently. Each address
is represented by dotted decimal notation.

[Function]sys-gethostbyname name
Looks up a host named name. If found, returns a <sys-hostent> object. Otherwise, returns
#f.

(let ((host (sys-gethostbyname "www.w3c.org")))

(list (slot-ref host ’name)

(slot-ref host ’aliases)

(slot-ref host ’addresses)))

⇒ ("www.w3.org" ("www.w3c.org") ("18.29.1.34" "18.29.1.35"))

[Function]sys-gethostbyaddr addr proto
{gauche.net} Looks up a host that has an address addr of protocol proto. addr is a natural
string representation of the address; for ipv4, it is a dotted decimal notation. proto is
a protocol number; only AF_INET is supported currently. If the host is found, returns a
<sys-hostent> object. Otherwise, returns #f.

(let ((host (sys-gethostbyaddr "127.0.0.1" AF_INET)))

(list (slot-ref host ’name)

Chapter 9: Library modules - Gauche extensions 381

(slot-ref host ’aliases)

(slot-ref host ’addresses))

⇒ ("localhost" ("localhost.localdomain") ("127.0.0.1"))

[Builtin Class]<sys-servent>
{gauche.net} An entry of the network service database. Corresponding to struct servent

in C. The following slots are available read-only.

[Instance Variable of <sys-servent>]name
The formal name of the service (string).

[Instance Variable of <sys-servent>]aliases
A list of alias names of the service (list of strings).

[Instance Variable of <sys-servent>]port
A port number registered for this service (exact integer).

[Instance Variable of <sys-servent>]proto
A protocol name for this service (string).

[Function]sys-getservbyname name proto
{gauche.net} Looks up the network service database with a service name name and a pro-
tocol proto. Both name and proto must be a string. If a service is found, an instance of
<sys-servent> is returned. Otherwise, #f is returned.

(let ((serv (sys-getservbyname "http" "tcp")))

(list (slot-ref serv ’name)

(slot-ref serv ’aliases)

(slot-ref serv ’port)

(slot-ref serv ’proto)))

⇒ ("http" () 80 "tcp")

[Function]sys-getservbyport port proto
{gauche.net} Looks up the network service database with a service port port and a protocol
proto. port must be an exact integer, and proto must be a string. If a service is found, an
instance of <sys-servent> is returned. Otherwise, #f is returned.

(let ((serv (sys-getservbyport 6000 "tcp")))

(list (slot-ref serv ’name)

(slot-ref serv ’aliases)

(slot-ref serv ’port)

(slot-ref serv ’proto)))

⇒ ("x-server" () 6000 "tcp")

[Builtin Class]<sys-protoent>
{gauche.net} An entry of the protocol database. Corresponds to struct protoent in C.
The following slots are available read-only.

[Instance Variable of <sys-servent>]name
The formal name of the protocol (string).

[Instance Variable of <sys-servent>]aliases
A list of alias names of the protocol (list of strings).

[Instance Variable of <sys-servent>]proto
A protocol number (exact integer).

Chapter 9: Library modules - Gauche extensions 382

[Function]sys-getprotobyname name
{gauche.net} Looks up the network protocol database with a name name, which must be a
string. If a protocol is found, an instance of <sys-protoent> is returned. Otherwise, #f is
returned.

(let ((proto (sys-getprotobyname "icmp")))

(list (slot-ref proto ’name)

(slot-ref proto ’aliases)

(slot-ref proto ’proto)))

⇒ ("icmp" ("ICMP") 1)

[Function]sys-getprotobynumber number
{gauche.net} Looks up the network protocol database with a protocol number number,
which must be an exact integer. If a protocol is found, an instance of <sys-protoent> is
returned. Otherwise, #f is returned.

(let ((proto (sys-getprotobynumber 17)))

(list (slot-ref proto ’name)

(slot-ref proto ’aliases)

(slot-ref proto ’proto)))

⇒ ("udp" ("UDP") 17)

[Builtin Class]<sys-addrinfo>
{gauche.net} The new interface to keep address information. Corresponds to struct

addrinfo in C. This is only available if gauche is configured with –enable-ipv6 option. The
following slots are provided.

[Instance Variable of <sys-addrinfo>]flags

[Instance Variable of <sys-addrinfo>]family

[Instance Variable of <sys-addrinfo>]socktype

[Instance Variable of <sys-addrinfo>]protocol

[Instance Variable of <sys-addrinfo>]addrlen

[Instance Variable of <sys-addrinfo>]addr

[Function]sys-getaddrinfo nodename servname hints
{gauche.net} Returns a list of <sys-addrinfo> instances from the given nodename, serv-
name and hints. This is only available if gauche is compiled with –enable-ipv6 option.

[Function]sys-ntohs integer
[Function]sys-ntohl integer
[Function]sys-htons integer
[Function]sys-htonl integer

{gauche.net} Utility functions to convert 16bit (s) or 32bit (l) integers between network
byte order (n) and host byte order (h).

Scheme API to the netdb interface calls those byte order conversion functions internally, so
you don’t usually need them so much as in C programs. However, it may be useful when
you’re constructing or analyzing binary packets. See also Section 12.2 [Packing Binary Data],
page 584, to handle binary data.

Chapter 9: Library modules - Gauche extensions 383

9.20 gauche.package - Package metainformation

[Module]gauche.package
Gauche manages extra libraries and extension modules as packages.

Each package source tree has package.scm on top directory, which contains define-gauche-
package form that provides metainformation about the package—the package name, version,
author, dependencies, etc.

When the package is installed, the standard installation process copies that information,
with additional information such as the version of Gauche used to build the package, into
.packages subdirectory of the library installation path, with the name PACKAGENAME.gpd,
where PACKAGENAME is the name of the package.

We collectively call package.scm and *.gpd as package description file.

This module provides utility procedures to read and write package description files, and
search installed *.gpd files.

define-gauche-package form

configure script and *.gpd file generation

Utility procedures

[Function]<gauche-package-description>
{gauche.package}

[Function]path->gauche-package-description ↓lename
{gauche.package}

[Function]write-gauche-package-description description :optional oport
{gauche.package}

[Function]make-gauche-package-description
{gauche.package}

[Function]gauche-package-description-paths :key all-versions
{gauche.package}

[Function]find-gauche-package-description name :key all-versions
{gauche.package}

9.21 gauche.parameter - Parameters

[Module]gauche.parameter
A parameter is something like a stateful procedure that takes zero or one argument. If no
argument is given, the parameter returns the current value it is keeping. If single argument
is given, it will be the current value of the parameter. A parameter has several advantages
over global variables to store states.

Value of parameters are kept for each thread, so you can use a parameter as a thread-local
storage. When a new thread is created, it inherits a copy of parameters from its creator
thread.

You can give a "filter procedure" that checks the new value before setting it as the parameter
value, so that you can guarantee the value of the parameter is always sane.

With the macro parameterize, you can change the parameter’s value within certain dynamic
scope. It can effectively replace dynamically scoped variables.

Chapter 9: Library modules - Gauche extensions 384

You can also register callback procedures to be called whenever the value of the parameter
is changed. It can effectively replace so-called "traced variables"

The basic parameter object feature is defined in SRFI-39. It also can be found in other
Scheme implementations, including ChezScheme, Chicken and MzScheme. Gauche’s one is
upper compatible to SRFI-39.

[Class]<parameter>
{gauche.parameter} A parameter class. A object-apply method is defined so that a pa-
rameter can be used as if it were a procedure.

;; p is a parameter with initial value 2

(define p (make-parameter 2))

;; calling p with no arguments returns the current value

(p) ⇒ 2

;; modify p’s value to 3

(p 3)

(p) ⇒ 3

;; you can also use generalized set (srfi-17)

(set! (p) 5)

(p) ⇒ 5

;; using parameterize dynamically changes p’s value.

(define (get-p) (p))

(parameterize ([p 7])

(get-p)) ⇒ 7

(get-p) ⇒ 5

[Function]make-parameter value :optional ↓lter
[SRFI-39] {gauche.parameter} Creates a parameter whose initial value is value. If an op-
tional argument ↓lter is given, it must be a procedure that takes one argument and returns
one value; whenever the parameter’s value is about to change, the procedure is called with
the given value, and the value the procedure returns will be the parameter’s value. The filter
procedure can raise an error or reject to change the parameter’s value.

[Macro]parameterize ((param value) . . .) body . . .
[SRFI-39] {gauche.parameter} Evaluages body . . . , with change parameter param’s value
to the given value within the dynamic scope of body Returns the value(s) of the result
of the last body.

Some examples:

(define a (make-parameter 1))

(a) ⇒ 1

(a 2) ⇒ 1

(a) ⇒ 2

(parameterize ((a 3))

Chapter 9: Library modules - Gauche extensions 385

(a)) ⇒ 3

(a) ⇒ 2

[Method]parameter-observer-add! (p <parameter>) proc :optional when where
{gauche.parameter} Adds proc to "observer" procedures of a parameter p. Observer pro-
cedures are called either (1) just before a new value is set to the parameter, or (2) just after
the new value is set to the parameter. In case of (1), a filter procedure is already applied
before a callback is called. In either case, observer procedures are called with two arguments,
the old value and the new value. The return value(s) of observer procedures are discarded.

The optional when argument must be either a symbol before or after, to specify whether
proc should be called before or after the value is changed. If omitted, after is assumed.

The optional where argument must be either a symbol append or prepend, to specify whether
proc should be prepended or appended to the existing observer procedure list. If omitted,
append is assumed.

Note: Although the parameter value itself is thread-local, the observer list is shared by all
threads.

[Method]parameter-observer-delete! (p <parameter>) proc :optional when
{gauche.parameter} Deletes proc from observer procedure list of a parameter p. If proc
is not in the list, nothing happens. You can give either a symbol before or after to when
argument to specify from which list proc should be deleted. If when argument is omitted,
proc is deleted from both lists.

[Method]parameter-pre-observers (p <parameter>)
[Method]parameter-post-observers (p <parameter>)

{gauche.parameter} Returns a hook object (see Section 9.11 [Hooks], page 355) that keeps
"before" or "after" observers, respectively.

Note: Although the parameter value itself is thread-local, these hook objects are shared by
all threads.

9.22 gauche.parseopt - Parsing command-line options

[Module]gauche.parseopt
This module defines a convenient way to parse command-line options. The interface is hinted
by Perl, and conveniently handles long-format options with multiple option arguments.

Actually, you have a few choices to parse command-line options in Gauche. SRFI-37 (see
Section 11.10 [A program argument processor], page 535) provides functional interface to
parse POSIX/GNU compatible argument syntax. SLIB has getopt-compatible utility. Re-
quired features may differ from application to application, so choose whichever fits your
requirement.

High-level API

[Macro]let-args args (bind-spec . . . [. rest]) body . . .
{gauche.parseopt} This macro captures the most common pattern of argument processing.
It takes a list of arguments, args, and scans it to find Unix-style command-line options and
binds their values to local variables according to bind-spec, then executes body

Let’s look at a simple example first, which gives you a good idea of what this form does. (See
the “Examples” section below for more examples).

(define (main args)

(let-args (cdr args)

((verbose "v|verbose")

Chapter 9: Library modules - Gauche extensions 386

(outfile "o|outfile=s")

(debug-level "d|debug-level=i" 0)

(help "h|help" => (cut show-help (car args)))

. restargs

)

....))

(define (show-help progname)

...)

The local variable verbose will be bound to #t if a command-line argument -v or --verbose
is given, and to #f otherwise. The variable output is specified to take one option argument;
if the command-line arguments are given like -o out.txt, out↓le receives "out.txt". The
debug-level one is similar, but the option argument is coerced to an integer, and also it has
default value 0 when the option isn’t given. The help clause invokes an action rather than
merely binding the value.

(Note: Currently let-args does not distinguish so-called short and long options, e.g. -v and
--v have the same effect, so as -verbose and --verbose. In future we may add an option
to make it compatible with getopt_long(3).)

The final restargs variable after the dot receives a list of non-optional command-line argu-
ments.

Let’s look at bind-spec in detail. It must be one of the following forms.

1. (var option-spec)

2. (var option-spec default)

3. (var option-spec => callback)

4. (var option-spec default => callback)

5. (else => handler)

6. (else formals body ...)

A list of command-line arguments passed to args are parsed according to option-specs. If the
corresponding option is given, a variable var is bound to a value as follows:

(a) If the bind-spec is 1. or 2., then

(a1) If option-spec doesn’t require an argument, then #t:

(a2) If option-spec requires one argument, then the value of

the argument:

(a3) If option-spec requires more than one argument,

the list of the values of the arguments.

(b) If the bind-spec is 3. or 4., then callback is called with

the value(s) of arguments, and its return value.

We’ll explain the details of option-spec later.

As a special case, var can be #f, in which case the value is ignored. It is only useful for side
effects in callback.

If the corresponding option is not given in args, var is bound to default if it is given, or #f
otherwise.

The last bind-spec may be the form 5 or 6. in which case the clause is selected when no other
option-spec matches a given command-line option. In the form 5, handler will be called
with three arguments; the given option, a list of remaining command-line arguments, and a
continuation procedure. The handler is supposed to handle the given option, and it may call
the continuation procedure with the remaining arguments to continue processing, or it may
return a list of arguments which will be treated as non-optional command-line arguments.
The form 6 is a shorthand notion of (else => (lambda formals body ...)).

Chapter 9: Library modules - Gauche extensions 387

The bind-spec list can be an improper list, whose last cdr is a symbol. In which case, a list
of the rest of the command-line arguments is bound to the variable named by the symbol.

Note that the default, callback, and forms in else clause is evaluated outside of the scope of
binding of vars (as the name let-args implies).

Unlike typical getopt or getopt_long implementation in C, let-args does not permute the
given command-line arguments. It stops parsing when it encounters a non-option argument
(argument without starting with a minus sign).

If the parser encounters an argument with only two minus signs ‘--’, it stops argument
parsing and returns a list of arguments after ‘--’.

After all the bindings is done, body . . . are evaluated. Body may began with internal define
forms.

Option spec

option-spec is a string that specifies the name of the option and how the option takes the
arguments. An alphanumeric characters, underscore, plus and minus sign is allowed for option’s
names, except that minus sign can’t be the first character, i.e. the valid option name matches
a regexp #/[\w+][-\w+]*/.

If the option takes argument(s), it can be specified by attaching equal character and a char-
acter (or characters) that represents the type of the argument(s) after the name. The option
can take more than one arguments. The following characters are recognized as a type specifier
of the option’s argument.

s String.

n Number.

f Real number (coerced to flonum).

i Exact integer.

e S-expression.

y Symbol (argument is converted by string->symbol).

Let’s see some examples of option-spec:

"name" Specifies option name, that doesn’t take any argument.

"name=s" Option name takes one argument, and it is passed as a string.

"name=i" Option name takes one argument, and it is passed as an exact integer.

"name=ss"

Option name takes two arguments, both string.

"name=iii"

Option name takes three integer arguments.

"name=sf"

Option name takes two arguments, the first is a string and the second is a number.

If the option has alternative names, they can be concatenated by "|". For example, an option
spec "h|help" will match both "h" and "help".

In the command line, the option may appear with preceding single or double minus signs.
The option’s argument may be combined by the option itself with an equal sign. For example,
all the following command line arguments match an option spec "prefix=s".

-prefix /home/shiro

-prefix=/home/shiro

--prefix /home/shiro

--prefix=/home/shiro

Chapter 9: Library modules - Gauche extensions 388

Error handling

[Condition Type]<parseopt-error>
{gauche.parseopt} When let-args encounters an argument that cannot be processed as
specified by option specs, an error of condition type <parseopt-error> is raised. The cases
include when a mandatory option argument is missing, or when an option argument has a
wrong type.

(let-args ’("-a" "foo") ((a "a=i")) ; option a requires integer

(list a))

⇒ parseopt-error

Note that this condition is about parsing the given args. If an invalid option-spec is given,
an ordinary error is thrown.

Examples

This example is taken from gauche-install script. The mode option takes numbers in octal, so
it uses the callback procedure to convert it. See also the else clause how to handle unrecognized
option.

(let-args (cdr args)

((#f "c") ;; ignore for historical reason

(mkdir "d|directory")

(mode "m|mode=s" #o755 => (cut string->number <> 8))

(owner "o|owner=s")

(group "g|group=s")

(srcdir "S|srcdir=s")

(target "T|target=s")

(utarget "U|uninstall=s")

(shebang "shebang=s")

(verb "v")

(dry "n|dry-run")

(#f "h|help" => usage)

(else (opt . _) (print "Unknown option : " opt) (usage))

. args)

...)

The next example is a small test program to show the usage of else clause. It gathers all
options into the variable r, except that when it sees -c it stops argument processing and binds
the rest of the arguments to restargs.

(use gauche.parseopt)

(define (main args)

(let1 r ’()

(let-args (cdr args)

((else (opt rest cont)

(cond [(equal? opt "c") rest]

[else (push! r opt) (cont rest)]))

. restargs)

(print "options: " (reverse r))

(print "restargs: " restargs)

0)))

Sample session of the above script (suppose it is saved as example).

$./example -a -b -c -d -e foo

Chapter 9: Library modules - Gauche extensions 389

options: (a b)

restargs: (-d -e foo)

$./example -a -b -d -e foo

options: (a b d e)

restargs: (foo)

Low-level API

The followings are lower-level API used to build let-args macro.

[Macro]parse-options args (option-clause . . .)
{gauche.parseopt} args is an expression that contains a list of command-line arguments.
This macro scans the command-line options (an argument that begins with ‘-’) and processes
it as specified in option-clauses, then returns the remaining arguments.

Each option-clause is consisted by a pair of option-spec and its action.

If a given command-line option matches one of option-spec, then the associated action is
evaluated. An action can be one of the following forms.

bind-spec body ...

bind-spec is a proper or dotted list of variables like lambda-list. The option’s
arguments are bound to bind-spec, then then body . . . is evaluated.

=> proc If a command-line option matches option-spec, calls a procedure proc with a list
of the option’s arguments.

If a symbol else is at the position of option-spec, the clause is selected when no other
option clause matches a given command-line option. Three “arguments” are associated to
the clause; the unmatched option, the rest of arguments, and a procedure that represents the
option parser.

[Macro]make-option-parser (option-clause . . .)
{gauche.parseopt} This is a lower-level interface. option-clauses are the same as
parse-options. This macro returns a procedure that can be used later to parse the
command line options.

The returned procedure takes one required argument and one optional argument. The re-
quired argument is a list of strings, for given command-line arguments. The optional argu-
ment may be a procedure that takes more than three arguments, and if given, the procedure
is used as if it is the body of else option clause.

9.23 gauche.partcont - Partial continuations

[Module]gauche.partcont
Gauche internally supports partial continuations (a.k.a. delimited continuations) natively.
This module exposes the feature for general use.

Note: Partial continuations use two operators, reset and shift. Those names are introduced
in the original papers, and stuck in the programming world. Unfortunately those names are too
generic as library function names. We thought giving them more descriptive names, but decided
to keep them after all; when you talk about partial continuations you can’t get away from those
names. If these names conflict to other names in your program, you can use :prefix import
specifier (see Section 4.13.4 [Using modules], page 70), for example as follows:

;; Add prefix pc: to the ’reset’ and ’shift’ operators.

(use gauche.partcont :prefix pc:)

(pc:reset ... (pc:shift k))

Chapter 9: Library modules - Gauche extensions 390

[Macro]reset expr . . .
{gauche.partcont} Saves the current continuation, and executes expr . . . with a null con-
tinuation or empty continuation. The shift operator captures the continuation from the
shift expression to this null continuation.

Note on implicit delimited continuations: There’s an occasion Gauche effectively calls reset
internally: When C routine calls back to Scheme in non-CPS manner. (If you know C API,
it is Scm_EvalRec(), Scm_ApplyRec*(), Scm_Eval() and Scm_Apply() family of functions.)
The callers of such routines expect the result is returned at most once, which won’t work
well with Scheme’s continuations that have unlimited extent. Such calls create delimited
continuations implicitly.

For example, the main routine of gosh calls Scheme REPL by Scm_Eval(), which means the
entire REPL is effectively surrounded by a reset. So, if you call shift without corresponding
reset, the continuation of shift becomes the continuation of the entire REPL—which is to
exit from gosh. This may be surprising if you don’t know about the implicit delimited
continuation.

Other places the implicit delimited continuations are created are the handlers virtual ports
(see Section 9.37 [Virtual ports], page 461), object-apply methods called from write and
display, and GUI callbacks such as the one registered by glut-display-func (See the
document of Gauche-gl for the details), to name a few.

In general you don’t need to worry about it too much, since most built-in and extension
routines written in C calls back Scheme in CPS manner, and works with both full and
delimited continuations.

[Macro]shift var expr . . .
{gauche.partcont} Packages the continuation of this expression until the current null con-
tinuation marked by the most recent reset into a procedure, binds the procedure to var,
then executes expr . . . with the continuation saved by the most recent reset.

That is, after executing expr . . . , the value is passed to the expression waiting for the value of
the most recent reset. When a partial continuation bound to var is executed, its argument
is passed to the continuation waiting for the value of this shift. When the execution of the
partial continuation reaches its end, it returns from the expression waiting for the value of
invocation of var.

[Function]call/pc proc
{gauche.partcont} This is a wrapper of shift. (shift k expr ...) is equivalent to
(call/pc (lambda (k) expr ...)). Sometimes this similarity of call/cc comes handy.

Well, . . . I bet you feel like your brain is twisted hard unless you are one of those rare
breed from the land of continuation. Let me break down what’s happening here informally and
intuitively.

Suppose a procedure A calls an expression B. If A expects a return value from B and continue
processing, we split the part after returning from B into a separate chunk A’, then we can think
of the whole control flow as this straight chain:

A -> B -> A’

A -> B is a procedure call and B -> A’ is a return, but we all know procedure call and return
is intrinsically the same thing, right?

Procedure B may call another procedure C, and so on. So when you look at an execution of
particular piece of code, you can think of a chain of control flow like this:

... -> A -> B -> C -> -> C’ -> B’ -> A’ -> ...

Chapter 9: Library modules - Gauche extensions 391

The magic procedure call/cc picks the head of the chain following its execution (marked as
* in the figure below), and passes it to the given procedure (denoted k in the figure below). So,
whenever k is invoked, the control goes through the chain from *.

... -> A -> B -> (call/cc -> (lambda (k) ...)) -> B’ -> A’ -> ...

| ^

\-----------> *

One difficulty with call/cc is that the extracted chain is only one-ended—we don’t know
what is chained to the right. In fact, what will come after that depends on the whole program;
it’s outside of local control. This global attribute of call/cc makes it difficult to deal with.

The reset primitive cuts this chain of continuation. The original chain of continuation (the
x-end in the following figure) is saved somewhere, and the continuation of reset itself becomes
open-ended (the o-end in the following figure).

... -> A -> B -> (reset ...) -> o

x -> B ’ -> A’ -> ...

A rule: If control reaches to the o-end, we pick the x-end most recently saved. Because of
this, reset alone doesn’t show any difference in the program behavior.

Now what happens if we insert shift inside reset? This is a superficial view of inserting
shift into somewhere down the chain of reset:

... -> (reset -> X -> Y -> (shift k ...) -> Y’ -> X’) -> o

What actually happens is as follows.

1. shift packages the rest of the chain of work until the end of reset, and bind it to the
variable k.

2. The continuation of shift becomes a null continuation as well, so after shift returns, the
control skips the rest of operations until the corresponding reset.

... -> (reset -> X -> Y -> (shift k ...) --------->) -> o

|

\-------> Y’ -> X’) -> o

In other words, when you consider the reset form as one chunk of task, then shift in it
stashes away the rest of the task and immediately returns from the task.

Let’s see an example. The walker argument in the following example is a procedure that
takes a procedure and some kind of collection, and applies the procedure to the each element in
the collection. We ignore the return value of walker.

(define (inv walker)

(lambda (coll)

(define (continue)

(reset (walker (lambda (e) (shift k (set! continue k) e)) coll)

(eof-object)))

(lambda () (continue))))

A typical example of walker is for-each, which takes a list and applies the procedure to each
element of the list. If we pass for-each to inv, we get a procedure that is inverted inside-out.
What does that mean? See the following session:

gosh> (define inv-for-each (inv for-each))

inv-for-each

gosh> (define iter (inv-for-each ’(1 2 3)))

iter

gosh> (iter)

1

Chapter 9: Library modules - Gauche extensions 392

gosh> (iter)

2

gosh> (iter)

3

gosh> (iter)

#<eof>

When you pass a list to inv-for-each, you get an iterator that returns each element in the
list for each call. That’s because every time iter is called, shift in inv stashes away the task
of walking the rest of the collection and set it to continue, then returns the current element e.

walker doesn’t need to work just on list. The following function for-each-leaf traverses a
tree and apply f on each non-pair element.

(define (for-each-leaf f tree)

(match tree

[(x . y) (for-each-leaf f x) (for-each-leaf f y)]

[x (f x)]))

And you can inverse it just like for-each.

gosh> (define iter2 ((inv for-each-leaf) ’((1 . 2) . (3 . 4))))

iter2

gosh> (iter2)

1

gosh> (iter2)

2

gosh> (iter2)

3

gosh> (iter2)

4

gosh> (iter2)

#<eof>

The util.combinationsmodule (see Section 12.60 [Combination library], page 731) provides
a procedure that calls a given procedure with every permutation of the given collection. If you
pass it to inv, you get a procedure that returns every permutation each time.

gosh> (define next ((inv permutations-for-each) ’(a b c)))

next

gosh> (next)

(a b c)

gosh> (next)

(a c b)

gosh> (next)

(b a c)

gosh> (next)

(b c a)

gosh> (next)

(c a b)

gosh> (next)

(c b a)

gosh> (next)

#<eof>

Chapter 9: Library modules - Gauche extensions 393

9.24 gauche.process - High Level Process Interface

[Module]gauche.process
This module provides a higher-level API of process control, implemented on top of low-level
system calls. This module also provides “process ports”, a convenient way to send/receive
information to/from subprocesses.

9.24.1 Running subprocess

[Function]do-process cmd/args :key redirects input output error fork directory
host sigmask on-abnormal-exit

[Function]do-process! cmd/args :key redirects input output error fork directory
host sigmask

[Function]run-process cmd/args :key redirects input output error fork directory
host sigmask wait

{gauche.process} Runs a command with arguments given to cmd/args in a subprocess.
The cmd/args argument must be a list, whose car specifies the command name and whose
cdr is the command-line arguments.

If the command name contains a slash, it is taken as the pathname of the executable. Other-
wise the named command is searched from the directories in the PATH environment variable.

Each element in cmd/args are converted to a string by x->string, for the convenience.

Do-process always waits the subprocess to terminate, and returns #t if it exits successfully
(i.e. with zero exit status). If the subprocess terminates abnormally, it returns #f by default,
or raise an error if :error is passed to the keyword argument on-abnormal-exit.

Do-process! is like do-process except that it raises <process-abnormal-exit> error when
the process exists with non-zero status. It’s the same behavior as giving :error to the
on-abnormal-exit keyword argument of do-process. It is often more convenient to let the
commands fail in shell-script type tasks.

Run-process can run the subprocess concurrently by default, that is, it returns immedi-
ately. The return value is a <process> object, which can be used to track the status of the
subprocess (see Section 9.24.3 [Process object], page 399).

For example, the following expression runs ls -al.

(do-process ’(ls -al))

You see the output of ls -al, then it returns #t, unless the execution of ls command fails
with some reason.

Since do-process returns the success or failure of the command by a boolean value, you
can use and and or to combine commands pretty much the same way as shell’s && and ||

operators.

;; shell: make && make -s check

(and (do-process ’(make))

(do-process ’(make -s check)))

;; shell: mv x.tmp x.c || rm -f x.tmp

(or (do-process ’(mv x.tmp x.c))

(do-process ’(rm -f x.tmp)))

If you use run-process instead, you’ll get <process> object without waiting ls -al to finish.
If you run the following expression on REPL, you’ll likely to see the return value before output
of ls.

(run-process ’(ls -al))

Chapter 9: Library modules - Gauche extensions 394

You can keep the returned <process> object and call process-wait on it to wait for its
termination. See Section 9.24.3 [Process object], page 399, for the details of process-wait.

(let1 p (run-process ’(ls -al))

... do some other work ...

(process-wait p))

You can tell run-process to wait for the subprocess to exit; in that case, run-process calls
process-wait internally. It is useful if you want to examine the exit status of the subprocess,
rather than just caring its success/failure as do-process does.

Note that -i is read as an imaginary number, so be careful to pass -i as a command-line
argument; you should use a string, or write |-i| to make it a symbol.

(run-process ’(ls "-i"))

Note: An alternative way to run external process is sys-system, which takes a command line
as a single string (see Section 6.25.10 [Process management], page 256). The string is passed
to the shell to be interpreted, so you can include redirections, or can pipe several commands.
It would be handy for quick throwaway scripts.

On the other hand, with sys-system, if you want to change command parameters at run-
time, you need to worry about properly escape them (actually we have one to do the job
in gauche.process; see shell-escape-string below); you need to be aware that /bin/sh,
used by sys-system via system(3) call, may differ among platforms and be careful not to
rely on specific features on certain systems. As a rule of thumb, keep sys-system for really
simple tasks with a constant command line, and use run-process and do-process for all
other stuff.

Note: Old version of this procedure took arguments differently, like (run-process "ls" "-

al" :wait #t), which was compatible to STk. This is still supported but deprecated.

Large number of keyword arguments can be passed to do-process and run-process to
control execution of the child process. We describe them by categories.

Synchronization

[Subprocess argument]wait flag
This can only be given to run-process. If 'ag is true, run-process waits until the subprocess
terminates, by calling process-wait internally. Othewise the subprocess runs asynchronously
and run-process returns immediately, which is the default behavior.

Note that if the subprocess is running asynchronously, it is the caller’s responsibility to call
process-wait at a certain timing to collect its exit status.

;; This returns after wget terminates.

(define p (run-process ’(wget http://practical-scheme.net/) :wait #t))

;; Check the exit status

(let1 st (process-exit-status p)

(cond [(sys-wait-exited? st)

(print "wget exitted with status " (sys-wait-exit-status st))]

[(sys-wait-signaled? st)

(print "wget interrupted by signal " (sys-wait-termsig st))]

[else

(print "wget terminated with unknown status " st)]))

[Subprocess argument]on-abnormal-exit how
This can only be given to do-process. If how is #f, which is the default, do-process returns
#f when the subprocess exits abnormally (i.e. with nonzero exit status). If how is :error,
it raises an error in such a case.

Chapter 9: Library modules - Gauche extensions 395

[Subprocess argument]fork flag
If 'ag is true, do-process and run-process forks to run the subprocess, which is the default
behavior. If 'ag is false, do-process and run-process directly calls sys-exec, so it never
returns.

I/O redirection

[Subprocess argument]redirects (iospec . . .)
Specifies how to redirect child process’s I/Os. Each iospec can be one of the followings, where
fd, fd0, and fd1 are nonnegative integers referring to the file descriptor of the child process.

(Note: If you just want to run a command and get its output as a string take a look at
process-output->string (see Section 9.24.4 [Process ports], page 401). If you want to pipe
multiple commands together, see Section 9.24.2 [Running process pipeline], page 398.)

(< fd source)

source can be a string, a symbol, a keyword :null, an integer, or an input port.

If it is a string, it names a file opened for read and the child process can reads
the content of the file from fd. An error is signaled if the file does not exist or
cannot open for read.

If it is a symbol, an unidirectional pipe is created, whose reader end is connected
to the child’s fd, and whose writer end is available as an output port returned
from (process-input process source).

If it is :null, the child’s fd is connected to the null device.

If it is an integer, it should specify a parent’s file descriptor opened for read. The
child sees the duped file descriptor as fd.

If it is an input port, the underlying file descriptor is duped into child’s fd. It is
an error to pass an input port without associated file descriptor (See port-file-
number in Section 6.22.3 [Common port operations], page 204).

(<< fd value)

(<<< fd obj)

Feeds value or obj to the input file descriptor fd of the child process.

With <<, value must be either a string or a uniform vector (see Section 9.35
[Uniform vectors], page 447). It is sent to the child process as is. Using a
uniform vector is good to pass binary content.

With <<<, obj can be any Scheme object, and the result of (write-to-string
obj) is sent to the child process.

(<& fd0 fd1)

Makes child process’s file descriptor fd0 refer to the same input as its file de-
scriptor fd1. Note the difference from <; (< 3 0) makes the parent’s stdin (file
descriptor 0) be read by the child’s file descriptor 3, while (<& 3 0) makes the
child’s file descriptor 3 refer to the same input as child’s stdin (which may be
redirected to a file or something else by another iospec).

See the note below on the order of processing <&.

(> fd sink)

(>> fd sink)

sink must be either a string, a symbol, a keyword :null, an integer or a file
output port.

If it is a string, it names a file. The output of the child to the file descriptor fd is
written to the file. If the named file already exists, > first truncates its content,
while >> appends to the existing content.

Chapter 9: Library modules - Gauche extensions 396

For other arguments, > and >> works the same.

If sink is a symbol, an unidirectional pipe is created whose writer end is connected
to the child’s fd, and whose reader end is available as an input port returned by
(process-output process sink).

If sink is :null, child’s fd is connected to the system’s null device.

If sink is an integer, it must specify a parent’s file descriptor opened for output.
The child sees the duped file descriptor as fd.

If sink is an output port, the underlying file descriptor is duped into fd in the
child process.

(>& fd0 fd1)

Makes child process’s file descriptor fd0 refer to the same output as its file de-
scriptor fd1. Note the difference from >; (> 2 1) makes the child’s stderr go to
parent’s stdout, while (>& 2 1) makes the child’s stderr go to the same output
as child’s stdout (which may be redirected by another iospec).

;; Read both child’s stdout and stderr

(let1 p (run-process ’(command arg)

:redirects ’((>& 2 1) (> 1 out)))

(begin0 (port->string (process-output p ’out))

(process-wait p)))

Note: You can’t use the same name (symbol) more than once for the pipe of source or sink.
For example, the following code signals an error:

(run-process ’(command) :redirects ’((> 1 out) (> 2 out))) ; error!

You can use >& to “merge” the output to one sink, or <& to “split” the input from one source,
instead:

(run-process ’(command) :redirects ’((> 1 out) (>& 2 1)))

It is allowed to give the same file name more than once, just like the Unix shell. However,
note that the file is opened individually for each file descriptor, so simply writing to them
may not produce desired result (for regular files, most likely that one output would overwrite
another).

Note: I/O redirections are processed at once, unlike the way unix shell does. For example,
both of the following expression works the same way, that is, they redirect both stdout and
stderr to a file out.

(run-process ’(command arg) :redirects ’((>& 2 1) (> 1 "out")))

(run-process ’(command arg) :redirects ’((> 1 "out") (>& 2 1)))

Most unix shells process redirections in order, so the following two command line works
differently: The first one redirects child’s stderr to the current stdout, which is the same as
the parent’s stdout, then redirects child’s stdout to a file out. So the error messages appear
in the parent’s stdout. The second one first redirects the child’s stdout to a file out, so at
the time of processing 2>&1, the child’s stderr also goes to the file.

$ command arg 2>&1 1>out

$ command arg 1>out 2>&1

You can say do-process and run-process always works like the latter, regardless of the
order in redirects argument.

If you want to redirect child’s stderr to parent’s stdout, you can use > like the following:

(run-process ’(command arg) :redirects ’((> 2 1) (> 1 "out")))

[Subprocess argument]input source
[Subprocess argument]output sink

Chapter 9: Library modules - Gauche extensions 397

[Subprocess argument]error sink
Redirects child’s standard i/o. source and sink may be either a string, a keyword :null, a
keyword :pipe, an integer file descriptor or a symbol.

These are really shorthand notations of the redirects argument:

:input x ≡ :redirects ’((< 0 x))

:output x ≡ :redirects ’((> 1 x))

:error x ≡ :redirects ’((> 2 x))

The keyword :pipe as source or sink is supported just for the backward compatibility. They
work as if a symbol stdin, stdout or stderr is given, respectively:

:input :pipe ≡ :redirects ’((< 0 stdin))

:output :pipe ≡ :redirects ’((> 1 stdout))

:error :pipe ≡ :redirects ’((> 2 stderr))

That is, a pipe is created and its one end is connected to the child process’s stdio, and the
other end is available by calling (process-input process), (process-output process)

or (process-error process). (That is because process-input and process-output uses
stdin and stdout respectively when name argument is omitted, and (process-error p) is
equivalent to (process-output p ’stderr).)

See the description of redirects above for the meanings of the argument values.

Execution environment

[Subprocess argument]directory directory
If a string is given to directory, the process starts with directory as its working directory. If
directory is #f, this argument is ignored. An error is signaled if directory is other type of
objects, or it is a string but is not a name of a existing directory.

When host keyword argument is also given, this argument specifies the working directory of
the remote process.

Note: do-process and run-process check the validity of directory, but actual chdir(2) is
done just before exec(2), and it is possible that chdir fails in spite of previous checks. At
the moment when chdir fails, there’s no reliable way to raise an exception to the caller, so
it writes out an error message to standard error port and exits. A robust program may take
this case into account.

[Subprocess argument]sigmask mask
Mask must be either an instance of <sys-sigset>, a list of integers, or #f. If an instance
of <sys-sigset> is given, the signal mask of executed process is set to it. A list of inte-
gers are treated as a list of signals to mask. It is important to set an appropriate mask
if you call run-process from multithreaded application. See the description of sys-exec
(Section 6.25.10 [Process management], page 256) for the details.

If the host keyword argument is specified, this argument merely sets the signal mask of the
local process (ssh).

[Subprocess argument]detached flag
When a true value is given, the new process is detached from the parent’s process group and
belongs to its own group. It is useful when you run a daemon process. See sys-fork-and-

exec (see Section 6.25.10 [Process management], page 256), for the detailed description of
detached argument.

[Subprocess argument]host hostspec
This argument is used to execute command on the remote host. The full syntax of hostspec
is protocol:user@hostname:port, where protocol:, user@, or :port part can be omitted.

Chapter 9: Library modules - Gauche extensions 398

The protocol part specifies the protocol to communicate with the remote host; currently only
ssh is supported, and it is also the default when protocol is omitted. The user part specifies
the login name of the remote host. The hostname specifies the remote host name, and the
port part specifies the alternative port number which protocol connects to.

The command line arguments are interpreted on the remote host. On the other hand, the I/O
redirection is done on the local end. For example, the following code reads the file /foo/bar
on the remote machine and copies its content into the local file baz in the current working
directory.

(do-process ’(cat "bar")

:host "remote-host.example.com"

:directory "/foo"

:output "baz")

9.24.2 Running process pipeline

[Function]do-pipeline commands :key input output error directory sigmask
on-abnormal-exit

[Function]run-pipeline commands :key input output error wait directory sigmask
{gauche.process} Convenience routines to run pipeline of processes at once. Example:

(do-pipeline ’((ls "src/")

(grep "\\.c$")

(wc -l)))

This is equivalent to shell command pipeline ls src/ | grep ’\.c$’ | wc -l, i.e. shows the
number of C source files in the src subdirectory.

The commands argument is a list of lists. Each list must be cmd/args argument
do-process/run-process can accept. At least one command must be specified.

The specified commands will run concurrently, with the stdout of the first command is con-
nected to the stdin of the second, and stdout of the second to the stdin of the third, and so
on. The stdin of the first command is fed from the source specified by the input keyword
argument, and the stdout of the last command is sent to the sink specified by the output
keyword argument. The default values of these are the calling process’s stdin and stdout,
respectively. See do-process/run-process, for the possible values of these arguments (see
Section 9.24.1 [Running subprocess], page 393).

The stderr of all the processes are sent to the sink specified by the error keyword argument,
which is defaulted by the calling process’s stderr.

Like do-process, do-pipeline waits for completion of all the processes, and returns #t if the
tail process succeeds (i.e. exits with zero status) or #f if the last process failes (i.e. exits with
non-zero status). If you give :error to on-abnormal-exit keyword arguments, however, a
failure of the tail process raises an error. Exit statuses of subprocesses other than the tail
one are collected by process-wait, but won’t affect the return value, and won’t cause an
error even on-abnormal-exit is :error.

On the other hand, run-pipeline returns a <process> object of the tail process. You can
get other process objects in the pipeline by applying process-upstreams to the tail process.
By default, run-pipeline runs all the subprocesses in background and returns immediately.
Calling process-wait on the returned process object will waits for all the subprocesses. If
you give a true value to wait keyword argument, run-process waits for all the subprocesses
to finish before returning.

The directory and sigmask keyword arguments are applied to all the processes; see
do-process/run-process for the description of these arguments (see Section 9.24.1 [Running
subprocess], page 393).

Chapter 9: Library modules - Gauche extensions 399

Note: In Gauche 0.9.5, we introduced run-process-pipeline. It is similar to the current
run-pipeline but returns a list of subprocess objects instead of a single one. We real-
ized it’s not very convenient, so we deprecated run-process-pipeline and replaced it with
run-pipeline. We still support run-process-pipeline, but strongly recommend to move
to run-pipeline as soon as possible.

9.24.3 Process object

[Class]<process>
{gauche.process} An object to keep the status of a child process. You can create the process
object by run-process procedure described below. The process ports explained in the next
section also use process objects.

The <process> class keeps track of the child processes spawned by high-level APIs such as
run-process or open-input-process. The exit status of such children must be collected
by process-wait or process-wait-any calls, which also do some bookkeeping. Using the
low-level process calls such as sys-wait or sys-waitpid directly will cause inconsistent state.

[Class]<process-abnormal-exit>
{gauche.process} A condition type mainly used by the process port utility procedures.
Inherits <error>. This type of condition is thrown when the high-level process port utilities
detect the child proces exitted with non-zero status code.

[Instance Variable of <process-abnormal-exit>]process
A process object.

Note: In Unix terms, exitting a process by calling exit(2) or returning from main() is a
normal exit, regardless of the exit status. Some commands do use non-zero exit status to
tell one of the normal results of execution (such as grep(1)). However, large number of
commands uses non-zero exit status to indicate that they couldn’t carry out the required
operation, so we treat them as exceptional situations.

[Function]process? obj
{gauche.process} ≡ (is-a? obj <process>)

[Method]process-pid (process <process>)
{gauche.process} Returns the process ID of the subprocess process.

[Method]process-command (process <process>)
{gauche.process} Returns the command invoked in the subprocess process.

[Method]process-input (process <process>) :optional name
[Method]process-output (process <process>) :optional name

{gauche.process} Retrieves one end of a pipe, whose another end is connected to the pro-
cess’s input or output, respectively. name is a symbol given to the redirects argument of
run-process to distinguish the pipe. See the following example:

(let1 p (run-process ’(command arg)

:redirects ’((< 3 aux-in)

(> 4 aux-out)))

(let ([auxin (process-input p ’aux-in)]

[auxout (process-output p ’aux-out)])

;; feed something to the child’s input

(display ’something auxin)

;; read data from the child’s output

(read-line auxout)

Chapter 9: Library modules - Gauche extensions 400

...

)

(process-wait p))

The symbols aux-in and aux-out is used to identify the pipes. Note that process-input
returns output port, and process-output returns input port.

When name is omitted, stdin is used for process-input and stdout is used for
process-output. These are the names used if child’s stdin and stdout are redirected by
:input :pipe and :output :pipe arguments, respectively.

If there’s no pipe with the given name, #f is returned.

(let* ((process (run-process ’("date") :output :pipe))

(line (read-line (process-output process))))

(process-wait process)

line)

⇒ "Fri Jun 22 22:22:22 HST 2001"

If process is a result of run-pipeline, (process-input process) and (process-input

process ’stdin) behave slightly differently—they return the pipe connected to the stdin
of the head process of the pipeline, not the process represented by process (which is the tail
of the pipeline). This allows you to treat the whole pipeline as one entity.

(let1 p (run-pipeline ‘((cat)

(grep "aba"))

:input :pipe :output :pipe)

(display "banana\nhabana\ntabata\ncabara\n"

(process-input p)) ; head of the pipeline

(close-port (process-input p))

(process-wait p)

(port->string (process-output p)))

⇒ "habana\ntabata\ncabara\n"

[Method]process-error (process <process>)
{gauche.process} This is equivalent to (process-output process ’stderr).

[Function]process-alive? process
{gauche.process} Returns true if process is alive. Note that Gauche can’t know the sub-
process’ status until it is explicitly checked by process-wait.

[Function]process-upstreams process
{gauche.process} If process is the result of run-pipeline, this returns a list of processes
that are upstream of process in the pipeline. If process is not the result of run-pipeline,
this returns an empty list.

(define p (run-pipeline ‘((cat) (grep "ho") (wc)) :input :pipe))

p ⇒ #<process 20658 "wc" active>

(process-upstreams p)

⇒ (#<process 20656 "cat" active> #<process 20657 "grep" active>)

[Function]process-list
{gauche.process} Returns a list of active processes. The process remains active until its
exit status is explicitly collected by process-wait. Once the process’s exit status is collected
and its state changed to inactive, it is removed from the list process-list returns.

Chapter 9: Library modules - Gauche extensions 401

[Function]process-wait process :optional nohang error-on-nonzero-status
{gauche.process}Obtains the exit status of the subprocess process, and stores it to process’s
status slot. The status can be obtained by process-exit-status.

This suspends execution until process exits by default. However, if a true value is given to
the optional argument nohang, it returns immediately if process hasn’t exit.

If a true value is given to the optional argument error-on-nonzero-status, and the obtained
status code is not zero, this procedure raises <process-abnormal-exit> error.

Returns #t if this call actually obtains the exit status, or #f otherwise.

If the process object is created by run-pipeline (see Section 9.24.2 [Running process
pipeline], page 398), process-wait waits all of the subprocesses in the pipeline, not just
the last one, unless true value is given to the nohang argument. However, error-on-nonzero-
status only affects to the status of process, which represents the last process in the pipeline;
if an other subprocess exits with nonzero status, it is stored in its respective process objects,
but won’t cause a fuss.

If you speficy a true value to nohang for the pipelined process, process-wait still probes other
subprocesses in the pipeline and updates exit statuses of termianted ones, but doesn’t wait
unterminated subprocesses. The unterminated subprocesses should be waited individually,
or by process-wait-any, to collect their exit statuses.

[Function]process-wait-any :optional nohang
{gauche.process} Obtains the exit status of any of the subprocesses created by
run-process. Returns a process object whose exit status is collected.

If a true value is given to the optional argument nohang, this procedure returns #f

immediately even if no child process has exit. If nohang is omitted or #f, this procedure
waits for any of children exits.

If there’s no child processes, this procedure immediately returns #f.

[Function]process-exit-status process
{gauche.process} Returns exit status of process retrieved by process-wait. If this is called
before process-wait is called on process, the result is undefined.

The meaning of exit status depends on the platform. You need to use sys-wait-exited? or
sys-wait-signaled? to see if it is terminated voluntarily or by a signal, and use sys-wait-
exit-status or sys-wait-termsig to extract the exit code or the terminating signal (see
Section 6.25.10 [Process management], page 256).

[Function]process-send-signal process signal
{gauche.process} Sends a signal signal to the subprocess process. signal must be an exact
integer for signal number. See Section 6.25.7 [Signal], page 245, for predefined variables of
signals.

[Function]process-kill process
[Function]process-stop process
[Function]process-continue process

{gauche.process} Sends SIGKILL, SIGSTOP and SIGCONT to process, respectively.

9.24.4 Process ports

[Function]open-input-process-port command :key input error encoding
conversion-bu↑er-size

{gauche.process} Runs command asynchronously in a subprocess. Returns two values, an
input port which is connected to the stdout of the running subprocess, and a process object.

Command can be a string or a list.

Chapter 9: Library modules - Gauche extensions 402

If it is a string, it is passed to /bin/sh. You can use shell metacharacters in this form, such
as environment variable interpolation, globbing, and redirections. If you create the command
line by concatenating strings, it’s your responsibility to ensure escaping special characters if
you don’t want the shell to interpret them. The shell-escape-string function described
below might be a help.

If command is a list, each element is converted to a string by x->string and then passed
directly to sys-exec (the car of the list is used as both the command path and the first
element of argv, i.e. argv[0]). Use this form if you want to avoid the shell from interfering;
i.e. you don’t need to escape special characters.

The subprocess’s stdin is redirected from /dev/null, and its stderr shares the calling process’s
stderr by default. You can change these by giving file pathnames to input and error keyword
arguments, respectively.

You can also give the encoding keyword argument to specify character encoding of the process
output. If it differs from the Gauche’s internal encoding format, open-input-process-port
inserts a character encoding conversion port. If encoding is given, the conversion-bu↑er-size
keyword argument can control the conversion buffer size. See Section 9.4 [Character code
conversion], page 318, for the details of character encoding conversions.

(receive (port process) (open-input-process-port "ls -l Makefile")

(begin0 (read-line port)

(process-wait process)))

⇒ "-rw-r--r-- 1 shiro users 1013 Jun 22 21:09 Makefile"

(receive (port process) (open-input-process-port ’(ls -l "Makefile"))

(begin0 (read-line port)

(process-wait process)))

⇒ "-rw-r--r-- 1 shiro users 1013 Jun 22 21:09 Makefile"

(open-input-process-port "command 2>&1")

⇒ ;the port reads both stdout and stderr

(open-input-process-port "command 2>&1 1>/dev/null")

⇒ ;the port reads stderr

The exit status of subprocess is not automatically collected. It is the caller’s responsibility
to issue process-wait, or the subprocess remains in a zombie state. If it bothers you, you
can use one of the following functions.

[Function]call-with-input-process command proc :key input error encoding
conversion-bu↑er-size on-abnormal-exit

{gauche.process} Runs command in a subprocess and pipes its stdout to an input port,
then call proc with the port as an argument. When proc returns, it collects its exit status,
then returns the result proc returned. The cleanup is done even if proc raises an error.

The keyword argument on-abnormal-exit specifies what happens when the child process exits
with non-zero status code. It can be either :error (default), :ignore, or a procedure that
takes one argument. If it is :error, a <process-abnormal-exit> error condition is thrown
by non-zero exit status; the process slot of the condition holds the process object. If it is
:ignore, nothing is done for non-zero exit status. If it is a procedure, it is called with a
process object; when the procedure returns, call-with-input-process returns normally.

The semantics of command and other keyword arguments are the same as open-input-

process-port above.

(call-with-input-process "ls -l *"

(lambda (p) (read-line p)))

Chapter 9: Library modules - Gauche extensions 403

[Function]with-input-from-process command thunk :key input error encoding
conversion-bu↑er-size on-abnormal-exit

{gauche.process} Runs command in a subprocess, and calls thunk with its current input
port connected to the command’s stdout. The command is terminated and its exit status is
collected, after thunk returns or raises an error.

The semantics of command and keyword arguments are the same as call-with-input-

process above.

(with-input-from-process "ls -l *" read-line)

[Function]open-output-process-port command :key output error encoding
conversion-bu↑er-size

{gauche.process} Runs command in a subprocess asynchronously. Returns two values, an
output port which is connected to the stdin of the subprocess. and the process object.

The semantics of command is the same as open-input-process-port. The semantics of
encoding and conversion-bu↑er-size are also the same.

The subprocess’s stdout is redirected to /dev/null by default, and its stderr shares the
calling process’s stderr. You can change these by giving file pathnames to output and error
keyword arguments, respectively.

The exit status of the subprocess is not automatically collected. The caller should call
process-wait on the subprocess at appropriate time.

[Function]call-with-output-process command proc :key output error encoding
conversion-bu↑er-size on-abnormal-exit

{gauche.process} Runs command in a subprocess, and calls proc with an output port which
is connected to the stdin of the command. The exit status of the command is collected after
either proc returns or raises an error.

The semantics of keyword arguments are the same as open-output-process-port, except
on-abnormal-exit, which is the same as described in call-with-input-process.

(call-with-output-process "/usr/sbin/sendmail"

(lambda (out) (display mail-body out)))

[Function]with-output-to-process command thunk :key output error encoding
conversion-bu↑er-size on-abnormal-exit

{gauche.process} Same as call-with-output-process, except that the output port which
is connected to the stdin of the command is set to the current output port while executing
thunk.

[Function]call-with-process-io command proc :key error encoding
conversion-bu↑er-size on-abnormal-exit

{gauche.process} Runs command in a subprocess, and calls proc with two arguments; the
first argument is an input port which is connected to the command’s stdout, and the second
is an output port connected to the command’s stdin. The error output from the command is
shared by the calling process’s, unless an alternative pathname is given to the error keyword
argument.

The exit status of the command is collected when proc returns or raises an error.

[Function]process-output->string command :key error encoding
conversion-bu↑er-size on-abnormal-exit

[Function]process-output->string-list command :key error encoding
conversion-bu↑er-size on-abnormal-exit

{gauche.process} Runs command and collects its output (to stdout) and returns them.
process-output->string concatenates all the output from command to one string, replac-
ing any sequence of whitespace characters to single space. The action is similar to “command

Chapter 9: Library modules - Gauche extensions 404

substitution” in shell scripts. process-output->string-list collects the output from com-
mand line-by-line and returns the list of them. Newline characters are stripped.

Internally, command is run by call-with-input-process, to which keyword arguments are
passed.

(process-output->string ’(uname -smp))

⇒ "Linux i686 unknown"

(process-output->string ’(ls))

⇒ "a.out foo.c foo.c~ foo.o"

(process-output->string-list ’(ls))

⇒ ("a.out" "foo.c" "foo.c~" "foo.o")

[Function]shell-escape-string str :optional 'avor
{gauche.process} If str contains characters that affects shell’s command-line argument pars-
ing, escape str to avoid shell’s interpretation. Otherwise, returns str itself.

The optional 'avor argument takes a symbol to specify the platform; currently windows and
posix can be specified. The way shell handles the escape and quotation differ a lot between
these platforms; the windows flavor uses MSVC runtime argument parsing behavior, while the
posix flavor assumes IEEE Std 1003.1. When omitted, the default value is chosen according
to the running platform. (Note: Cygwin is regarded as posix.)

Use this procedure when you need to build a command-line string by yourself. (If you pass
a command-line argument list, instead of a single command-line string, you don’t need to
escape them since we bypass the shell.)

[Function]shell-tokenize-string str :optional 'avor
{gauche.process} Split a string str into arguments as the shell does. The optional 'avor
arguments can be a symbol either windows or posix to specify the syntax. If it’s windows, we
follow MSVC runtime command-line argument parser behavior. If it’s posix, we follow IEEE
Std 1003.1 Shell Command Language. When omitted, the default value is chosen according
to the running platform. (Note: Cygwin is regarded as posix.)

This procedure does not handle fancier shell features such as variable substitution. If it
encounters a metacharacter that requires such interpretation, an error is signaled. In other
words, metacharacters must be properly quoted in str.

(shell-tokenize-string "echo $foo" ’posix)

⇒ signals error

(shell-tokenize-string "echo \"$foo\"" ’posix)

⇒ still signals error

(shell-tokenize-string "echo ’$foo’" ’posix)

⇒ ("echo" "$foo")

(shell-tokenize-string "echo \\$foo" ’posix)

⇒ ("echo" "$foo")

9.25 gauche.record - Record types

[Module]gauche.record
This module provides a facility to define record types, user-defined aggregate types. The API
is upper compatible to SRFI-9 (Defining Record Types) and SRFI-99 (ERR5RS Records).

Chapter 9: Library modules - Gauche extensions 405

Record types are implemented as Gauche’s classes, but have different characteristics from
the general classes. See Section 9.25.1 [Record types introduction], page 405, for when you want
to use record types.

The record API consists of three layers, following SRFI-99 and R6RS design.

The syntactic layer is the define-record-type macro that conveniently defines a record
type and related procedures (a constructor, a predictate, accessors and modifiers) all at once
declaratively. Knowing this macro alone is sufficient for most common usage of records.

The inspection layer defines common procedures to query information to the records and
record types.

The procedural layer is a low-level machinery to implement the syntactic layer; you don’t
usually need to use them in day-to-day programming, but they might be handy to create record
types on-the-fly at runtime.

9.25.1 Introduction

Gauche provides a general way for users to define new types as new classes, using object system
(see Chapter 7 [Object system], page 265), and indeed record types are implemented as Gauche’s
classes. However, using record types instead of classes has several advantages.

• It is portable. The API conforms two major record SRFIs, SRFI-9 and SRFI-99, so the
code using record types can run on various Scheme systems.

• It is efficient. Record types are less flexibile than classes, but that allows Gauche to optimize
more. Hence creating records and accessing/modifying them are much faster than creating
instances of general classes and accessing/modifying them. It makes record types preferable
choice when you only need a mechanism to bundle several related values to carry around,
and don’t need fancier mechanisms such as class redefinitions.

• As Gauche’s extention, you can define pseudo record types, which interprets ordinary ag-
gregate types such as vectors and lists as records. (For Common Lisp users; it is like the
:type option of defstruct). This helps flexibility of interface. For example, you can ask
your library’s users to pass a point in a vector of three numbers, instead of asking users to
pack their point data into your custom point record type. Yet inside your library you can
treat the passed data as if it is your point record type. See Section 9.25.5 [Pseudo record
types], page 409, for more details.

The disadvantage of record types is that they don’t obey Gauche’s class redefinition protocol
(see Section 7.2.5 [Class redefinition], page 278). That is, if you redefine a record with the same
name, it creates a new record type unrelated to the old one. The record instances created from
the old definition won’t be updated according to the new definition.

More importantly, record constructors, accessors and modifiers are tend to be inlined where
they are used, to achieve better performance. Since they are inlined, the code that uses those
procedures are not affected when the record type is redefined. This means if you redefine a
record type, you have to reload (recompile) the sources that uses any of record constructors,
accessors or modifiers.

9.25.2 Syntactic Layer

[Macro]define-record-type type-spec ctor-spec pred-spec ↓eld-spec . . .
[SRFI-9][SRFI-99+] {gauche.record} Defines a record type, and optionally defines a con-
structor, a predicate, and field accessors and modifiers.

The type-spec argument names the record type, and optionally specifies the supertype (par-
ent).

type-spec : type-name | (type-name parent)

Chapter 9: Library modules - Gauche extensions 406

type-name : identifier
parent : expression

The type-name identifier will be bound to a record type descriptor, or rtd, which can be used
for introspection and reflection. See Section 9.25.3 [Record types inspection layer], page 408,
and Section 9.25.4 [Record types procedural layer], page 408, for possible operations for record
types. In Gauche, a record type descriptor is a <class> with a metaclass <record-meta>.

The parent expression should evaluate to a record type descriptor. If given, the defined record
type inherits it; that is, all the slots defined in the parent type are available to the type-name
as well, and the instance of type-name answers #t to the predicate of the parent type.

Since a record type is also a class, parent type is also a superclass of the defined record type.
However, record types are limited to have single inheritance.

You can give a pseudo record base type as parent to define a pseudo record type, which allows
you to access ordinary aggregates like vectors as records. See Section 9.25.5 [Pseudo record
types], page 409, for more details.

The ctor-spec defines the constructor of the record instance.

ctor-spec : #f | #t | ctor-name

| (ctor-name field-name ...)

ctor-name : identifier
field-name : identifier

If it is #f, no constructor is created. If it is #t, a default constructor is created with a name
make-type-name. If it is a single identifier ctor-name, a default constructor is created with
the name. The default constructor takes as many arguments as the number of fields of the
record, including inherited ones if any. When called, it allocates an instance of the record,
and initialize its fields with the given arguments in the order (inherited fields comes first),
and returns the record.

The last variation of ctor-spec creates a custom constructor with the name ctor-name. The
custom constructor takes as many arguments as the given ↓eld-names, and initializes the
named fields. If the inherited record type has a field of the same name as the ancestor record
type, only the inherited ones are initialized. In Gauche, uninitialized fields remains unbound
until some value is set to it.

The pred-spec defines the predicate of the record instance, which takes one argument and
returns #t iff it is an instance of the defined record type or its descendants.

pred-spec : #f | #t | pred-name

pred-name : identifier

If it is #f, no predicate is created. If it is #t, a predicate is created with a name type-name?.
If it is a single identifier, a predicate is created with the given name.

The rest of the arguments specify fields (slots) of the record.

field-spec

: field-name ; immutable, with default accessor
| (field-name) ; mutable, with default accessor/modifier
| (field-name accessor-name); immutable
| (field-name accessor-name modifier-name); mutable

field-name : identifier
accessor-name : identifier
modifier-name : identifier

Chapter 9: Library modules - Gauche extensions 407

The first and the third forms define immutable fields, which can only be intialized by the
constructor but cannot be modified afterwards (thus such fields don’t have modifiers). The
second and the fourth forms define multable fields.

The third and fourth forms explicitly name the accessor and modifier. With the first and
second forms, on the other hand, the accessor is named as type-name-field-name, and the
modifier is named as type-name-field-name-set!.

Let’s see some examples. Here’s a definition of a record type point.

(define-record-type point #t #t

x y z)

The variable point is bound to a record type descriptor, which is just a class. But you can
take its class and see it is indeed an instance of <record-meta> metaclass.

point ⇒ #<class point>

(class-of point) ⇒ #<class <record-meta>>

You can create an instance of point by the default constructor make-point. The predicate
is given the default name point?, and you can access the fields of the created record by point-x

etc.

(define p (make-point 1 2 3))

(point? p) ⇒ #t

(point-x p) ⇒ 1

(point-y p) ⇒ 2

(point-z p) ⇒ 3

Since we defined all fields immutable, we cannot modify the instance p.

Here’s a mutable version of point, mpoint. You can modify its fields by modifier procedures
and generalized set!.

(define-record-type mpoint #t #t

(x) (y) (z))

(define p2 (make-mpoint 1 2 3)) ; create an instance

(mpoint-x p2) ⇒ 1

(mpoint-x-set! p2 4) ; default modifier
(mpoint-x p2) ⇒ 4

(set! (mpoint-x p2) 6) ; generalized set! also works
(mpoint-x p2) ⇒ 6

Next one is an example of inheritance. Note that the default constructor takes arguments
for fields of the parent record as well.

(define-record-type (qpoint mpoint) #t #t

(w))

(define p3 (make-qpoint 1 2 3 4))

(qpoint? p3) ⇒ #t ; p3 is a qpoint
(mpoint? p3) ⇒ #t ; ... and also an mpoint

(mpoint-x p3) ⇒ 1 ; accessing inherited field
(mpoint-y p3) ⇒ 2

Chapter 9: Library modules - Gauche extensions 408

(mpoint-z p3) ⇒ 3

(qpoint-w p3) ⇒ 4

A small caveat: Accessors and modifiers for inherited fields (e.g. qpoint-x etc.) are not
created.

Gauche’s convention is to enclose class name by <>. You can follow the convention and still
explicitly gives simpler names (instead of make-<point> or <point>-x):

(define-record-type <point> make-point point?

(x point-x)

(y point-y)

(z point-z))

9.25.3 Inspection layer

This layer provides common procedures that operates on record type descriptors and record
instances.

Note that a record type descriptor is a class in Gauche, so you can also use operators on
classes (e.g. class-name, class-slots etc.) on record type descriptors as well. However, these
procedures are more portable.

[Function]record? obj
[SRFI-99][R6RS] {gauche.record} Returns #t iff obj is an instance of record type, #f oth-
erwise.

[Function]record-rtd record
[SRFI-99][R6RS] {gauche.record} Returns the record type descriptor of the record instance.

[Function]rtd-name rtd
[SRFI-99] {gauche.record} Returns the name of the record type descriptor rtd.

[Function]rtd-parent rtd
[SRFI-99] {gauche.record} Returns the parent type of the record type descriptor rtd. If rtd
doesn’t have a parent, #f is returned.

[Function]rtd-field-names rtd
[SRFI-99] {gauche.record} Returns a vector of symbols, each of which is the names of the
direct fields of the record represented by rtd. The result doesn’t include inherited fields.

[Function]rtd-all-field-names rtd
[SRFI-99] {gauche.record} Returns a vector of symbols, each of which is the names of the
fields of the record represented by rtd. The result includes all inherited fields.

[Function]rtd-field-mutable? rtd ↓eld-name
[SRFI-99] {gauche.record} Returns #t iff the field with the name ↓eld-name of a record
represented by rtd is mutable.

9.25.4 Procedural layer

These procedures are low-level machinery on top of which define-record-type is implemented.
They can be used to create a new record type at runtime.

[Function]make-rtd name ↓eld-specs :optional parent
[SRFI-99] {gauche.record} Creates and returns a new record type descriptor with name
name and having fields specified by ↓eld-specs. If parent is given, it must be a record type
descriptor or #f. If it is a record type descriptor, the created record type inherits from it.

The ↓eld-specs argument must be a vector, each element of which is a field specifier. A
field specifier can be a symbol, a list (mutable symbol), or a list (immutable symbol).

Chapter 9: Library modules - Gauche extensions 409

The symbol names the field. A single symbol or (mutable symbol) format makes the field
mutable, and (immutable symbol) format makes the field immutable.

Note: Gauche does not implement the extension suggested in SRFI-99 yet, which is sealed,
opaque and uid arguments.

[Function]rtd? obj
[SRFI-99] {gauche.record} Returns #t if obj is a record type descriptor, #f otherwise.

[Function]rtd-constructor rtd :optional ↓eld-specs
[SRFI-99] {gauche.record} Returns a procedure that creates an instance record of the record
type represented by rtd. Without ↓eld-specs, it returns the default constructor, which takes
as many arguments as the number of fields of the record to initialize them.

You can give a vector of symbols as ↓eld-specs. The n-th symbol specifies which field of the
instance should be initialized by the n-th argument. The ↓eld-specs vector cannot contain
duplicate names. If the record type defines a field with the same name as the one in the
parent record type, the custom constructor can only initialize the field of the derived type’s
instance.

[Function]rtd-predicate rtd
[SRFI-99] {gauche.record} Returns a predicate to test an object is an instance of rtd.

If rtd is a pseudo record type, the predicate merely tests the given object is in an appropriate
type and has enough size to hold the contents. See Section 9.25.5 [Pseudo record types],
page 409, for the details.

[Function]rtd-accessor rtd ↓eld-name
[SRFI-99] {gauche.record} Returns a procedure that takes one argument, an instance of
rtd, and returns the value of the ↓eld-name of the instance.

An error is signaled if the record type doesn’t have the field of name ↓eld-name.

If rtd is inherits other record types, and it defines a field of the same name as inherited ones,
then the accessor returned by this procedure retrieves the value of the field of the derived
record.

[Function]rtd-mutator rtd ↓eld-name
[SRFI-99] {gauche.record} Returns a procedure that takes two arguments, an instance of
rtd and a value, and sets the latter as the value of the ↓eld-name of the instance.

An error is signaled if the record type doesn’t have the field of name ↓eld-name, or the named
field is immutable.

Like rtd-accessor, if the record has a field with the same name as inherited one, the modifier
returned by this procedure only modifies the field of the derived record.

9.25.5 Pseudo record types

A pseudo record type is a record type that does not create an instance of its own type. Instead
it treats an object of other collection types, such as a vector, as if it had named fields. It’s easier
to understand by an example:

(define-record-type (vpoint (pseudo-rtd <vector>)) #t #t

(x) (y) (z))

(make-vpoint 1 2 3) ⇒ #(1 2 3)

(vpoint-x ’#(1 2 3)) ⇒ 1

(rlet1 v (make-vpoint 1 2 3)

(set! (vpoint-y v) -1))

Chapter 9: Library modules - Gauche extensions 410

⇒ #(1 -1 3)

To create a pseudo record type, specify another pseudo record type as a parent. The procedure
pseudo-rtd can be used to obtain a base pseudo record type of the suitable instance class.

[Function]pseudo-rtd instance-class
{gauche.record} Returns a pseudo rtd suitable to use instance-class as a pseudo record.

Currently, <list>, <vector>, and uniform vector classes (<u8vector> etc.) are supported
as instance-class.

The predicates of a pseudo record return #t if the given object can be interpreted as the
pseudo record. In the above example of vpoint record, the predicate vpoint? returns #t iff the
given object is a vector with 3 or more elements:

(vpoint? ’#(0 0 0)) ⇒ #t

(vpoint? ’#(0 0)) ⇒ #f

(vpoint? ’(0 0 0)) ⇒ #f

(vpoint? ’#(0 0 0 0)) ⇒ #t

We allow more elements so that the pseudo record can be used to interpret the header part
of the longer data.

9.26 gauche.reload - Reloading modules

[Module]gauche.reload
In the development cycle, you often have to reload modules frequently. This module supports
it.

Note that some part of semantics of the program depends on the order of loading modules, so
reloading arbitrary modules may change the program behavior unexpectedly. This module
is for developers who knows what they are doing.

Redefinition rules: Reloading a module resets all the binding in the module by default.
Sometimes it is not desirable, however. For example, you might want to keep an intermediate
results in some variable. You can specify rules for the reloading procedure to determine which
binding to keep.

The rule is described in the following syntax.

<module-rules> : (<module-rule> ...)

<module-rule> : (<module-pattern> <rule> ...)

<module-pattern> : a symbol module name, or a symbol containing glob pattern
<rule> : procedure | symbol | regexp

| (and <rule> ...)

| (or <rule> ...)

| (not <rule>)

<module-rules> is the global rule to determine per-module rules. <module-pattern> is
either a symbol module name or a symbol that contains glob pattern (e.g. mylib.*). If
<rule> is a procedure, it is used as a predicate and the bindings whose value satisfies the
predicate are kept from redefinition. If <rule> is a symbol, the binding of the variable whose
name is the symbol is kept. If <rule> is a regexp, the bindings of the variable whose name
matches the regexp are kept.

Note that the mechanism to prevent redefinition is kind of ad-hoc hack and semantically
unclean. Especially, the right-hand expressions of defines are still evaluated, so any side
effects they have will be in effect (e.g. define-class would still redefine a class). It’s just
for your convenience. Take a look at the code if you want to know the exact behavior.

Chapter 9: Library modules - Gauche extensions 411

[Function]reload module-name :optional rule . . .
{gauche.reload} Reloads the specified module. You can optionally specify redefinition rules
by rule . . . , where each rule is the term <rule> defined above.

[Function]reload-modified-modules :optional module-rules
{gauche.reload} Reloads module(s) that have been modified since they are loaded last time.
If optional module-rules is given, it is used to determine the redefinition rules for reloaded
modules. If module-rules is omitted, the current rules are used. The default of current rules
is empty. You can set the current rules by module-reload-rules.

[Function]module-reload-rules :optional module-rules
{gauche.reload} This is a parameter (see Section 9.21 [Parameters], page 383) that keeps
the default module rules for reload-modified-modules. If called without arguments, returns
the current module rules. If called withmodule-rules, sets the argument to the current module
rules.

[Function]reload-verbose :optional 'ag
{gauche.reload} This is a parameter to control verbosity of the reloading procedures. If
called without arguments, returns the current verbosity flag. If called with 'ag, it is set to
the current verbosity flag.

9.27 gauche.selector - Simple dispatcher

[Module]gauche.selector
This module provides a simple interface to dispatch I/O events to registered handlers, based
on sys-select (see Section 6.25.11 [I/O multiplexing], page 259).

[Class]<selector>
{gauche.selector} A dispatcher instance that keeps watching I/O ports with associated
handlers. A new instance can be created by make method.

[Method]selector-add! (self <selector>) port-or-fd proc 'ags
{gauche.selector} Add a handler proc to the selector. proc is called when port-or-fd, which
should be a port object or an integer that specifies a system file descriptor, meets a certain
condition specified by 'ags. 'ags must be a list of one or more of the following symbols.

r Calls proc when data is available at port-or-fd to read.

w Calls proc when port-or-fd is ready to be written.

x Calls proc when an exceptional condition occurs on port-or-fd.

proc is called with two arguments. The first one is port-or-fd itself, and the second one is a
symbol r, w or x, indicating the condition.

If a handler is already associated with port-or-fd under the same condition, the previous
handler is replaced by proc.

[Method]selector-delete! (self <selector>) port-or-fd proc 'ags
{gauche.selector} Deletes the handler entries that matches port-or-fd, proc and 'ags. One
or more of the arguments may be #f, meaning “don’t care”. For example,

(selector-delete! selector the-port #f #f)

deletes all the handlers associated to the-port, and

(selector-delete! selector #f #f ’(w))

deletes all the handlers waiting for writable condition.

Chapter 9: Library modules - Gauche extensions 412

[Method]selector-select (self <selector>) :optional (timeout #f)
{gauche.selector} Dispatcher body. Waits for the conditions registered in self, and when it
occurs, calls the associated handler. If the timeout argument is omitted or false, this method
waits indefinitely. Alternatively you can give a timeout value, that can be a real number in
microseconds, or a list of two integers that represents seconds and microseconds.

Returns the number of handlers called. Zero means the selector has been timed out.

It is safe to modify self inside handler. The change will be effective from the next call of
selector-select

This is a simple example of "echo" server:

(use gauche.net)

(use gauche.selector)

(use gauche.uvector)

(define (echo-server port)

(let ((selector (make <selector>))

(server (make-server-socket ’inet port :reuse-addr? #t)))

(define (accept-handler sock flag)

(let* ((client (socket-accept server))

(output (socket-output-port client)))

(selector-add! selector

(socket-input-port client :buffering #f)

(lambda (input flag)

(echo client input output))

’(r))))

(define (echo client input output)

(let ((str (read-uvector <u8vector> 4096 input)))

(if (eof-object? str)

(begin (selector-delete! selector input #f #f)

(socket-close client))

(begin (write-uvector str output)

(flush output)))))

(selector-add! selector

(socket-fd server)

accept-handler

’(r))

(do () (#f) (selector-select selector))))

9.28 gauche.sequence - Sequence framework

[Module]gauche.sequence
Provides a generic operations on sequences. A sequence is a collection with ordered elements.
Besides all the operations applicable on collections, you can associate integer index to each
element, and apply order-aware operations on the elements.

This module inherits gauche.collection (see Section 9.5 [Collection framework], page 322).
All the collection generic operations can be applied to a sequence as well.

Chapter 9: Library modules - Gauche extensions 413

Among Gauche builtin class, lists, vectors and strings are sequences and the specialized
methods are defined for them. Other extension types, such as SRFI-4 uniform vector, have
the methods as well.

9.28.1 Fundamental sequence accessors

[Method]ref (seq <sequence>) index :optional fallback
{gauche.sequence} Returns index-th element of the sequence seq. This method enables
uniform access for any sequence types.

When index is less than zero, or greater than or equal to the size of the sequence, fallback is
returned if provided, or an error is signaled if not.

(ref ’(a b c) 1) ⇒ b

(ref ’#(a b c) 1) ⇒ b

(ref "abc" 1) ⇒ #\b

[Method](setter ref) (seq <sequence>) index value
{gauche.sequence} Sets value to the index-th element of the sequence seq. This is the
uniform sequence modifier.

Note: Some sequences may not support arbitrary modification by index. For example, if
you have a sequence representing a set of sorted integers, you cannot modify i-th element
with arbitrary value. Yet such sequence may provide other means of modification, such as
inserting or deleting elements.

(let ((x (list ’a ’b ’c)))

(set! (ref x 1) ’z)

x) ⇒ (a z c)

(let ((x (vector ’a ’b ’c)))

(set! (ref x 1) ’z)

x) ⇒ #(a z c)

(let ((x (string #\a #\b #\c)))

(set! (ref x 1) #\z)

x) ⇒ "azc"

[Method]referencer (seq <sequence>)
{gauche.sequence}

[Method]modifier (seq <sequence>)
{gauche.sequence}

9.28.2 Slicing sequence

[Method]subseq (seq <sequence>) :optional start end
{gauche.sequence} Retrieve a subsequence of the sequence seq, from start-th element (in-
clusive) to end-th element (exclusive). If end is omitted, up to the end of sequence is taken.
The type of the returned sequence is the same as seq.

(subseq ’(a b c d e) 1 4) ⇒ (b c d)

(subseq ’#(a b c d e) 1 4) ⇒ #(b c d)

(subseq "abcde" 1 4) ⇒ "bcd"

(subseq ’(a b c d e) 3) ⇒ (d e)

Chapter 9: Library modules - Gauche extensions 414

[Method](setter subseq) (seq <sequence>) start end value-seq
[Method](setter subseq) (seq <sequence>) start value-seq

{gauche.sequence} Sets the elements of value-seq from the start-th element (inclusive) to
the end-th element (exclusive) of the sequence seq. Value-seq can be any sequence, but its
size must be larger than (end - start).

In the second form, end is figured out by the length of value-seq.

(define s (vector ’a ’b ’c ’d ’e))

(set! (subseq s 1 4) ’(4 5 6))

s ⇒ #(a 4 5 6 e)

(set! (subseq s 0) "ab")

s ⇒ #(#\a #\b 5 6 e)

9.28.3 Mapping over sequences

You can use extended fold, map, for-each and other generic functions on sequences, since a
sequence is also a collection. However, sometimes you want to have index as well as the element
itself during iteration. There are several generic functions for it.

[Method]fold-with-index kons knil (seq <sequence>) . . .
{gauche.sequence} Like generic fold, except kons is given the index within seq, as the first
argument, as well as each element from seqs and the accrued value.

(fold-with-index acons ’() ’(a b c))

⇒ ((2 . c) (1 . b) (0 . a))

[Method]map-with-index proc (seq <sequence>) . . .
[Method]map-to-with-index class proc (seq <sequence>) . . .
[Method]for-each-with-index proc (seq <sequence>) . . .

{gauche.sequence} Like map, map-to and for-each, except proc receives the index as the
first argument.

(map-with-index list ’(a b c d) ’(e f g h))

⇒ ((0 a e) (1 b f) (2 c g) (3 d h))

(map-to-with-index <vector> cons ’(a b c d))

⇒ #((0 . a) (1 . b) (2 . c) (3 . d))

[Method]find-with-index pred (seq <sequence>)
{gauche.sequence} Finds the first element in seq that satisfies pred like find, but returns
two values, the index of the element and the element itself. If no element satisfies pred, two
#f’s are returned.

(find-with-index char-upper-case? "abraCadabra")

⇒ 4 and #\C

(find-with-index char-numeric? "abraCadabra")

⇒ #f and #f

[Method]find-index pred (seq <sequence>)
{gauche.sequence} Like find, but returns the index of the first element that satisfies pred
in seq, instead of the element itself. If no element in seq satisfies pred, #f is returned.

(find-index char-upper-case? "abraCadabra")

⇒ 4

(find-index char-numeric? "abraCadabra")

⇒ #f

See also list-index in scheme.list (see Section 10.3.1 [R7RS lists], page 482).

Chapter 9: Library modules - Gauche extensions 415

[Method]fold-right kons knil (seq <sequence>) . . .
{gauche.sequence} Generalization of fold-right on lists. Like fold, this method applies
a higher-order function kons over given sequence(s), passing the "seed" value whose default
is knil. The difference between fold and fold-right is the associative order of elements on
which kons is applied.

When we have one sequence, [E0, E1, ..., En], fold and fold-right work as follows,
respectively.

fold:

(kons En (kons En-1 (kons ... (kons E1 (kons E1 knil)) ...)))

fold-right

(kons E0 (kons E1 (kons ... (kons En-1 (kons En knil)) ...)))

This method isn’t defined on <collection>, since collections don’t care the order of elements.

9.28.4 Other operations over sequences

Selection and searching

[Generic function]sequence-contains haystack needle :key test
{gauche.sequence} Both needle and haystack must be sequences. Searches needle from
haystack from the beginning of haystack. If needle is found, the index in haystack where it
begins is returned. Otherwise #f is returned. The keyword argument test is used to compare
elements; its defaule is eqv?.

(sequence-contains ’#(a b r a c a d a b r a) ’#(b r a))

⇒ 1

(sequence-contains ’#(a b r a c a d a b r a) ’#(c r a))

⇒ #f

This can be regarded as generalization of string-contains in srfi-13 (see Section 11.5.7
[SRFI-13 String searching], page 523).

[Function]break-list-by-sequence list needle :key test
[Function]break-list-by-sequence! list needle :key test

{gauche.sequence} Searches a sequence needle from list, and if found, breaks list to two
parts—the prefix of list up to right befor needle begins, and the rest—and returns them. List
must be a list, but needle can be any sequence. Elements are compared by test, defaulted to
eqv?.

(break-list-by-sequence ’(a b r a c a d a b r a) ’(c a d))

⇒ (a b r a) and (c a d a b r a)

If needle isn’t found in list, it returns list itself and (). This behavior is aligned to span and
break (see Section 10.3.1 [R7RS lists], page 482), which split a list by predicate but returns
the whole list if split condition isn’t met.

(break-list-by-sequence ’(a b r a c a d a b r c a) ’(c a z))

⇒ (a b r a c a d a b r c a) and ()

The linear update version break-list-by-sequence! modifies list to create the return value
if necessary, so list must be mutable. The caller must use the return value instead of relying
on side-effects, though, for list may not be modified.

[Function]sequence->kmp-stepper needle :key test
{gauche.sequence} This is an internal routine to search subsequence (needle) inside larger
sequence, using Knuth-Morris-Pratt (KMP) algorithm. It is used in sequence-contains,
break-list-by-sequence and break-list-by-sequence!.

Chapter 9: Library modules - Gauche extensions 416

Returns a procedure that performs one step of KMP search. The procedure takes two argu-
ments, an element elt and an index k. It compares elt with (~ needle k), and returns two
values—the next index and a flag indicating the match is completed. When the match is
completed, the next index is equal to the length of needle.

As an edge case, if needle is an empty sequence, sequence->kmp-stepper returns #f.

Elements are compared using test, which is defaulted to eqv?.

The following is a skeleton of searcher using sequence->kmp-stepper. Here we assume
haystack is a list, and we just return whether the needle is found or not, or needle is empty;
you might want to carry around other info in the loop (e.g. sequence-contains tracks the
current index of haystack in order to return the found index.)

(if-let1 stepper (sequence->kmp-stepper needle)

(let loop ([haystack haystack]

[k 0])

(if (null? haystack)

’not-found

(receive (k found) (stepper (car haystack) k) ; KMP step

(if found

’found

(loop (cdr kaystack) k)))))

’needle-is-empty)

Note that selection and searching methods for collections can also be applied to sequences.
See Section 9.5.2 [Selection and searching in collection], page 325.

Grouping

[Generic function]group-sequence seq :key key test
{gauche.sequence} Groups consecutive elements in a sequence seq which have the common
key value. A key value of an element is obtained by applying the procedure key to the
element; the default procedure is identity. For each element in seq, key is applied exactly
once. The equal-ness of keys are compared by test procedure, whose default is eqv?.

(group-sequence ’(1 1 1 2 3 4 4 2 2 3 1 1 3))

⇒ ((1 1 1) (2) (3) (4 4) (2 2) (3) (1 1) (3))

(group-sequence ’(1 1 1 2 3 4 4 2 2 3 1 1 3)

:key (cut modulo <> 2)))

⇒ ((1 1 1) (2) (3) (4 4 2 2) (3 1 1 3))

(group-sequence ’#("a" "a" "b" "b" "c" "d" "d")

:test string=?)

⇒ (("a" "a") ("b" "b") ("c") ("d" "d"))

(group-sequence "aabbcdd"

:test char=?)

⇒ ((#\a #\a) (#\b #\b) (#\c) (#\d #\d))

This method is similar to Haskell’s group. If you want to group elements that are not
adjacent, use group-collection (see Section 9.5.2 [Selection and searching in collection],
page 325).

If you simply need to reduce each group for one instance, that is, removing adjacent duplicated
elements, you can use delete-neighbor-dups below.

Chapter 9: Library modules - Gauche extensions 417

[Generic function]group-contiguous-sequence seq :key key next test squeeze
{gauche.sequence} Group contiguous elements in seq.

(group-contiguous-sequence ’(1 2 3 4 7 8 9 11 13 14 16))

⇒ ((1 2 3 4) (7 8 9) (11) (13 14) (16))

If the keyword argument squeeze is true, each subsequence is represented with its first and
last elements, except when the subsequence has only one element.

(group-contiguous-sequence ’(1 2 3 4 7 8 9 11 13 14 16) :squeeze #t)

⇒ ((1 4) (7 9) (11) (13 14) (16))

The keyword argument key must be a procedure taking one argument, and it is applied to
every element in the sequence once, to construct the result. Its default is identity.

The keyword argument next must be a procedure taking one argument, which is the key
value (whatever key procedure returns) and must return the “next” key value. Its default is
(^n (+ n 1)).

The test argument must be a procedure taking two argument and used to compare two key
values. Its default is eqv?.

(group-contiguous-sequence "AbCdFgH"

:key char-upcase :next (^c (integer->char (+ 1 (char->integer c)))))

⇒ ((#\A #\B #\C #\D) (#\F #\G #\H))

[Generic function]delete-neighbor-dups seq :key key test start end
{gauche.sequence} Returns a sequence of the same type as seq, in which elements in seq
are included in the original order, except duplicate adjacent elements. The type of seq must
has a builder.

(delete-neighbor-dups ’(1 1 1 2 3 4 4 2 2 3 1 1 3))

⇒ (1 2 3 4 2 3 1 3)

(delete-neighbor-dups ’#(1 1 1 2 3 4 4 2 2 3 1 1 3))

⇒ #(1 2 3 4 2 3 1 3)

(delete-neighbor-dups "1112344223113")

⇒ "12342313"

Elements are compared with eqv? by default. You can pass alternative procedure to test
keyword argument; it is always called as (test x y), where x and y are the contiguous
elements in seq. If elements are compared equal, the first one is kept:

(delete-neighbor-dups "AaaAbBBbCCcc" :test char-ci=?)

⇒ "AbC"

If key is provided, it must be a procedure that takes one arguments. It is applied to each
element of seq at most once, and each resulting value is used for the comparison instead of
elements themselves.

(delete-neighbor-dups

’((1 . "a") (1 . "b") (2 . "c") (2 . "d"))

:key car)

⇒ ((1 . "a") (2 . "c"))

The start and end arguments specify indexes in the seq to limit the range to look at. Where
start is inclusive, end is exclusive.

(delete-neighbor-dups "1112344223113" :start 3 :end 9)

⇒ "2342"

Chapter 9: Library modules - Gauche extensions 418

[Generic function]delete-neighbor-dups! seq :key key test start end
{gauche.sequence} Scan seq from left to right, dropping consecutive duplicated elements.
The result is stored into seq, packed to left. Note seq must be modifiable by index, i.e.
modifier method must be defined. The rest of seq will be untouched. Returns the next
index after the last modified entry.

(let1 v (vector 1 1 2 2 3 3 2 2 4 4)

(list (delete-neighbor-dups! v)

v))

⇒ (5 #(1 2 3 2 4 3 2 2 4 4))

The semantics of keyword arguments key, test, start and end are the same as
delete-neighbor-dups.

(let1 v (vector 1 1 2 2 3 3 2 2 4 4)

(list (delete-neighbor-dups! v :start 2)

v))

⇒ (6 #(1 1 2 3 2 4 2 2 4 4))

Note: This method works on any sequence with modifier method, but it’s not necessarily
more efficient than delete-neighbor-dups, which creates a new sequence. If seq is a list or
a string, each modification by index takes O(n) time (for a string even it costs O(n) extra
storage), so the total cost is O(n^2), whereas delete-neighbor-dups needs O(n) time and
storage. This works best for vectors and alike, with which it doesn’t cost extra allocation
and runs in O(n) time.

[Generic function]delete-neighbor-dups-squeeze! seq :key key test start end
{gauche.sequence} Operates like delete-neighbor-dups but reuses storage of seq, which
will be resized by dropping duplicated elements. Returns the sequence after dupes are re-
moved.

Not all sequences are resizable, so this method won’t be defined for such sequences. The
gauche.sequence module only provides this method for <list>, in which dropping the
middle of the sequence is very efficient as it is just a single set-cdr!.

(delete-neighbor-dups-squeeze! (list 1 1 1 2 2 2 3 3 3))

⇒ (1 2 3)

(delete-neighbor-dups-squeeze! (list 1 1 1 2 2 2 3 3 3 4 4)

:start 3 :end 9)

⇒ (2 3)

The semantics of keyword arguments key, test, start and end are the same as
delete-neighbor-dups.

Prefix

[Generic function]common-prefix (a <sequence>) (b <sequence>) :key key test
{gauche.sequence} Returns a new sequence of the same type of a which contains the common
prefix of sequences a and b. The types of a and b doesn’t need to match. The type of a must
have a builder.

For each corresponding element in a and b, the key procedure is applied (default identity),
then compared with test procedure (default eqv?).

(common-prefix ’(a b c d e) ’(a b c e f))

⇒ (a b c)

(common-prefix "abcef" ’#(#\a #\b #\c #\d #\e))

⇒ "abc"

Chapter 9: Library modules - Gauche extensions 419

For strings, srfi-13 has a specific function with related feature: string-prefix-length

(see Section 11.5.6 [SRFI-13 String Prefixes & Suffixes], page 522).

[Generic function]common-prefix-to (class <class>) (a <sequence>) (b <sequence>)
:key key test

{gauche.sequence} Returns a new sequence of the type class which contains the common
prefix of sequences a and b. The types of a and b doesn’t need to match, and neither needs
to have a builder. The class must be a sequence class with a builder.

The meanings of keyword arguments are the same as common-prefix.

(common-prefix-to <list> "abcde" "ABCEF" :test char-ci=?)

⇒ ’(#\a #\b #\c)

Permutation and shuffling

[Generic function]permute (src <sequence>) (permuter <sequence>) :optional fallback
{gauche.sequence} Returns a newly created sequence of the same type as src, in which the
elements are permuted from src according to permuter.

Permuter is a sequence of exact integers. When the k-th element of permuter is i, the k-th
element of the result is (ref src i). Therefore, the size of the result sequence is the same
as the size of permuter. Permuter can be any kind of sequence, unrelated to the type of src.

It is allowed that the same index i can appear more than once in permuter.

(permute ’(a b c d) ’(3 2 0 1)) ⇒ (d c a b)

(permute ’(a b c d) ’(0 2)) ⇒ (a c)

(permute ’(a b c d) ’(0 0 1 1 2 2)) ⇒ (a a b b c c)

If an integer in permuter is out of the valid range as the index of src, then an error is signaled
unless fallback is given. If fallback is given, what value is used depends on the result of (ref
src i fallback)—which usually returns fallback for the out-of-range index i.

(permute ’#(a b c) ’(3 2 1 0) ’foo) ⇒ #(foo c b a)

(permute "!,HWdelor" #(2 5 6 6 7 1 -1 3 7 8 6 4 0) #\space)

⇒ "Hello, World!"

[Generic function]permute-to (class <class>) (src <sequence>) (permuter
<sequence>) :optional fallback

{gauche.sequence} Like permute, but the result will be an instance of the given class instead
of the class of src.

(permute-to <string> ’(#\a #\b #\c #\d #\r)

’(0 1 4 0 2 0 3 0 1 4 0))

⇒ "abracadabra"

[Generic function]permute! (src <sequence>) (permuter <sequence>) :optional
fallback

{gauche.sequence} Also like permute, but the result is stored back to src. Src must be a
mutable sequence, and the length of src and permuter must be the same.

[Generic function]shuffle (src <sequence>) :optional random-source
{gauche.sequence} Returns a new sequence of the same type and size as src, in which
elements are randomly permuted.

(shuffle ’(a b c d e)) ⇒ (e b d c a)

(shuffle "abcde") ⇒ "bacde"

This generic function uses srfi-27 (see Section 11.8 [Sources of random bits], page 532). By
default it uses default-random-source, but you can pass an alternative random source by
the optional argument.

Chapter 9: Library modules - Gauche extensions 420

[Generic function]shuffle-to (class <class>) (src <sequence>) :optional
random-source

{gauche.sequence} Like shuffle, except that the result will be an instance of class instead
of the class of src.

[Generic function]shuffle! (src <sequence>) :optional random-source
{gauche.sequence} Like shuffle, but the result is stored back to src. Src must be a mutable
sequence.

9.28.5 Implementing sequence

9.29 gauche.syslog - Syslog

[Module]gauche.syslog
This module provides syslog(3) system logger interface.

For the common applications, you might find gauche.logger module easier to use (see
Section 9.15 [User-level logging], page 364). This module is for those who need direct access
to the syslog API.

The procedures are only defined if the underlying system supports them.

[Function]sys-openlog ident option facility
[POSIX] {gauche.syslog} Opens a connection to the system logger. A string argument
ident is used for the prefix of the log, and usually is the program name. Option is an integer
flag to control the behavior of logging, and facility is an integer that specify the type of the
program.

The flag for option can be composed by logior-ing one or more of the following integer con-
stants: LOG_CONS, LOG_NDELAY, LOG_NOWAIT, LOG_ODELAY, LOG_PERROR and LOG_PID. (Some
of the constants may not be defined if the underlying system doesn’t support them).

The facility argument can be one of the following integer constants: LOG_AUTH, LOG_

AUTHPRIV, LOG_CRON, LOG_DAEMON, LOG_FTP, LOG_KERN, LOG_LOCAL0 through LOG_LOCAL7,
LOG_LPR, LOG_MAIL, LOG_NEWS, LOG_SYSLOG, LOG_USER and LOG_UUCP. (Some of the con-
stants may not be defined if the underlying system doesn’t support them).

See your system’s manpage of openlog(3) for detail description about these constants. Log the
string message. Unlike syslog(3), this procedure doesn’t do formatting—you can use format
(see Section 6.22.8 [Output], page 217) to create a formatted message, or use higher-level
routine log-format (see Section 9.15 [User-level logging], page 364).

An integer argument priority can be composed by logior-ing one of the facility constants
described above and the level constants: LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR, LOG_
WARNING, LOG_NOTICE, LOG_INFO, LOG_DEBUG.

[Function]sys-closelog
[POSIX] {gauche.syslog} Closes the connection to the logging system.

[Function]sys-setlogmask mask
[POSIX] {gauche.syslog} Sets the process’s log priority mask that determines which calls
to sys-syslog may be logged. An priority mask can be composed by logior-ing bitmasks
corresponding to the level argument of sys-syslog. You can use sys-logmask below to
obtain a bitmask from the level.

[Function]sys-logmask level
[POSIX] {gauche.syslog} Returns an integer bitmask for sys-setlogmask from the log
level level.

Chapter 9: Library modules - Gauche extensions 421

9.30 gauche.termios - Terminal control

[Module]gauche.termios
This module provides procedures to control terminals. On Unix platforms, the low-level API
provides POSIX termios interface as the module name suggests. This module also provides
pseudo tty interface, if the system supports it.

On Windows native platforms, POSIX termios interface is not available. It is too different
from Windows console API to provide a meaningful emulation. The low-level Windows
console API is available in the os.windows module (see Section 12.27 [Windows support],
page 649). You can still use high-level terminal control procedures in this module.

9.30.1 Posix termios interface

These procedures are available when the feature identifier gauche.os.windows is not defined.
See cond-expand in Section 4.12 [Feature conditional], page 64, for how to switch code using
feature identifiers.

[Builtin Class]<sys-termios>
{gauche.termios} POSIX termios(7) structure.

[Instance Variable of <sys-termios>]iflag

[Instance Variable of <sys-termios>]oflag

[Instance Variable of <sys-termios>]cflag

[Instance Variable of <sys-termios>]lflag

[Instance Variable of <sys-termios>]cc
The slots iflag, oflag, cflag and lflag contains non-negative integers representing bit-
masks.

The slot cc contains a copy of c_cc array of struct termios, as an u8vector (see Section 9.35
[Uniform vectors], page 447, for the details about u8vector). Since cc slot is a copy of the
internal structure, you have to set! an u8vector to the slot explicitly to make changes to the
c_cc array.

Throughout this section, argument port-or-fd refers to either a port object or a small integer
representing system’s file descriptor. If port is not associated to the system terminal, an error is
signaled. (You can check if port has an associated terminal by sys-isatty?. see Section 6.25.4.5
[Other file operations], page 243).

[Function]sys-tcgetattr port-or-fd
{gauche.termios} Returns terminal parameters in a <sys-termios> object, associated to
port-or-fd.

[Function]sys-tcsetattr port-or-fd when termios
{gauche.termios} Sets terminal parameters associated to port-or-fd by termios, which must
be an instance of <sys-termios>.

An integer argument when specifies when the changes take effect. Three variables are pre-
defined for the argument:

TCSANOW The change is reflected immediately.

TCSADRAIN

The change is reflected after all pending output is flushed.

TCSAFLUSH

The change is reflected after all pending output is flushed, and all pending input
is discarded.

Chapter 9: Library modules - Gauche extensions 422

[Function]sys-tcsendbreak port-or-fd duration
{gauche.termios} Transmits a zero stream for the specified duration to the terminal asso-
ciated to port-or-fd. The unit of duration depends on the system; see man tcsendbreak(3) of
your system for details.

[Function]sys-tcdrain port-or-fd
{gauche.termios} Waits until all output written to port-or-fd is transmitted.

[Function]sys-tcflush port-or-fd queue
{gauche.termios} Discards data in the buffer of port-or-fd, specified by queue, which may
be one of the following values.

TCIFLUSH Discards data received but not read.

TCOFLUSH Discards data written but not transmitted.

TCIOFLUSH

Do both TCIFLUSH and TCOFLUSH action.

[Function]sys-tcflow port-or-fd action
{gauche.termios} Controls data flow of port-or-fd by action, which may be one of the
following values:

TCOOFF Suspends output transmission.

TCOON Restarts output transmission.

TCIOFF Transmits a STOP character to make the terminal device stop transmitting data
to the system.

TCION Transmits a START character to make the terminal device resume transmitting
data to the system.

[Function]sys-tcgetpgrp port-or-fd
{gauche.termios} Returns process group ID of the terminal associated to port-or-fd.

[Function]sys-tcsetpgrp port-or-fd pgrp
{gauche.termios} Sets process group ID of the terminal associated to port-or-fd to pgrp.

[Function]sys-cfgetispeed termios
[Function]sys-cfsetispeed termios speed
[Function]sys-cfgetospeed termios
[Function]sys-cfsetospeed termios speed

{gauche.termios} Gets/sets input/output speed (baud rate) parameter stored in termios
object. Speed is represented by the following predefined numbers: B0, B50, B75, B110, B134,
B150, B200, B300, B600, B1200, B1800, B2400, B4800, B9600, B19200, B38400.

Some system may support higher baud rate, such as B57600, B115200 or B230400. You can
use symbol-bound? to check these options are defined. B0 is used to terminate the connection.

[Function]sys-openpty :optional term
{gauche.termios} Opens a pair of pseudo ttys, one for master and the other for slave, then
returns two integers which are their file descriptors. An optional argument term must be, if
passed, a <sys-termios> object; it sets the slave pty’s parameters.

You can use open-input-fd-port and/or open-output-fd-port to create a port around
the returned file descriptor (see Section 6.22.4 [File ports], page 207). To obtain pseudo tty’s
name, use sys-ttyname (see Section 6.25.4.5 [Other file operations], page 243).

This function is available only if the system supports openpty(3).

Chapter 9: Library modules - Gauche extensions 423

[Function]sys-forkpty :optional term
{gauche.termios} Opens a pair of pseudo ttys, one for master and the other for slave, sets
the slave pty suitable for login terminal, then fork(2).

Returns two integers; the first value is a child pid for the parent process, and 0 for the child
process. The second value is a file descriptor of the master pty.

An optional argument term must be, if passed, a <sys-termios> object; it sets the slave
pty’s parameters.

This function is available only if the system supports forkpty(3).

Note: sys-forkpty has the same MT hazard as sys-fork (see Section 6.25.10 [Process
management], page 256, for details). If you’re running multiple threads, use sys-forkpty-

and-exec below.

[Function]sys-forkpty-and-exec command args :key iomap term sigmask
{gauche.termios} Does sys-forkpty, and lets the child process immediately execs the
specified command with arguments args. This function doesn’t have the hazard in multi-
thread environment.

The meanings of arguments command, args, iomap and sigmask are the same as sys-exec
(see Section 6.25.10 [Process management], page 256). If the keyword argument term is given,
it is used to initialize the slave pty.

9.30.2 Common high-level terminal control

[Function]without-echoing iport proc
{gauche.termios} If iport is an input port connected to a terminal, sets the termi-
nal mode non-echoing and call proc with iport as an argument. Before returning from
without-echoing, or throwing an error, the terminal mode is reset to the original state
when this procedure is called. The procedure returns whatever value(s) proc returns.

You can also pass #f to iport. In that case, this procedure tries to open a console (/dev/tty
on Unix, CON on Windows) and set the console mode, then calls proc with the opened input
port. An error is thrown if the procedure can not open a console.

If iport is other than above, this procedure simply calls proc with iport. This allows the
caller to read password from redirected input, for example.

Note: Because of an implementation issue, on Windows native platforms this procedure
always changes console mode of the standard input handle when iport is either #f or a
terminal input port.

[Function]has-windows-console?
{gauche.termios} Returns #t iff the running Gauche is Windows-native and the process
has attached console. On POSIX platforms this procedure always returns #f.

The reason that cond-expand isn’t enough is that on Windows the program may start without
console, but you can attach console afterwards. See Section 12.27.2 [Windows console API],
page 650, for the details.

9.31 gauche.test - Unit Testing

[Module]gauche.test
Defines a set of functions to write test scripts. A test script will look like this:

(use gauche.test)

(test-start "my feature")

(load "my-feature") ; load your program
(import my-feature) ; if your program defines a module.

Chapter 9: Library modules - Gauche extensions 424

(test-module ’my-feature) ; tests consistency in your module.

(test-section "feature group 1")

(test "feature 1-1" EXPECT (lambda () TEST-BODY))

(test "feature 1-2" EXPECT (lambda () TEST-BODY))

...

(test-section "feature group 2")

(define test-data ...)

(test "feature 2-1" EXPECT (lambda () TEST-BODY))

(test "feature 2-2" (test-error) (lambda () TEST-THAT-SIGNALS-ERROR))

...

(test-end :exit-on-failure #t)

With this convention, you can run test both interactively or in batch. To run a test interac-
tively, just load the file and it reports a result of each test, as well as the summary of failed
test at the end. To run a test in batch, it is convenient to redirect the stdout to some file
If stdout is redirected to other than tty, all the verbose logs will go there, and only a small
amount of messages go to stderr.

It is recommended to have a "check" target always in Makefile of your module/program, so
that the user of your program can run a test easily. The rule may look like this:

check :

gosh my-feature-test.scm > test.log

Structuring a test file

[Function]test-start module-name
{gauche.test} Initializes internal state and prints a log header. This should be called before
any tests. Module-name is used only for logging purpose.

[Function]test-section section-name
{gauche.test} Marks beginning of the group of tests. This is just for logging.

[Function]test-log fmtstr args . . .
{gauche.test} This is also just for logging. Creates a formatted string with fmrstr and args
just like format, then write it to the current output port, with prefix ;; and newline at the
end.

With the typical Makefile settings, where you redirect stdout of test scripts to a log file, the
message only goes to the log file.

Using this, you can dump information that can’t be automatically tested but may be useful for
troubleshooting. For example, you get a mysterious test failure reports you can’t reproduce
on your machine, and suspect some aspects of the running systems may unpredictably affect
the test result. You can put test-log in the test code to dump such parameters, and ask
the reporter to run the test again and analyze the log.

[Function]test-end :key exit-on-failure
{gauche.test} Prints out list of failed tests. If exit-on-failure is #f or omitted, this procedure
returns the number of failed tests.

Otherwise, this function terminates the gosh process by exit. If a fixnum is given to
exit-on-failure it becomes the process’s exit status; if other true value is given, the exit
status will be 1.

Chapter 9: Library modules - Gauche extensions 425

[Function]test-record-file ↓le
{gauche.test} Suppose you have several test scripts. Normally you run them as a group
and what you want to know is a concise summary of the whole results, instead of each result
of individual test files.

A test record file is an auxiliary file used to gather summary of the result. It holds a one-line
summary of tests like this:

Total: 9939 tests, 9939 passed, 0 failed, 0 aborted.

When a test record file exists, test-start reads and parses it, and remembers the numbers.
Then test-end adds the count of the results and writes them back to the same test record
file.

If you writes the check target in your makefile as follows, you will get the final one-line sum-
mary every time you run make check, assuming that test1.scm, test2.scm, and test3.scm

all has (test-record-file "test.record") before a call to test-start.

check:

@rm -f test.record test.log

gosh test1.scm >> test.log

gosh test2.scm >> test.log

gosh test3.scm >> test.log

@cat test.record

Note that to make test-record-file work, it must be placed before the call to test-start.

Alternatively, you can use the environment variable GAUCHE_TEST_RECORD_FILE to specify
the test record file.

[Environment Variable]GAUCHE_TEST_RECORD_FILE
If this environment variable is set when the test script is run, its value is used as the name
of the test record file.

If the test script calls test-record-file, it takes precedence and this environment variable
is ignored.

[Function]test-summary-check
{gauche.test} If the test record file is set (either by test-record-file or the enviorn-
ment variable GAUCHE_TEST_RECORD_FILE), read it, and then exit with status 1 if the record
has nonzero failure count and/or nonzero abort count. If the test record file isn’t set, this
procedure does nothing.

This is useful when you have multiple test scripts and you want to let make fail if any of
tests fails, but not before all test script is run. If you make every test script use :exit-on-

failure of test-end, then make stops immediately after the script that fails. Instead, you
avoid using :exit-on-failure, but use the test record file and for the last thing you can
call this function:

check:

rm -f $GAUCHE_TEST_RECORD_FILE test.log

gosh test1.scm >> test.log

gosh test2.scm >> test.log

cat $GAUCHE_TEST_RECORD_FILE /dev/null

gosh -ugauche.test -Etest-summary-check -Eexit

By this, make will run all the test script no matter how many of them fails (since gosh exits
with status 0), but detect an error since the last line of gosh call exits with status 1 if there
has been any failure.

Chapter 9: Library modules - Gauche extensions 426

Individual tests

[Macro]test* name expected expr :optional check
{gauche.test} A convenience macro that wraps expr by lambda.

(test* name expected expr)

≡ (test name expected (lambda () expr))

[Function]test name expected thunk :optional check
{gauche.test} Calls thunk, and checks its result fits expected using a procedure check,
which is called as follows:

(check expected result-of-thunk)

It should return #t if the given result agrees with the expected value, or #f otherwise.
The default check procedure is test-check, explained below. It compares expected and
result-of-thunk with equal?, except when expected is some of special case test objects. (See
“testing ambiguous results” and “testing abnormal cases” paragraphs below for this special
treatment.)

One typical usage of the custom check procedure is to compare inexact numbers tolerating
small error.

(test "test 1" (/ 3.141592653589 4)

(lambda () (atan 1))

(lambda (expected result)

(< (abs (- expected result)) 1.0e-10)))

Name is a name of the test, for the logging purpose.

When thunk signals an uncaptured error, it is caught and yields a special error object
<test-error>. You can check it with another error object created by test-error func-
tion to see if it is an expected type of error. See the entry of test-error below for the
details.

[Function]test-check expected result :optional fallback
{gauche.test} The default procedure test and test* use to check the result of the test
expression conforms the expected value. By default, test-check just compares expected
and result with a procedure fallback, which is defaulted to equal?. test-check behaves
differently if expected is one of special test objects described below.

Testing ambiguous results

[Function]test-one-of choice . . .
{gauche.test} Sometimes the result of test expression depends on various external environ-
ment, and you cannot put an exact expected value. This procedure supports to write such
tests conveniently.

Returns a special object representing either one of the choices. The default check procedure,
test-check, recognizes the object when it is passed in the expected argument, and returns
true if any one of choice . . . passes the check against the result.

For example, the following test passes if proc returns either 1 or 2.

(test* "proc returns either 1 or 2" (test-one-of 1 2) (proc))

[Function]test-none-of choice . . .
{gauche.test} Similar to test-one-of, but creates a special object representing none of
the choices. The test succees if the test expression evaluates to a value that don’t match any
of choices.

Chapter 9: Library modules - Gauche extensions 427

Testing abnormal cases

[Function]test-error :optional (condition-type <error>) (message #f)
{gauche.test} Returns a new <test-error> object that mathes with other <test-error>
object with the given condition-type.

The test-check procedure treats <test-error> objects specially. When err-expected and
err-actual are <test-error> objects, (test-check err-expected err-actual) returns
#t if err-expected’s condition type is the same as or supertype of err-actual’s.

For example, if you want to test a call to foo raises an <io-error> (or its condition subtype),
you can write as the following example:

(test "see if foo raises <io-error>" (test-error <io-error>) (foo))

Another optional argument message can be used to check if the raised error has a message of
expected pattern. The argument may be a string, a regexp or #f (default). If it is a string,
test-check checks if the message of the raised error exactly match the string. If it is a
regexp, test-check checks the message of the raised error matches that regexp. If it is #f,
the message is not checked.

[Variable]*test-error*
{gauche.test} (Deprecated) Bounded to an instance of <test-error> with condition type
<error>. This is only provided for the backward compatibility; new code should use
test-error procedure above.

[Variable]*test-report-error*
{gauche.test} If this variable is true, the test routine prints stack trace to the current error
port when it captures an error. It is useful when you got an unexpected test-error object and
want to check out where the error is occurring.

This variable is initialized by the environment variable GAUCHE_TEST_REPORT_ERROR when
the gauche.test module is loaded. For example, you can use the environment variable to
check out an unexpected error from your test script as follows (the value of the environment
variable doesn’t matter).

env GAUCHE_TEST_REPORT_ERROR=1 gosh mytest.scm

Quasi-static checks

Scheme is dynamically typed, which is convenient for incremental and experimental development
on REPL, but it tends to delay error detection until the code is actually run. It is very annoying
that you run your program for a while only to see it barfs on simple typo of variable name.

Gauche addresses this issue by checking certain types of errors at the test phase. It isn’t purely
a static check (we need to load a module or a script, which evaluates toplevel expressions), nor
exhaustive (we can’t catch inconsistencies that span over multiple modules or about information
that can be added at runtime). Nevertheless it can often catch some common mistakes, such as
incorrect variable names or calling procedures with wrong number of arguments.

The two procedures, test-module and test-script, load the named module and the script
files respectively (which compiles the Scheme code to VM instructions), then scan the compiled
VM code to perform the following tests:

1. See if the global variables referenced within functions are all defined (either in the module,
or in one of imported modules).

2. If a global variable is used as a function, see if the number of arguments given to it is
consistent to the actual function.

3. See if the symbols set as autoload in the code can be resolved.

4. While testing module, see if the symbols declared in the export list are acutally defined.

Chapter 9: Library modules - Gauche extensions 428

The check is somewhat heuristic and we may miss some errors and/or can have false positives.
For false positives, you can enumerate symbols to be excluded from the test.

[Function]test-module module :key allow-unde↓ned bypass-arity-check
{gauche.test} Loads the module and runs the quasi-static consistency check. Module must
be a symbol module name or a module.

Sometimes you have a global variable that may not be defined depending on compiler options
or platforms, and you check its existence at runtime before using it. The undefined variable
reference check by test-module doesn’t follow such logic, and reports an error whenever it
finds your code referring to undefined variable. In such case, you can give a list of symbols
to the allow-unde↓ned keyword argument; the test will excludes them from the check.

The arity check may also raise false positives, if the module count on a behavior of global
procedures that will be modified after the module is loaded (e.g. a method with different
number of arguments can be added to a generic function after the module is loaded, which
would make the code valid.) If you know you’re doing right thing and need to suppress
the false positives, pass a list of names of the functions to bypass-arity-check keyword
arguments.

[Function]test-script ↓lename :key allow-unde↓ned bypass-arity-check
{gauche.test} Loads the script named by ↓lename into a fresh anonymous module and runs
the quasi-static consistency check. Filename must be a string that names the script file.

The meaning of keyword arguments is the same as test-module.

Note that the toplevel forms in ↓lename are evaluated, so scripts that relies on the actions of
toplevel forms could cause unwanted side-effects. This check works best for the scripts written
in srfi-22 convention, that is, calling actions from main procedure instead of toplevel forms.
R7RS scripts relies on actions in toplevel forms and can’t be tested with this procedure.

Scripts that relies on being loaded into user module also won’t work well with this check,
which loads the forms into anonymous module.

9.32 gauche.threads - Threads

If enabled at compilation time, Gauche can use threads built on top of either POSIX threads
(pthreads) or Windows threads.

[Module]gauche.threads
Provides thread API. You can ’use’ this module regardless whether the thread support is
compiled in or not; if threads are not supported, many thread-related procedures simply
signals a "not supported" error.

If you want to switch code depending on whether pthreads are available or not, you can
use a feature identifier gauche.sys.threads with cond-expand form (see Section 4.12 [Feature
conditional], page 64).

(cond-expand

[gauche.sys.threads

;; Code that uses thread API (gauche.threads is automatically

;; loaded at this moment).

]

[else

;; Code that doesn’t use thread API

])

There are also feature identifiers gauche.sys.pthreads and gauche.sys.wthreads de-
fined for pthreads and Windows threads platforms, respectively. In Scheme level, however,

Chapter 9: Library modules - Gauche extensions 429

you hardly need to distinguish the underlying implementations. It is recommended to use
gauche.sys.threads to switch the code according to thread availability.

To check if threads are available at runtime, instead of compile time, use the following
procedure.

[Function]gauche-thread-type
{gauche.threads} Returns a symbol that indicates the supported thread type. It can be
one of the following symbols.

none Threads are not supported.

pthread Threads are built on top of POSIX pthreads.

win32 Threads are built on top of Win32 threads.

(Note: On pthreads platforms, it should return pthreads instead of pthread; then the
returned symbol would correspond to the value given to --enable-threads option at con-
figuration time. It’s a historical overlook, stuck for the backward compatibility.)

Scheme-level thread API conforms SRFI-18, "Multithreading support" ([[SRFI-18]],
page 763), wrapped around Gauche’s object interface.

9.32.1 Thread programming tips

What’s Gauche threads for

Although the surface API of threads looks simple and portable, you need to know how the
threads are implemented in order to utilize the feature’s potential. Some languages support
threads as language’s built-in construct and encourage programmers to express the calculation
in terms of threads. However, it should be noted that in many cases there are alternative ways
than threads to implement the desired algorithm, and you need to compare advantages and
disadvantages of using threads depending on how the threads are realized in the underlying
system.

In Gauche, the primary purpose of threads is to write programs that require preemptive
scheduling, therefore are difficult to express in other ways. Preemptive threads may be required,
for example, when you have to call a module that does blocking I/O which you can’t intercept,
or may spend nondeterministic amount of calculation time that you want to interrupt.

For each Gauche’s thread, an individual VM is allocated and it is run by the dedicated POSIX
thread. Thus the cost of context switch is the same as the native thread, but the creation of
threads costs much higher than, say, lightweight threads built on top of call/cc. So Gauche’s
preemptive threads are not designed for applications that want to create thousands of threads
for fine-grained calculation.

The recommended usage is the technique so called "thread pool", that you create a set of
threads and keep them around for long time and dispatch jobs to them as needed. Gauche pro-
vides a thread pool implementation in control.thread-pool module (see Section 12.5 [Thread
pools], page 589).

Preemptive threads have other difficulties (e.g. see [FairThreads], page 762), and sometimes
the alternatives may be a better fit than the native preemptive threads.

• If what you need is just a concurrent calculation, you might be able to use cooperative
thread technique built on top of call/cc. Creating call/cc-based threads is much faster
than creating native threads.

• If what you need is to deal with blocking I/O, and you have all your code at hand, it
is sometimes easier to use good old select-based dispatching (See Section 9.27 [Simple
dispatcher], page 411, for example).

Chapter 9: Library modules - Gauche extensions 430

• If what you need is to control the resource consumption in the subsystem, and the subsystem
works fairly independently from the main system, you may be able to use Unix processes
instead of threads. It may sound to go backward, but Unix process does provide higher
"shield" between the subsystem and the main system (e.g. the main system can keep
running even if subsystem segfaults).

Of course, these technique are not mutually exclusive with native threads. You can use
dispatcher with "thread pool" technique, for example. Just keep it in your mind that the native
threads are not only but one of the ways to realize those features.

Uncaught errors in a thread body

When you run a single-thread program that raises an unexpected (unhandled) error, Gauche
prints an error message and a stack trace by default. So sometimes it perplexes programmers
when a thread doesn’t print anything when it dies because of an unhandled error.

What’s happneing is this: An unhandled error in a thread body would cause the thread to
terminate, and the error itself will propagate to the thread who’s expecting the result of the
terminated thread. So, you get the error (wrapped by <uncaught-exception>) when you call
thread-join! on a thread which is terminated because of an unhandled error. The behavior is
defined in SRFI-18.

If you fire a thread for one-shot calculation, expecting to receive the result by thread-join!,
then this is reasonable—you can handle the error situation in the “parent” thread. However, if
you run a thread to loop indefinitely to process something and not expect to retrieve its result
via thread-join!, this becomes a pitfall; the thread may die unexpectedly but you wouldn’t
know it. (If such a thread is garbage-collected, a warning is printed. However you wouldn’t
know when that happens so you can’t count on it.)

For such threads, you should always wrap the body of such thread with guard, and handles
the error explicitly. You can call report-error to display the default error message and a stack
trace.

(thread-start!

(make-thread (^[] (guard (e [else (report-error e) #f])

... thread body ...))))

See Section 9.32.4 [Thread exceptions], page 438, for the details of thread exception handling.

Note: As of 0.9.5, Gauche has a known bug that the tail call of error handling clauses of
guard doesn’t become a proper tail call. So, the following code, which should run safely in
Scheme, could eat up a stack:

(thread-start!

(make-thread (^[] (let loop ()

(guard (e [else (report-error e) (loop)])

... thread body ...)))))

For the time being, you can lift the call to loop outside of guard as workaround.

(thread-start!

(make-thread (^[] (let loop ()

(guard (e [else (report-error e)])

... thread body ...)

(loop)))))

9.32.2 Thread procedures

[Builtin Class]<thread>
A thread. Each thread has an associated thunk which is evaluated by a POSIX thread. When
thunk returns normally, the result is stored in the internal ’result’ slot, and can be retrieved

Chapter 9: Library modules - Gauche extensions 431

by thread-join!. When thunk terminates abnormally, either by raising an exception or
terminated by thread-terminate!, the exception condition is stored in their internal ’result
exception’ slot, and will be passed to the thread calling thread-join! on the terminated
thread.

Each thread has its own dynamic environment and dynamic handler stack. When a thread
is created, its dynamic environment is initialized by the creator’s dynamic environment. The
thread’s dynamic handler stack is initially empty.

A thread is in one of the following four states at a time. You can query the thread state by
the thread-state procedure.

new A thread hasn’t started yet. A thread returned from make-thread is in this
state. Once a thread is started it will never be in this state again. At this point,
no POSIX thread has been created; thread-start! creates a POSIX thread to
run the Gauche thread.

runnable When a thread is started by thread-start!, it becomes to this state. Note that
a thread blocked by a system call is still in runnable state.

stopped A thread becomes in this state when it is stopped by thread-stop!. A thread in
this state can go back to runnable state by thread-cont!, resuming execution
from the point when it is stopped.

terminated

When the thread finished executing associated code, or is terminated by
thread-terminate!, it becomes in this state. Once a thread is in this state,
the state can no longer be changed.

Access to the resouces shared by multiple threads must be protected explicitly by synchro-
nization primitives. See Section 9.32.3 [Synchronization primitives], page 433.

Access to ports are serialized by Gauche. If multiple threads attempt to write to a port,
their output may be interleaved but no output will be lost, and the state of the port is kept
consistent. If multiple threads attempt to read from a port, a single read primitive (e.g.
read, read-char or read-line) works atomically.

Signal handlers are shared by all threads, but each thread has its own signal mask. See
Section 6.25.7.5 [Signals and threads], page 251, for details.

A thread object has the following external slots.

[Instance Variable of <thread>]name
A name can be associated to a thread. This is just for the convenience of the application.
The primordial thread has the name "root".

[Instance Variable of <thread>]specific
A thread-local slot for use of the application.

[Function]current-thread
[SRFI-18], [SRFI-21] {gauche.threads} Returns the current thread.

[Function]thread? obj
[SRFI-18], [SRFI-21] {gauche.threads} Returns #t if obj is a thread, #f otherwise.

[Function]make-thread thunk :optional name
[SRFI-18], [SRFI-21] {gauche.threads} Creates and returns a new thread to execute thunk.
To run the thread, you need to call thread-start!. The result of thunk may be retrieved
by calling thread-join!.

You can provide the name of the thread by the optional argument name.

Chapter 9: Library modules - Gauche extensions 432

The created thread inherits the signal mask of the calling thread (see Section 6.25.7.5 [Signals
and threads], page 251), and has a copy of parameters of the calling thread at the time of
creation (see Section 9.21 [Parameters], page 383).

Other than those initial setups, there will be no relationship between the new thread and
the calling thread; there’s no parent-child relationship like Unix process. Any thread can
call thread-join! on any other thread to receive the result. If nobody issues thread-join!
and nobody holds a reference to the created thread, it will be garbage collected after the
execution of the thread terminates.

If a thread execution is terminated because of uncaught exception, and its result is never
retrieved by thread-join!, a warning will be printed to the standard error port notifying
“thread dies a lonely death”: It usually indicates some coding error. If you don’t collect the
result of threads, you have to make sure that all the exceptions are captured and handled
within thunk.

Internally, this procedure just allocates and initializes a Scheme thread object; the POSIX
thread is not created until thread-start! is called.

[Function]thread-state thread
{gauche.threads} Returns one of symbols new, runnable, stopped or terminated, indicat-
ing the state of thread.

[Function]thread-name thread
[SRFI-18], [SRFI-21] {gauche.threads} Returns the value of name slot of thread.

[Function]thread-specific thread
[Function]thread-specific-set! thread value

[SRFI-18], [SRFI-21] {gauche.threads} Gets/sets the value of the thread’s specific slot.

[Function]thread-start! thread
[SRFI-18], [SRFI-21] {gauche.threads} Starts the thread. It is an error if thread is already
started. Returns thread.

[Function]thread-yield!
[SRFI-18], [SRFI-21] {gauche.threads} Suspends the execution of the calling thread and
yields CPU to other waiting runnable threads, if any.

[Function]thread-sleep! timeout
[SRFI-18], [SRFI-21] {gauche.threads} Suspends the calling thread for the period specified
by timeout, which must be either a <time> object (see Section 6.25.9 [Time], page 254) that
specifies absolute point of time, or a real number that specifies relative point of time from
the time this procedure is called in number of seconds.

After the specified time passes, thread-sleep! returns with unspecified value.

If timeout points a past time, thread-sleep! returns immediately.

[Function]thread-stop! thread :optional timeout timeout-val
{gauche.threads} Stops execution of the target thread temporarily. You can resume the
execution of the thread by thread-cont!.

The stop request is handled synchronously; that is, Gauche VM only checks the request at
the “safe” point of the VM and stops itself. It means if the thread is blocked by a system
call, it won’t become stopped state until the system call returns.

By default, thread-stop! returns after the target thread stops. Since it may take indefinitely,
you can give optional timeout argument to specify timeout. The timeout argument can be
#f, which means no timeout, or a <time> object that specifies an absolute point of time, or
a real number specifying the number of seconds to wait.

Chapter 9: Library modules - Gauche extensions 433

The return value of thread-stop! is thread if it could successfully stop the target, or timeout-
val if timeout reached. When timeout-val is omitted, #f is assumed.

If the target thread has already been stopped by the caller thread, this procedure returns
thread immediately.

When thread-stop! is timed out, the request remains effective even after thread-stop! re-
turns. That is, the target thread may stop at some point in future. The caller thread is
expected to call thread-stop! again to complete the stop operation.

An error is signaled if the target thread has already been stopped by another thread (includ-
ing the “pending” stop request issued by other threads), or the target thread is in neither
runnable nor stopped state.

[Function]thread-cont! thread
{gauche.threads} Resumes execution of thread which has been stopped by thread-stop!.
An error is raised if thread is not in stopped state, or it is stopped by another thread.

If the caller thread has already requested to stop the target thread but timed out, calling
thread-cont! cancels the request.

[Function]thread-terminate! thread
[SRFI-18], [SRFI-21] {gauche.threads} Terminates the specified thread thread. The thread
is terminated and an instance of <terminated-thread-exception> is stored in the result
exception field of thread.

If thread is the same as the calling thread, this procedure won’t return. Otherwise, this
procedure returns unspecified value.

This procedure should be used with care, since thread won’t have a chance to call cleanup
procedures (such as ’after’ thunks of dynamic-wind). If thread is in a critical section, it
can leave some state inconsistent. However, once a thread is terminated, any mutex that
the thread has kept becomes ’abandoned’ state, and an attempt to lock such a mutex by
other thread raises an ’abandoned mutex exception’, so that you will know the situation. See
Section 9.32.3 [Synchronization primitives], page 433.

[Function]thread-join! thread :optional timeout timeout-val
[SRFI-18], [SRFI-21] {gauche.threads} Waits termination of thread, or until the timeout is
reached if timeout is given.

Timeout must be either a <time> object (see Section 6.25.9 [Time], page 254) that specifies
absolute point of time, or a real number that specifies relative point of time from the time
this procedure is called in number of seconds, or #f that indicates no timeout (default).

If thread terminates normally, thread-join! returns a value which is stored in the result field
of thread. If thread terminates abnormally, thread-join! raises an exception which is stored
in the result exception field of thread. It can be either a <terminated-thread-exception>

or <uncaught-exception>.

If the timeout is reached, thread-join! returns timeout-val if given, or raises <join-timeout-
exception>.

See Section 9.32.4 [Thread exceptions], page 438, for the details of these exceptions.

9.32.3 Synchronization primitives

Mutex

[Builtin Class]<mutex>
{gauche.threads} A primitive synchronization device. It can take one of four states:
locked/owned, locked/not-owned, unlocked/abandoned and unlocked/not-abandoned. A mu-
tex can be locked (by mutex-lock!) only if it is in unlocked state. An ’owned’ mutex keeps a

Chapter 9: Library modules - Gauche extensions 434

thread that owns it. Typically an owner thread is the one that locked the mutex, but you can
make a thread other than the locking thread own a mutex. A mutex becomes unlocked either
by mutex-unlock! or the owner thread terminates. In the former case, a mutex becomes
unlocked/not-abandoned state. In the latter case, a mutex becomes unlocked/abandoned
state.

A mutex has the following external slots.

[Instance Variable of <mutex>]name
The name of the mutex.

[Instance Variable of <mutex>]state
The state of the mutex. This is a read-only slot. See the description of mutex-state
below.

[Instance Variable of <mutex>]specific
A slot an application can keep arbitrary data. For example, an application can implement
a ’recursive’ mutex using the specific field.

[Function]mutex? obj
[SRFI-18], [SRFI-21] {gauche.threads} Returns #t if obj is a mutex, #f otherwise.

[Function]make-mutex :optional name
[SRFI-18], [SRFI-21] {gauche.threads} Creates and returns a new mutex object. When
created, the mutex is in unlocked/not-abandoned state. Optionally, you can give a name to
the mutex.

[Function]mutex-name mutex
[SRFI-18], [SRFI-21] {gauche.threads} Returns the name of the mutex.

[Function]mutex-specific mutex
[Function]mutex-specific-set! mutex value

[SRFI-18], [SRFI-21] {gauche.threads} Gets/sets the specific value of the mutex.

[Function]mutex-state mutex
[SRFI-18], [SRFI-21] {gauche.threads} Returns the state of mutex, which may be one of
the followings:

a thread The mutex is locked/owned, and the owner is the returned thread.

symbol not-owned
The mutex is locked/not-owned.

symbol abandoned
The mutex is unlocked/abandoned.

symbol not-abandoned
The mutex is unlocked/not-abandoned.

[Function]mutex-lock! mutex :optional timeout thread
[SRFI-18], [SRFI-21] {gauche.threads} Locks mutex. If mutex is in unlocked/not-
abandoned state, this procedure changes its state to locked state exclusively. By default,
mutex becomes locked/owned state, owned by the calling thread. You can give other
owner thread as thread argument. If thread argument is given and #f, the mutex becomes
locked/not-owned state.

If mutex is in unlocked/abandoned state, that is, some other thread has been terminated
without unlocking it, this procedure signals ’abandoned mutex exception’ (see Section 9.32.4
[Thread exceptions], page 438) after changing the state of mutex.

Chapter 9: Library modules - Gauche extensions 435

If mutex is in locked state and timeout is omitted or #f, this procedure blocks until mutex
becomes unlocked. If timeout is specified, mutex-lock! returns when the specified time
reaches in case it couldn’t obtain a lock. You can give timeout an absolute point of time (by
<time> object, see Section 6.25.9 [Time], page 254), or a relative time (by a real number).

Mutex-lock! returns #t if mutex is successfully locked, or #f if timeout reached.

Note that mutex itself doesn’t implements a ’recursive lock’ feature; that is, if a thread that
has locked mutex tries to lock mutex again, the thread blocks. It is not difficult, however, to
implement a recursive lock semantics on top of this mutex. The following example is taken
from SRFI-18 document:

(define (mutex-lock-recursively! mutex)

(if (eq? (mutex-state mutex) (current-thread))

(let ((n (mutex-specific mutex)))

(mutex-specific-set! mutex (+ n 1)))

(begin

(mutex-lock! mutex)

(mutex-specific-set! mutex 0))))

(define (mutex-unlock-recursively! mutex)

(let ((n (mutex-specific mutex)))

(if (= n 0)

(mutex-unlock! mutex)

(mutex-specific-set! mutex (- n 1)))))

[Function]mutex-unlock! mutex :optional condition-variable timeout
[SRFI-18], [SRFI-21] {gauche.threads} Unlocks mutex. The state of mutex becomes
unlocked/not-abandoned. It is allowed to unlock a mutex that is not owned by the call-
ing thread.

If optional condition-variable is given, mutex-unlock! serves the "condition variable wait"
operation (e.g. pthread_cond_wait in POSIX threads). The current thread atomically wait
on condition-variable and unlocks mutex. The thread will be unblocked when other thread
signals on condition-variable (see condition-variable-signal! and condition-variable-

broadcast! below), or timeout reaches if it is supplied. The timeout argument can be either
a <time> object to represent an absolute time point (see Section 6.25.9 [Time], page 254), a
real number to represent a relative time in seconds, or #f which means never. The calling
thread may be unblocked prematurely, so it should reacquire the lock of mutex and checks
the condition, as in the following example (it is taken from SRFI-18 document):

(let loop ()

(mutex-lock! m)

(if (condition-is-true?)

(begin

(do-something-when-condition-is-true)

(mutex-unlock! m))

(begin

(mutex-unlock! m cv)

(loop))))

The return value of mutex-unlock! is #f when it returns because of timeout, and #t other-
wise.

Chapter 9: Library modules - Gauche extensions 436

[Function]mutex-locker mutex
[Function]mutex-unlocker mutex

{gauche.threads} Returns (lambda () (mutex-lock! mutex)) and (lambda ()

(mutex-unlock! mutex)), respectively. Each closure is created at most once per mutex,
thus it is lighter than using literal lambda forms in a tight loop.

[Function]with-locking-mutex mutex thunk
{gauche.threads} Calls thunk with locking a mutex mutex. This is defined as follows.

(define (with-locking-mutex mutex thunk)

(dynamic-wind

(mutex-locker mutex)

thunk

(mutex-unlocker mutex)))

Condition variable

[Builtin Class]<condition-variable>
{gauche.threads} A condition variable keeps a set of threads that are waiting for a certain
condition to be true. When a thread modifies the state of the concerned condition, it can call
condition-variable-signal! or condition-variable-broadcast!, which unblock one or
more waiting threads so that they can check if the condition is satisfied.

A condition variable object has the following slots.

[Instance Variable of <condition-variable>]name
The name of the condition variable.

[Instance Variable of <condition-variable>]specific
A slot an application can keep arbitrary data.

Note that SRFI-18 doesn’t have a routine equivalent to pthreads’ pthread_cont_wait. If
you want to wait on condition variable, you can pass a condition variable to mutex-unlock!

as an optional argument (see above), then acquire mutex again by mutex-lock!. This design
is for flexibility; see SRFI-18 document for the details.

This is the common usage of pthreads’ condition variable:

while (some_condition != TRUE) {

pthread_cond_wait(condition_variable, mutex);

}

And it can be translated to SRFI-18 as follows:

(let loop ()

(unless some-condition

(mutex-unlock! mutex condition-variable)

(mutex-lock! mutex)

(loop)))

[Function]condition-variable? obj
[SRFI-18], [SRFI-21] {gauche.threads} Returns #t if obj is a condition variable, #f other-
wise.

[Function]make-condition-variable :optional name
[SRFI-18], [SRFI-21] {gauche.threads} Returns a new condition variable. You can give its
name by optional name argument.

[Function]condition-variable-name cv
[SRFI-18], [SRFI-21] {gauche.threads} Returns the name of the condition variable.

Chapter 9: Library modules - Gauche extensions 437

[Function]condition-variable-specific cv
[Function]condition-variable-specific-set! cv value

[SRFI-18][SRFI-21] {gauche.threads} Gets/sets the specific value of the condition variable.

[Function]condition-variable-signal! cv
[SRFI-18][SRFI-21] {gauche.threads} If there are threads waiting on cv, causes the sched-
uler to select one of them and to make it runnable.

[Function]condition-variable-broadcast! cv
[SRFI-18][SRFI-21] {gauche.threads} Unblocks all the threads waiting on cv.

Atom

An atom is a convenient wrapper to make operations on a given set of objects thread-safe.
Instead of defining thread-safe counterparts of every structure, you can easily wrap an existing
data structures to make it thread-safe.

[Function]atom val . . .
{gauche.threads} Creates and returns an atom object with val . . . as the initial values.

[Function]atom? obj
{gauche.threads} Returns #t iff obj is an atom.

The following procedures can be used to atomically access and update the content of an
atom. They commonly take optional timeout and timeout-val arguments, both are defaulted to
#f. In some cases, the procedure takes more than one timeout-val arguments. With the default
value #f as timeout argument, those procedures blocks until they acquire a lock.

The timeout arguments can be used to modify the behavior when the lock cannot be acquired
in timely manner. timeout may be a <time> object (see Section 6.25.9 [Time], page 254) to
specify an absolute point of time, or a real number to specify the relative time in seconds. If
timeout is expired, those procedures give up acquiring the lock, and the value given to timeout-
val is returned. In atomic and atomic-update!, you can make them return multiple timeout
values, by giving more than one timeout-val arguments.

[Function]atom-ref atom :optional index timeout timeout-val
{gauche.threads} Returns index-th value of atom. See above for timeout and timeout-val
arguments.

(define a (atom ’a ’b))

(atom-ref a 0) ⇒ a

(atom-ref a 1) ⇒ b

[Function]atomic atom proc :optional timeout timeout-val timeout-val2 . . .
{gauche.threads} Calls proc with the current values in atom, while locking atom. proc
must take as many arguments as the number of values atom has.

The returned value(s) of proc is the result of atomic, unless timeout occurs. See above for
timeout and timeout-val arguments.

For example, the ref/count procedure in the following example counts the number of times
the hashtable is referenced in thread-safe way.

(define a (atom (make-hash-table ’eq?) (list 0)))

(define (ref/count a key)

(atomic a

(lambda (ht count-cell)

(inc! (car count-cell))

(hash-table-get h key))))

Chapter 9: Library modules - Gauche extensions 438

[Function]atomic-update! atom proc :optional timeout timeout-val timeout-val2
. . .

{gauche.threads} Calls proc with the current values in atom while locking atom, and up-
dates the values in atom by the returned values from proc. proc must take as many arguments
as the number of values atom has, and must return the same number of values.

The returned value(s) of atomic-update! is what proc returns, unless timeout occurs. See
above for timeout and timeout-val arguments.

The following example shows a thread-safe counter.

(define a (atom 0))

(atomic-update! a (cut + 1 <>))

Note: The term atom in historical Lisps meant objects that are not a cons cell (pair). Back
then cons cells were the only aggregated datatype and there were few other datatypes (numbers
and symbols), so having a complementary term to cells made sense.

Although it still appears in introductory Lisp tutorials, modern Lisps, including Scheme, has
so many datatypes and it makes little sense to have a specific term for non-aggregate types.

Clojure adopted the term atom for thread-safe (atomic) primitive data, and we followed it.

Note: The constructor of atom is not make-atom but atom, following the convention of
list/make-list, vector/make-vector, and string/make-string; that is, the name without
make- takes its elements as variable number of arguments.

9.32.4 Thread exceptions

Some types of exceptions may be thrown from thread-related procedures. These exceptions can
be handled by Gauche’s exception mechanism (see Section 6.20 [Exceptions], page 190).

[Builtin Class]<thread-exception>
{gauche.threads} A base class of thread-related exceptions. Inherits <exception> class. It
has one slot.

[Instance Variable of <thread-exception>]thread
A thread that threw this exception.

[Builtin Class]<join-timeout-exception>
{gauche.threads} An exception thrown by thread-join! when a timeout reaches before
the waited thread returns. Inherits <thread-exception>.

[Builtin Class]<abandoned-mutex-exception>
{gauche.threads} An exception thrown by mutex-lock! when a mutex to be locked is in
unlocked/abandoned state. Inherits <thread-exception>. It has one additional slot.

[Instance Variable of <abandoned-mutex-exception>]mutex
A mutex that caused this exception.

[Builtin Class]<terminated-thread-exception>
{gauche.threads} An exception thrown by thread-join! when the waited thread is ter-
minated abnormally (by thread-terminate!). Inherits <thread-exception>. It has one
additional slot.

[Instance Variable of <terminated-thread-exception>]terminator
A thread that terminated the thread that causes this exception.

Chapter 9: Library modules - Gauche extensions 439

[Builtin Class]<uncaught-exception>
{gauche.threads} An exception thrown by thread-join! when the waited thread is ter-
minated by an uncaught exception. Inherits <thread-exception>. It has one additional
slot.

[Instance Variable of <uncaught-exception>]reason
An exception that caused the termination of the thread.

[Function]join-timeout-exception? obj
[Function]abandoned-mutex-exception? obj
[Function]terminated-thread-exception? obj
[Function]uncaught-exception? obj

[SRFI-18], [SRFI-21] {gauche.threads} These procedures checks if obj is a certain type of
exception. Provided for the compatibility to SRFI-18.

[Function]uncaught-exception-reason exc
[SRFI-18], [SRFI-21] {gauche.threads} Returns the value of reason slot of
<uncaught-exception> object. Provided for the compatibility to SRFI-18.

9.33 gauche.time - Measure timings

[Module]gauche.time
Provides three ways to measure execution time of Scheme code. A macro time, which is
convenient for interactive use, a set of procedures for benchmarking, and <time-counter>

objects which are useful to be embedded in the program.

Interactive measurement of execution time

Note: The time macro is pre-defined to autoload gauche.time for the convenience; you don’t
need to say (use gauche.time) to use the time macro.

[Macro]time expr expr2 . . .
{gauche.time} Evaluates expr expr2 . . . sequentially, as begin, and returns the result(s) of
the last expression. Before returning the value(s), the macro reports the elapsed (real) time
and CPU times in the user space and the kernel space to the current error port, much like
the bourne shell’s time command.

The current version uses sys-gettimeofday (see Section 6.25.9 [Time], page 254) to calculate
the elapsed time, and sys-times (see Section 6.25.8 [System inquiry], page 251) to calculate
user and system CPU times. So the resolution of these numbers depends on these underlying
system calls. Usually the CPU time has 10ms resolution, while the elapsed time might have
higher resolution. On the systems that doesn’t have gettimeofday(2) support, however, the
elapsed time resolution can be as bad as a second.

gosh> (time (length (sort (call-with-input-file "/usr/share/dict/words"

port->string-list))))

;(time (length (sort (call-with-input-file "/usr/share/dict/words" port- ...

; real 0.357

; user 0.350

; sys 0.000

45427

Benchmarking

It is not unusual that the routine you want to measure takes only a fraction of second, so you
have to run it many times for better measurement. It is also common that you want to compare
results of measurement of two or more implementation strategies. Here are useful procedures to
do so.

Chapter 9: Library modules - Gauche extensions 440

The name and behavior of those benchmarking routines are inspired by Perl’s Benchmark
module.

[Function]time-this how thunk
{gauche.time} Calls thunk many times and measure its execution time. The argument how
can be one of the following forms.

integer It calls thunk as many times as the given number.

(cpu real)

It calls thunk as many times as the total cpu time exceeds the given number of
seconds.

It also runs an empty loop as the same times and subtract the time took for the empty loop
from the measured time, to get more accurate result.

The result is returned in a <time-result> record, described below. Here are some examples:
;; Run the thunk 1,000,000 times

(time-this 1000000 (lambda () (expt 100 30)))
⇒ #<time-result 1000000 times/ 1.030 real/ 1.040 user/ 0.000 sys>

;; Run the thunk at least 5.0 cpu seconds

(time-this ’(cpu 5.0) (lambda () (expt 100 30)))
⇒ #<time-result 4903854 times/ 5.090 real/ 5.050 user/ 0.010 sys>

[Record]<time-result>
{gauche.time} A record to hold the benchmark result. Following slots are defined.

[Instance Variable of <time-result>]count
The number of times the thunk was run. This slot is also accessed by a procedure
time-result-count.

[Instance Variable of <time-result>]real
The total real (elapsed) time running the thunk took. This slot is also accessed by a
procedure time-result-real.

[Instance Variable of <time-result>]user
The total user cpu time running the thunk took. This slot is also accessed by a procedure
time-result-user.

[Instance Variable of <time-result>]sys
The total system cpu time running the thunk took. This slot is also accessed by a procedure
time-result-sys.

[Function]make-time-result count real user sys
{gauche.time} The constructor of <time-result> records.

[Function]time-result? obj
{gauche.time} The predicate of <time-result> records.

[Function]time-result+ t1 t2 :key (with-count #f)
[Function]time-result- t1 t2 :key (with-count #f)

{gauche.time} Add or subtract two <time-result> records and returns a new record.

If with-count is false, only the real, user and sys slots are added or subtracted, and the result’s
count slot is set to the same as t1’s count slot. It is supposed to be used to calculate on
measurement from different chunk of code.

If with-count is true, then the values of count slot is also added or subtracted. It is supposed
to calculate on multiple benchmark results of the same code.

Chapter 9: Library modules - Gauche extensions 441

[Function]time-these how alist
[Function]time-these/report how alist

{gauche.time} These procedures benchmarks multiple chunks of code to compare.

The alist argument must be the form of ((key . thunk) ...), where key is a symbol and
thunk is a procedure taking no arguments.

The how argument is the same as time-this; that is, either an integer for number of itera-
tions, or a list (cpu x) to indicate x seconds of cpu time.

time-these runs benchmarks for each thunk in alist using time-this, and returns the result
in a list of the form (how (key1 . result1) (key2 . result2) ...), where each result is a
<time-result> object.

time-these/report outputs the benchmark results and comparison matrix in human read-
able way to the current output port.

gosh> (time-these/report ’(cpu 3.0)

‘((real1 . ,(cut expt 100 20))

(real2 . ,(cut %expt 100 20))

(imag . ,(cut expt +100i 20))))

Benchmark: ran real1, real2, imag, each for at least 3.0 cpu seconds.

real1: 3.312 real, 3.320 cpu (3.320 user + 0.000 sys)@ 1694277.11/s n=5625000

real2: 2.996 real, 3.010 cpu (3.010 user + 0.000 sys)@35595634.55/s n=107142860

imag: 3.213 real, 3.190 cpu (3.190 user + 0.000 sys)@ 862068.97/s n=2750000

Rate real1 real2 imag

real1 1694277/s -- 0.048 1.965

real2 35595635/s 21.009 -- 41.291

imag 862069/s 0.509 0.024 --

The first part of the report shows, for each thunks, the real (elapsed) time, the cpu time used
(and its breakdown of user and system time), the rate of iteration per second, and the total
number of iterations.

The second part compares the speed between each pair of the benchmarks. For example, its
first row tells that the benchmark real1 is 0.048 times faster than real2 and 1.965 times
faster than imag.

[Function]report-time-results result
{gauche.time} This is a utility procedure to create a report from the result of time-these.
Actually, time-these/report is just a combination of time-these and this procedure:

(define (time-these/report how samples)

(report-time-results (time-these how samples)))

Finer measurement

[Class]<time-counter>
{gauche.time} An abstract class of time counters. Time counter is a kind of timer whose
value is incremented as the time passes. The counting can be started and stopped any number
of times. The value of the counter can be read when the timer is stopping. You can have
multiple time counters. It is useful, for example, to measure the time in two parts inside a
loop independently.

The concrete subclass determines which time it is counting. You have to instantiate one of
those subclasses described below to use the time counter.

[Class]<real-time-counter>
[Class]<user-time-counter>
[Class]<system-time-counter>
[Class]<process-time-counter>

{gauche.time} Classes for time counters that count real (elapsed) time, user-space CPU
time, kernel-space CPU time, and total CPU time (user + system), respectively.

Chapter 9: Library modules - Gauche extensions 442

[Method]time-counter-start! (counter <time-counter>)
[Method]time-counter-stop! (counter <time-counter>)

{gauche.time} Starts and stops the counter. The time during the counter is running is
accumulated to the counter value when the counter is stopped.

Start/stop pairs can be nested, but only the outermost pair takes the effect. That is, if you
call time-counter-start! on the counter that is already started, it doesn’t have any effect
except that to stop such a counter you have to call time-counter-stop! one more time.
It is useful when you want to measure the time spent in the larger block that may already
contain timer start/stop pairs.

Calling time-counter-stop! on the already stopped counter has no effect.

[Method]time-counter-reset! (counter <time-counter>)
{gauche.time} Resets the value of counter. If counter is already running, it is forced to stop
before being reset.

[Method]time-counter-value (counter <time-counter>)
{gauche.time} Returns the current value of the counter as the number of seconds, in a real
number. The resolution depends on the source of the counter.

[Macro]with-time-counter counter expr . . .
{gauche.time} A convenience macro to run the counter while expr . . . are evaluated. Re-
turns the result(s) of the last expression. It is defined as follows.

(define-syntax with-time-counter

(syntax-rules ()

((_ counter . exprs)

(dynamic-wind

(lambda () (time-counter-start! counter))

(lambda () . exprs)

(lambda () (time-counter-stop! counter))))

))

The following example measures approximate times spend in process-A and process-B inside
a loop.

(let ((ta (make <real-time-counter>))

(tb (make <real-time-counter>)))

(dotimes (i 100000)

(with-time-counter ta

(process-A))

(with-time-counter tb

(process-B)))

(format #t "Time spent in process-A: ~s\n" (time-counter-value ta))

(format #t "Time spent in process-B: ~s\n" (time-counter-value tb))

)

9.34 gauche.unicode - Unicode utilities

[Module]gauche.unicode
This module provides various operations on a sequence of Unicode codepoints.

Gauche can be compiled with a native encoding other than Unicode, and the full Unicode-
compatible behavior on characters and strings may not be available on such systems. So we
provide most operations in two flavors: Operations on characters and strings, or operations
on codepoints represented as a sequence of integers.

Chapter 9: Library modules - Gauche extensions 443

If Gauche is compiled with its native encoding being none, euc-jp or sjis, character-and-
string operations are likely to be partial functions of the operations defined in Unicode stan-
dard. That is, if the operation can yield a character that are not supported in the native
encoding, it may be remapped to an alternative character. Each manual entry explains the
detailed behavior.

The codepoint operations are independent from Gauche’s native encoding and supports full
spec as defined in Unicode standard. If Gauche is compiled with the utf-8 native encoding,
the operations are essentially the same as character-and-string flavors when you convert
codepoints and characters by char->integer and integer->char. The codepoint operations
are handy when you need to support the algorithms described in Unicode standard fully, no
matter what the running Gauche’s native encoding is.

9.34.1 Unicode transfer encodings

The procedures in this group operate on codepoints represented as integers. In the following
descriptions, ‘octets’ refers to an integer between 0 to 255, inclusive.

They take optional strictness argument. It specifies what to do when the procedure en-
counters a datum outside of the defined domain. Its value can be either one of the following
symbols:

strict Raises an error when the procedure encounters such input. This is the default
behavior.

permissive

Whenever possible, treat the date as if it is a valid value. For example, codepoint
value beyond #x10ffff is invalid in Unicode standard, but it may be useful for some
other purpose that just want to use UTF-8 as an encoding scheme of binary data.

ignore Whenver possible, treat the invalid input as if they do not exist.

The procedure may still raise an error in permissive or ignore strictness mode, if there
can’t be a sensible way to handle the input data.

[Function]ucs4->utf8 codepoint :optional strictness
{gauche.unicode} Takes an integer codepoint and returns a list of octets that encodes the
input in UTF-8.

(ucs4->utf8 #x3bb) ⇒ (206 187)

(ucs4->utf8 #x3042) ⇒ (227 129 130)

If strictness is strict (default), input codepoint between #xd800 to #xdfff, and be-
yond #x110000, are rejected. If strictness is permissive, it accepts input between 0 and
#x7fffffff, inclusive; it may produce 5 or 6 octets if the input is large (as the original
UTF-8 definition). If strictness is ignore, it returns an empty list for invalid codepoints.

[Function]utf8-length octet :optional strictness
{gauche.unicode} Takes octet as the first octet of UTF-8 sequence, and returns the number
of total octets requried to decode the codepoint.

If strictness is strict (default), this procedure returns either 1, 2, 3 or 4. An error is thrown
if octet cannot be a leading octet of a proper UTF-8 encoded Unicode codepoint.

If strictness is permissive, this procedure may return an integer between 0 and 6, inclusive.
It allows the codepoint range #x110000 to #x7fffffff as the original utf-8 spec, so the
maximum number of octets can be up to 6. If the input is in the range between #xc0 and
#xdf, inclusive, this procedure returns 1–it’s up to the application how to treat these illegal
octets. For other values, it returns 0.

If strictness is ignore, this procedure returns 0 when it would raise an error if strictness is
strict. Other than that, it works the same as the default case.

Chapter 9: Library modules - Gauche extensions 444

[Function]utf8->ucs4 octet-list :optional strictness
{gauche.unicode} Takes a list of octets, and decodes it as a utf-8 sequence. Returns two
values: The decoded ucs4 codepoint, and the rest of the input list.

An invalid utf8 sequence causes an error if strictness is strict, or skipped if it is ignore.
If strictness is permissive, the procedure accepts the original utf-8 sequence which can
produce surrogated pair range (between #xd800 and #dfff) and the range between #x110000

to #x7fffffff. The invalid octet sequence is still an error with permissive mode.

[Function]utf8->string u8vector :optional start end
[R7RS base] {gauche.unicode} Converts a sequence of utf8 octets in u8vector to a string.
Optional start and/or end argument(s) will limit the range of the input.

If Gauche’s native encoding is utf8, u8vector->string (see Section 9.35.2 [Uvector conver-
sion operations], page 453) will do the job faster; but this routine can be used regardless of
Gauche’s native encoding, and it raises an error if u8vector contains octet sequences illegal
as utf8.

[Function]string->utf8 string :optional start end
[R7RS base] {gauche.unicode} Converts a string to a u8vector of utf8 octets. Optional start
and/or end argument(s) will limit the range of the input.

If Gauche’s native encoding is utf8, string->u8vector (see Section 9.35.2 [Uvector conver-
sion operations], page 453) will do the job faster; but this routine can be used regardless of
Gauche’s native encoding.

[Function]ucs4->utf16 codepoint :optional strictness
{gauche.unicode} Takes an integer codepont and returns a list of integers that encodes the
input in UTF-16. The output is either one integer or two integers, and each integer is in the
range between 0 and 65535 (inclusive).

If strictness is strict (default), input codepoint between #xd800 to #xdfff, and beyond
#x110000, are rejected. If strictness is permissive, it accepts high surrogates and low
surrogates, in which case the result is single element list of input. If strictness is ignore, an
empty list is returned for an invalid codepoint (including surrogates).

[Function]utf16-length code :optional strictness
{gauche.unicode} Code must be an integer between 0 and 65535, inclusive. Returns 1 if
code is BMP character codepoint, or 2 if code is high surrogate codepoint.

If strictness is strict (default), an error is signalled if code is a low surrogate, or it is out of
range. If strictness is permissive, 1 is returned for low surrogates, but an error is signalled
for out of range arguments. If strictness is ignore, 0 is returned for low surrogates and out
of range arguments.

[Function]utf16->ucs4 code-list :optional strictness
{gauche.unicode} Takes a list of integers and decodes it as a utf-16 sequence. Returns two
values: The decoded ucs4 codepoint, and the rest of input list.

If strictness is strict (default), an invalid utf-16 sequence and out-of-range integer raise an
error. If strictness is permissive, an out-of-range integer causes an error, but a lone surrogate
is allowed and returned as is. If strictness is ignore, lone surrogates and out-of-range integers
are just ignored.

9.34.2 Unicode text segmentation

These procedures implements grapheme-cluster and word breaking algorithms defined in UAX
#29: Unicode Text Segmentation.

Chapter 9: Library modules - Gauche extensions 445

[Function]string->words string
[Function]codepoints->words sequence

{gauche.unicode} From given string or codepoint sequence (a <sequence> object containing
list of codepoints), returns a list of words. Each cluster is represented as a string, or a sequence
of the same type as input, respectively.

(string->words "That’s it.")

⇒ ("That’s" " " "it" ".")

(codepoints->words ’(84 104 97 116 39 115 32 105 116 46)

⇒ ((84 104 97 116 39 115) (32) (105 116) (46))

In the second example, the list is a list of codepoints of characters in "That’s it."

[Function]string->grapheme-clusters string
[Function]codepoints->grapheme-clusters sequence

{gauche.unicode} From given string or codepoint sequence (a <sequence> object containing
list of codepoints), returns a list of grapheme clusters. Each cluster is represented as a string,
or a sequence of the same type as input, respectively.

The following procedures are low-level building blocks to build the above string->words etc.
A generator argument is a procedure with no arguments, and returns a value (or some values)
at at time for every call, until it returns EOF.

[Function]make-word-breaker generator
[Function]make-grapheme-cluster-breaker generator

{gauche.unicode} From given generator is a generator of characters or codepoints, returns
a generator that returns two values: The first value is the character or codepoint generated
from the original generator, and the second value is a boolean flag, which is #t if a word or
a grapheme cluster breaks before the character/codepoint, and #f otherwise.

Suppose a generator g returns characters in a string That’s it., one at a time. Then the
created generator will work as follows:

(define brk (make-word-breaker g))

(brk) ⇒ #\T and #t

(brk) ⇒ #\h and #f

(brk) ⇒ #\a and #f

(brk) ⇒ #\t and #f

(brk) ⇒ #\’ and #f

(brk) ⇒ #\s and #f

(brk) ⇒ #\space and #t

(brk) ⇒ #\i and #t

(brk) ⇒ #\t and #f

(brk) ⇒ #\. and #t

(brk) ⇒ #<eof> and #t

It shows the word breaks at those character boundaries shown by the caret ^ below (for
clearity, I use _ to indicate the space).

T h a t ’ s _ i t .

^ ^ ^ ^ ^

[Function]make-word-reader generator return
[Function]make-grapheme-cluster-reader generator return

{gauche.unicode} The input generator is a generator of characters or codepoints, and return
is a procedure that takes a list of characters or codepoints, and returns an object. These
procedures creates a generator that returns an object at at time, each consists of a word or
a grapheme cluster, respectively.

Chapter 9: Library modules - Gauche extensions 446

Suppose a generator g returns characters in a string That’s it., one at a time, again. Then
the created generator works as follows:

(define brk (make-word-reader g list->string))

(brk) ⇒ "That’s"

(brk) ⇒ " "

(brk) ⇒ "it"

(brk) ⇒ "."

(brk) ⇒ #<eof>

9.34.3 Full string case conversion

[Function]string-upcase string
[Function]string-downcase string
[Function]string-titlecase string
[Function]string-foldcase string

[R6RS][R7RS char] {gauche.unicode} Converts given string to upper case, using language-
independent full case folding defined by Unicode standard. They differ from srfi-13’s proce-
dures with the same names (see Section 11.5.8 [SRFI-13 String case mapping], page 523),
which simply uses character-by-character case mapping. Notably, the length of resulting
string may differ from the source string, and some conversions are sensitive to whether the
character is at the word boundary or not. The word boundaries are determined according to
UAX #29 text segmentation rules.

(string-upcase "straße")

⇒ "STRASSE"

(string-downcase "XAOΣXAOΣ.XAOΣ. Σ.")

⇒ "χαoσχαoσ.χαoς. σ."
(string-titlecase "You’re talking about R6RS, right?")

⇒ "You’re Talking About R6rs, Right?"

(string-foldcase "straße")

⇒ "strasse"

(string-foldcase "XAOΣΣ")

⇒ "χαoσσ"

Note that string-titlecase isn’t included in R7RS scheme.char module.

[Function]codepoints-upcase sequence
[Function]codepoints-downcase sequence
[Function]codepoints-titlecase sequence
[Function]codepoints-foldcase sequence

{gauche.unicode} Like string-upcase etc, but these work on a sequence of codepoints
instead. Returns a sequence of the same type of the input.

(codepoints-upcase ’#(115 116 114 97 223 101))

⇒ #(83 84 82 65 83 83 69)

[Function]string-ci=? string1 string2 string3 . . .
[Function]string-ci<? string1 string2 string3 . . .
[Function]string-ci<=? string1 string2 string3 . . .
[Function]string-ci>? string1 string2 string3 . . .
[Function]string-ci>=? string1 string2 string3 . . .

[R7RS char] {gauche.unicode} Case-insensitive string comparison, using full-string case
conversion.

Note that Gauche has builtin string-ci=? etc., which use character-wise case folding (see
Section 6.12.6 [String Comparison], page 144). These are different procedures.

Chapter 9: Library modules - Gauche extensions 447

(string-ci=? "\u00df" "SS") ⇒ #t

9.34.4 East asian width property

[Function]char-east-asian-width char-or-codepoint
{gauche.unicode} The argument may be a character or a nonnegative integer of Unicode
codepoint. Returns one of the symbols N (neutral), F (fullwidth), H (halfwidth), W (wide), Na
(narrow), and A (ambiguous).

The meaning of this property is explained in Unicode standard annex #11, http://unicode.
org/reports/tr11/.

9.35 gauche.uvector - Uniform vectors

[Module]gauche.uvector
Provides vectors whose elements are of the same numeric type, as defined in SRFI-4 ([SRFI-4],
page 763).

Gauche’s implementation is a superset of SRFI-4 in a few ways:

• Some routines takes optional parameters: TAGvector->list takes optional start and
end indices, and TAGvector-ref takes optional fallback value.

• Additional functions: copy procedures (TAGvector-copy, TAGvector-copy!)
and TAGvector-multi-copy!), conversion procedures (TAGvector->vector and
vector->TAGvector), and some arithmetic functions (TAGvector-add, etc.)

• Implements the collection framework (see Section 9.5 [Collection framework], page 322)
and the sequence framework (see Section 9.28 [Sequence framework], page 412). So the
methods like map, for-each, ref or subseq can be used on the SRFI-4 vector types.

• Support of f16vector, a vector of 16-bit floating point number as used in high-dynamic
range image format (1 sign bit, 5 exponent bits, and 10 mantissa bits).

There are some advantages of using SRFI-4 vectors over normal (heterogeneous) vectors.
It may be more compact than the normal vectors. Some operations (especially Gauche’s
extension of vector arithmetic operations) can bypass type check and conversion of individual
elements, thus be more efficient. And it is much easier and efficient to communicate with
external libraries that require homogeneous array of numbers; for example, OpenGL binding
of Gauche uses SRFI-4 vectors extensively.

The following eleven types of vectors are defined.

s8vector Elements are exact integers in the range between -2^7 and 2^7-1

u8vector Elements are exact integers in the range between 0 and 2^8-1

s16vector Elements are exact integers in the range between -2^15 and 2^15-1

u16vector Elements are exact integers in the range between 0 and 2^16-1

s32vector Elements are exact integers in the range between -2^31 and 2^31-1

u32vector Elements are exact integers in the range between 0 and 2^32-1

s64vector Elements are exact integers in the range between -2^63 and 2^63-1

u64vector Elements are exact integers in the range between 0 and 2^64-1

f16vector Elements are inexact real numbers representable in 16bits float (a.k.a half float)

f32vector Elements are inexact real numbers representable in the float of C compiler that
compiles Gauche. Usually it is a single precision IEEE floating point number.

http://unicode.org/reports/tr11/
http://unicode.org/reports/tr11/

Chapter 9: Library modules - Gauche extensions 448

f64vector Elements are inexact real numbers representable in the double of C compiler that
compiles Gauche. Usually it is a double precision IEEE floating point number.

When you try to store a number out of the range of the vector type, an error is signaled by
default. However, some procedures take an optional argument clamp that specifies alternative
behavior in such a case. Clamp argument may take one of the following values.

#f Default behavior (signals an error).

high Clamps high bound; i.e. if the value to be stored is beyond the higher bound of the
range, the maximum value is stored instead.

low Clamps low bound; i.e. if the value to be stored is below the lower bound of the
range, the minimum value is stored instead.

both Clamps both sides; does both high and low.

(list->u8vector ’(-1)) ⇒ error
(list->u8vector ’(-1) ’low) ⇒ #u8(0)

(list->u8vector ’(-1) ’high) ⇒ error
(list->u8vector ’(3000) ’high) ⇒ #u8(255)

(list->u8vector ’(-100 20 300) ’both) ⇒ #u8(0 20 255)

In the following description, TAG can be replaced for any of s8, u8, s16, u16, s32, u32, s64,
u64, f16, f32, f64.

9.35.1 Uvector basic operations

[Builtin Class]<TAGvector>
{gauche.uvector} A class for TAGvector. It inherits <sequence>.

[Reader Syntax]#TAG(n ...)
Denotes a literal homogeneous vector.

#s8(3 -2 4)

#u32(4154 88357 2 323)

#f32(3.14 0.554525 -3.342)

[Function]TAGvector? obj
[SRFI-4] {gauche.uvector} Returns #t iff obj is a TAGvector, #f otherwise.

[Function]uvector? obj
{gauche.uvector} Returns #t iff obj is of any uniform vector type.

[Function]TAGvector x . . .
[SRFI-4] {gauche.uvector} Constructs TAGvector whose elements are numbers x The
numbers must be exact integer for exact integer vectors, and in the valid range of the vector.

(s8vector 1 2 3) ⇒ #s8(1 2 3)

[Function]make-TAGvector len :optional fill
[SRFI-4] {gauche.uvector} Constructs a TAGvector of length len. The elements are initial-
ized by a number ↓ll. For exact integer vectors, ↓ll must be an exact integer and in the valid
range. If ↓ll is omitted, the content of the vector is undefined.

(make-u8vector 4 0) ⇒ #u8(0 0 0 0)

[Function]make-uvector class len :optional fill
{gauche.uvector} This is a Gauche extension; instead of using separate constructor for each
uvector type, you can pass the class of desired uvector.

(make-uvector <u8vector> 3) ⇒ #u8(0 0 0)

(make-uvector <s8vector> 5 -1) ⇒ #s8(-1 -1 -1 -1 -1)

Chapter 9: Library modules - Gauche extensions 449

[Function]TAGvector-length vec
[SRFI-4] {gauche.uvector} Returns the length of the TAGvector vec.

Note that the generic function size-of can be used to obtain the length of vec as well, if
you import gauche.collection (see Section 9.5 [Collection framework], page 322).

(s16vector-length ’#s16(111 222 333)) ⇒ 3

(use gauche.collection)

(size-of ’#s16(111 222 333)) ⇒ 3

[Function]uvector-length uvector
{gauche.uvector} This is a generic version of TAGvector-length; you can pass any instance
of uniform vector, and it returns the number of its elements.

[Function]uvector-size uvector :optional start end
{gauche.uvector} This function can be applied to any type of uniform vectors, and returns
the raw size of the uvector in number of octets.

When start and/or end is/are given, the size of data between those indices are calculated.
The special value -1 for end indicates the end of the vector. The returned value matches the
number of octets to be written out by (write-uvector uvector port start end).

(Do not confuse this with uvector-length, which returns the number of elements.)

(uvector-size ’#u8(1 2 3)) ⇒ 3

(uvector-size ’#u64(1 2 3)) ⇒ 24

(uvector-size ’#u32(0 1 2 3) 2) ⇒ 8

(uvector-size ’#u32(0 1 2 3) 0 1) ⇒ 4

[Function]uvector-class-element-size class
{gauche.uvector} Returns the size of an element of a uvector of the given class, in bytes.
An error is raised when class is not a uvector class.

(uvector-class-element-size <u8vector>) ⇒ 1

(uvector-class-element-size <s64vector>) ⇒ 8

[Function]TAGvector-ref vec k :optional fallback
[SRFI-4+] {gauche.uvector} Returns the k-th element of TAGvector vec.

If the index k is out of the valid range, an error is signaled unless an optional argument
fallback is given; in that case, fallback is returned.

Note that the generic function ref can be used as well, if you import gauche.collection.

(u16vector-ref ’#u16(111 222 333) 1) ⇒ 222

(use gauche.collection)

(ref ’#u16(111 222 333) 1) ⇒ 222

[Function]uvector-ref vec k :optional fallback
{gauche.uvector} Generic version of TAGvector-ref. It can take any kind of uniform vector
to vec, and returns its k-th element. If the index k is out of the valid range, an error is signaled
unless an optional argument fallback is given; in that case, fallback is returned.

This is handy to write a generic code that works on any kind of uniform vector, but this
is slower than the specific versions. Gauche’s compiler recognizes the specific versions of
referencer and generate very efficient code for them, while this generic version becomes a
normal procedure call. In inner-loop it can make a big difference.

(setter uvector-ref) is uvector-set!.

Chapter 9: Library modules - Gauche extensions 450

[Function]TAGvector-set! vec k n :optional clamp
[SRFI-4+] {gauche.uvector} Sets a number n to the k-th element of TAGvector vec. Op-
tional clamp argument specifies the behavior when n is out of valid range. Default is to signal
an error.

Note that the setter of the generic function ref can be used as well, if you import
gauche.collection.

(let ((v (s32vector -439 852 8933)))

(s32vector-set! v 1 4)

v)

⇒ #s32vector(-439 4 8933)

(use gauche.collection)

(let ((v (s32vector -439 852 8933)))

(set! (ref v 1) 4)

v)

⇒ #s32vector(-439 4 8933)

[Function]uvector-set! vec k val
{gauche.uvector} Generic version of TAGvector-set!. It can handle any kind of uniform
vectors, but a bit slower than the specific versions.

[Function]TAGvector-fill! vec fill :optional start end
{gauche.uvector} Stores ↓ll in every element of vec, ranging from start to end of vec, if
they are given.

[Function]TAGvector=? vec1 vec2
[SRFI-66] {gauche.uvector} Both arguments must be a TAGvector. Returns #t if vec1 and
vec2 are equal to each other, #f otherwise.

Note that you can compare uvectors with equal? in Gauche. These are provided because
SRFI-66 defines u8vector=?. You can also use them to indicate arguments are vectors of the
specific type.

[Function]TAGvector-compare vec1 vec2
[SRFI-66] {gauche.uvector} Both arguments must be a TAGvector. Returns -1 if vec1 is
smaller than vec2, 0 if both are equal to each other, and 1 if vec1 is greater than vec2.

Shorter vector is smaller than longer vectors. If the lengths of both vectors are the same,
elements are compared from left to right.

Note that you can compare uvectors with compare in Gauche. These are provided because
SRFI-66 defines u8vector-compare. You can also use them to indicate arguments are vectors
of the specific type.

[Function]TAGvector-copy vec :optional start end
{gauche.uvector} Copies the srfi-4 vector vec. If start and/or end are given, they limit the
range of vec to be copied.

(u8vector-copy ’#u8(1 2 3 4)) ⇒ #u8(1 2 3 4)

(u8vector-copy ’#u8(1 2 3 4) 2) ⇒ #u8(3 4)

(u8vector-copy ’#u8(1 2 3 4) 1 3) ⇒ #u8(2 3)

[Function]uvector-copy vec :optional start end
{gauche.uvector} This is a generic version of TAGvector-copy. You can give any type of
uvector to vec, and get its copy (or copy of its part, depending on start/end argument).

Chapter 9: Library modules - Gauche extensions 451

[Function]TAGvector-copy! target tstart source :optional sstart send
{gauche.uvector} Both target and source must be TAGvectors, and target must be mutable.
This procedure copies the elements of source, beginning from index sstart (inclusive) and up
to send, into target, beginning from index tstart. sstart and send may be omitted, and in
that case 0 and the length of source are assumed, respectively.

(let ((target (u8vector 0 1 2 3 4 5 6)))

(u8vector-copy! target 2 ’#u8(10 11 12 13 14) 1 4)

target)

⇒ #u8(0 1 11 12 13 6)

If the number of elements in the source vector between sstart and send is larger than the
target vector beginning from tstart, the excess elements are silently discarded.

It is ok to pass the same vector to target and source; it always works even if the regions of
source and destination are overlapping.

Note: This procedure used to take just two uniform vectors, target and source, and just
copies contents of source to target. Both vectors had to be the same type and same length.
The API is revised to the current form to make it parallel with string-copy! (SRFI-13)
and vector-copy! (R7RS,SRFI-133). The old interface is still supported for the backward
compatibility, but it is deprecated and will be gone in the future releases.

Also note that SRFI-66 provides uvector-copy! with different argument order (see
Section 11.15 [Octet vectors], page 545).

[Function]TAGvector-multi-copy! target tstart tstride source :optional
sstart ssize sstride count

{gauche.uvector} This procedure allows different parts of the source uvector source into
various parts of the target uvector target, all at once.

When ssize is omitted or zero, this procedure does the following:

;; For each i from 0 to count:

(TAGvector-copy! target (+ tstart (* i tstride))

source sstart)

That is, it copies the content of source (offsetted by sstart, which defaults to 0) into the
target repeatedly, advancing index with tstride. If either the target index reaches the end or
count copies are made, the procedure returns. See the example:

(define t (make-u8vector 10 0))

(u8vector-multi-copy! t 0 4 ’#u8(1 2 3))

t ⇒ #u8(1 2 3 0 1 2 3 0 1 2)

If ssize is given and positive, the source is also splitted as follows:

;; For each i from 0 to count:

(TAGvector-copy! target (+ tstart (* i tstride))

source (+ sstart (* i sstride))

(+ sstart (* i sstride) ssize))

That is, each ssize slice from source, is copied into target, advaincing source index by sstride
and the destination index by dstride. In this case, sstride defaults to ssize if omitted.

(define t (make-u8vector 12 0))

(u8vector-multi-copy! t 0 4 ’#u8(1 2 3 4 5 6 7 8 9) 0 3)

t ⇒ #u8(1 2 3 0 4 5 6 0 7 8 9 0)

The operation ends when either count slices are copied, or destination index or source index
reaches the end.

Chapter 9: Library modules - Gauche extensions 452

Hint: If you want to copy a part of the source vector repeatedly (instead of to its end), you
can specify 0 to sstride:

(define t (make-u8vector 12 0))

(u8vector-multi-copy! t 0 4 ’#u8(1 2 3 4 5 6 7 8 9) 2 4 0)

t ⇒ #u8(3 4 5 6 3 4 5 6 3 4 5 6)

Using collection and sequence framework, you can perform various operations on the homo-
geneous vectors.

(use gauche.collection)

(use gauche.sequence)

(fold + 0 ’#s32(1 2 3 4)) ⇒ 10

(map-to <f32vector> * ’#f32(3.2 1.1 4.3) ’#f32(-4.3 2.2 9.4))

⇒ #f32(-13.760001 2.420000 40.420002)

(subseq #u32(1 4 3 4 5) 2 4) ⇒ #u32(3 4)

[Function]uvector-copy! target tstart source :optional sstart send
{gauche.uvector} This is a generic version of TAGvector-copy!. The destination target
and the source source can be any type of uniform vectors, and they don’t need to match.
The copy is done bit-by-bit. So if you copy to a different type of uvector, the result depends
on how the numbers are represented internally. This is mainly to manipulate binary data.

Tstart is interpreted according to the type of target, and sstart and send are interpreted
according to the type of source.

(rlet1 v (make-u8vector 6 0)

(uvector-copy! v 1 ’#u32(0 #x01020304 0) 1 2))

⇒ #u8(0 1 2 3 4 0) or #u8(0 4 3 2 1 0)

[Function]TAGvector-append vec . . .
{gauche.uvector} All arguments must be TAGvectors. Returns a fresh vector whose con-
tents are concatenation of the given vectors.

(u8vector-append ’#u8(1 2 3) ’#u8(4 5) ’#u8() ’#u8(6 7 8))

⇒ #u8(1 2 3 4 5 6 7 8)

[Function]uvector-binary-search uvector key :optional start end skip rounding
{gauche.uvector} The uvector must contain values in increasing order. This procedure
finds the index of an element that is equal to key, using binary search. If such element can’t
be found, #f is returned.

(uvector-binary-search ’#u8(0 5 19 32 58 96) 32)

⇒ 3

(uvector-binary-search ’#u8(0 5 19 32 58 96) 33)

⇒ #f

The optional start and end arguments limits the portion of uvector to search; start specifies
starting index (inclusive) and end specifies ending index (exclusive). Passing #f indicates the
default value (0 for start, the length of the vector for end). The returned index is the actual
index of the vector, but the elements outside of start-end range don’t need to be sorted.

(uvector-binary-search ’#u8(99 99 19 32 58 99) 32 2 5)

⇒ 3

Chapter 9: Library modules - Gauche extensions 453

(uvector-binary-search ’#u8(99 99 19 32 58 99) 99 2 5)

⇒ #f

The optional skip argument must be a nonnegative exact integer or #f. If it is a positive
integer, the number of elements after every key in the uvector is ignored. For example, if
skip is 2 and uvector is #u8(3 100 101 5 102 103 13 104 105), only 3, 5 and 13 are subject
to seach, and elements inbetween are ignored. This allows the caller to store payload, or
associated value to each key, in the uvector itself. If skip is positive integer, the length of the
searched portion of uvector must be a multiple of the record size (skip+1).

(uvector-binary-search ’#u8(3 100 101 5 102 103 13 104 105) 13 #f #f 2)

⇒ 6

(uvector-binary-search ’#u8(3 100 101 5 102 103 13 104) 13 #f #f 2)

⇒ ; Error: uvector size (8) isn’t multiple of record size (3)

Finally, rounding argument adjusts the behavior when the exact match isn’t found. It can
be either one of the following values:

#f This is the default. The procedure seaches the element that is equal to key, and
returns #f if such element isn’t found.

a symbol floor
When the exact match isn’t found, the procedure returns an index of the element
that’s closest to but not greater than key. If key is smaller than all the elements,
#f is returned.

a symbol ceiling
When the exact match isn’t found, the procedure returns an index of the element
that’s closest to but not smaller than key. If key is greater than all the elements,
#f is returned.

(uvector-binary-search ’#u32(1 10 100 1000 10000) 3757)

⇒ #f

(uvector-binary-search ’#u32(1 10 100 1000 10000) 3757 #f #f #f ’floor)

⇒ 3

(uvector-binary-search ’#u32(1 10 100 1000 10000) 3757 #f #f #f ’ceiling)

⇒ 4

Note: SRFI-133 has vector-binary-search, which is quite similar to this procedure (see
Section 11.28 [Vector library], page 559) but it requires comparison procedure, for it needs
to compare general Scheme values. And it does not support skip and rounding arguments.

9.35.2 Uvector conversion operations

[Function]TAGvector->list vec :optional start end
[SRFI-4+] {gauche.uvector} Converts TAGvector vec to a list. If start and/or end are
given, they limit the range of vec to be extracted.

Note that the generic function coerce-to can be used as well, if you import
gauche.collection.

(u32vector->list ’#u32(9 2 5)) ⇒ (9 2 5)

(use gauche.collection)

(coerce-to <list> ’#u32(9 2 5)) ⇒ (9 2 5)

Chapter 9: Library modules - Gauche extensions 454

[Function]TAGvector->vector vec :optional start end
{gauche.uvector} Converts TAGvector vec to a vector. If start and/or end are given, they
limit the range of vec to be copied.

Note that the generic function coerce-to can be used as well, if you import
gauche.collection.

(f32vector->vector ’#f32(9.3 2.2 5.5)) ⇒ #(9.3 2.2 5.5)

(f32vector->vector ’#f32(9.3 2.2 5.5) 2) ⇒ #(5.5)

(use gauche.collection)

(coerce-to <vector> ’#f32(9.3 2.2 5.5)) ⇒ #(9.3 2.2 5.5)

[Function]list->TAGvector list :optional clamp
[SRFI-4+] {gauche.uvector} Converts a list list to a TAGvector. Optional argument clamp
specifies the behavior when the element of list is out of the valid range.

Note that the generic function coerce-to can be used as well, if you import
gauche.collection.

(list->s64vector ’(9 2 5)) ⇒ #s64(9 2 5)

(use gauche.collection)

(coerce-to <s64vector> ’(9 2 5)) ⇒ #s64(9 2 5)

[Function]vector->TAGvector vec :optional start end clamp
{gauche.uvector} Converts a vector vec to a TAGvector. If start and/or end are given,
they limit the range of vec to be copied. Optional argument clamp specifies the behavior
when the element of vec is out of the valid range.

Note that the generic function coerce-to can be used as well, if you import
gauche.collection.

(vector->f64vector ’#(3.1 5.4 3.2)) ⇒ #f64(3.1 5.4 3.2)

(use gauche.collection)

(coerce-to <f64vector> ’#(3.1 5.4 3.2)) ⇒ #f64(3.1 5.4 3.2)

[Function]string->s8vector string :optional start end immutable?
[Function]string->u8vector string :optional start end immutable?

{gauche.uvector} Returns an s8vector or u8vector whose byte sequence is the same as the
internal representation of the given string. Optional range arguments start and end specifies
the character position (not the byte position) inside string to be converted.

By default, the content of the string is copied to a newly created mutable uvector. However,
if a true value is given to the optional immutable? argument, the result is an immutable
uvector, and it may avoid copying the string body (note that in Gauche, the body of string
is immutable; string-set! creates a new body, so changing the original string won’t affect
the uvector created by string->u8vector with immutable? flag.)

These procedures are useful when you want to access byte sequence of the string randomly.

(string->u8vector "abc") ⇒ #u8(97 98 99)

(string->u8vector "very large string " 0 -1 #t)

⇒ #u8(...) ; immutable, sharing content with the original string

Chapter 9: Library modules - Gauche extensions 455

[Function]string->s8vector! target tstart string :optional start end
[Function]string->u8vector! target tstart string :optional start end

{gauche.uvector} Target must be an s8vector or a u8vector, respectively. Target must be
mutable. Like copies the raw byte representation of string into target beginning from index
tstart.

Returns target.

(let ((target (make-u8vector 10 0)))

(string->u8vector! target 3 "abcde"))

⇒ #u8(0 0 0 97 98 99 100 101 0 0)

[Function]s8vector->string vec :optional start end terminator
[Function]u8vector->string vec :optional start end terminator

{gauche.uvector} Converts a byte sequence in s8vector or u8vector to a string that has the
same byte sequence. Optional range arguments start and end specifies the byte position in
vec to be converted.

The optional terminator argument can be an exact integer or #f (default). If it is an exact
integer, and it appears in vec, the string terminates right before it. For example, you can
give 0 as terminator to read a NUL-terminated string from a buffer.

(u8vector->string ’#u8(65 66 0 67 68) 0 5) ⇒ "AB\0CD"

(u8vector->string ’#u8(65 66 0 67 68) 0 5 0) ⇒ "AB"

Note that these procedure may result an incomplete string if vec contains a byte sequence
invalid as the internal encoding of the string.

[Function]string->s32vector string :optional start end
[Function]string->u32vector string :optional start end

{gauche.uvector} Returns an s32vector or u32vector whose elements are the internal codes
of the characters in the string. Optional range arguments start and end specifies the character
position inside string to be converted.

These procedures are useful when you want to access the characters in the string randomly.

[Function]string->s32vector! target tstart string :optional start end
[Function]string->u32vector! target tstart string :optional start end

{gauche.uvector} Target must be a mutable s32vector or u32vector, respectively. Fill the
target from position tstart with the codepoint of each character of string, until either string
is exhausted or target is filled to the end.

Optional range arguments start and end specifies the character position inside string to be
considered.

[Function]s32vector->string vec :optional start end terminator
[Function]u32vector->string vec :optional start end terminator

{gauche.uvector} Without start and end, these procedures work like this:

(lambda (vec) (map-to <string> integer->char vec)))

Optional range arguments start and end limits the range of conversion between them.

The optional terminator argument must be an exact integer or #f (default). If an integer is
given, and the integer is fonud in the input, the output string terminates right before it.

(u32vector->string ’#u32(65 66 0 67 68) 0 5 0) ⇒ "AB"

[Function]uvector-alias uvector-class vec :optional start end
{gauche.uvector} This procedure creates an uvector of class uvector-class that shares the
storage of the given uniform vector vec. If optional start and end arguments are given, only

Chapter 9: Library modules - Gauche extensions 456

the specified range of vec is used for the new vector. Since the storage is shared, modification
of the original vector can be seen from the new vector, or vice versa.

The class uvector-class must be either one of the uniform vector class, but is not necessary
match the class of the source vector vec. In such case, the new vector looks at the same region
of vec’s memory, but interprets it differently. For example, the following code determines
whether Gauche is running on big-endian or little-endian machine:

(let ((u8v (uvector-alias <u8vector> #u32(1))))

(if (zero? (u8vector-ref u8v 0))

’big-endian

’little-endian))

If the uvector-class is other than s8vector or u8vector, the region the new vector points has
to meet the alignment requirement. You can assume the beginning of the source vector is
aligned suitable for any uniform vectors. So, for example, if you’re creating u32vector from
u8vector, the start and end must be multiple of 4 (or, if they’re omitted, the length of the
original u8vector must be multiple of 4). An error is signaled when the given parameters
doesn’t satisfy alignment constraint.

9.35.3 Uvector numeric operations

[Function]TAGvector-add vec val :optional clamp
[Function]TAGvector-add! vec val :optional clamp
[Function]TAGvector-sub vec val :optional clamp
[Function]TAGvector-sub! vec val :optional clamp
[Function]TAGvector-mul vec val :optional clamp
[Function]TAGvector-mul! vec val :optional clamp

{gauche.uvector} Element-wise arithmetic. Vec must be a TAGvector, and val must be
either a TAGvector, a vector, or a list of the same length as vec, or a number (an exact
integer for integer vectors, and a real number for f32- and f64-vectors).

If val is a TAGvector, its elements are added to, subtracted from, or multiplied by the
corresponding elements of vec, respectively, and the results are gathered to a TAGvector and
returned. The destructive version (those have bang ‘!’ in the name) reuses vec to store the
result. If the result of calculation goes out of the range of TAGvector’s element, the behavior
is specified by clamp optional argument. (For f32vector and f64vector, clamp argument is
ignored and the result may contain infinity).

If val is a number, it is added to, subtracted from, or multiplied by each element of vec,
respectively.

(s8vector-add ’#s8(1 2 3 4) ’#s8(5 6 7 8)) ⇒ #s8(6 8 10 12)

(u8vector-sub ’#u8(1 2 3 4) ’#u8(2 2 2 2)) ⇒ error
(u8vector-sub ’#u8(1 2 3 4) ’#u8(2 2 2 2) ’both) ⇒ #u8(0 0 1 2)

(f32vector-mul ’#f32(3.0 2.0 1.0) 1.5) ⇒ #f32(4.5 3.0 1.5)

[Function]TAGvector-div vec val
[Function]TAGvector-div! vec val

{gauche.uvector} Element-wise division of flonum vectors. These are only defined for f16,
f32 and f64vector. val must be a TAGvector, a vector or a list of the same length as vec, or
a real number.

(f32vector-div ’#f32(1.0 2.0 3.0) 2.0) ⇒ #f32(0.5 1.0 1.5)

[Function]TAGvector-and vec val
[Function]TAGvector-and! vec val

Chapter 9: Library modules - Gauche extensions 457

[Function]TAGvector-ior vec val
[Function]TAGvector-ior! vec val
[Function]TAGvector-xor vec val
[Function]TAGvector-xor! vec val

{gauche.uvector} Element-wise logical (bitwise) operation. These procedures are only de-
fined for integral vectors. val must be a TAGvector, a vector or a list of the same length
as vec, or an exact integer. Bitwise and, inclusive or or exclusive or is calculated between
each element in vec and the corresponding element of val (when val is a non-scalar value),
or val itself (when val is an integer). The result is returned in a TAGvector. The destructive
version reuses vec to store the result.

[Function]TAGvector-dot vec0 vec1
{gauche.uvector} Calculates the dot product of two TAGvectors. The length of vec0 and
vec1 must be the same.

[Function]TAGvector-range-check vec min max
{gauche.uvector} Vec must be a TAGvector, and each of min and max must be either a
TAGvector, a vector or a list of the same length as vec, or a number, or #f.

For each element in vec, this procedure checks if the value is between minval and maxval
inclusive, where minval and maxval are the corresponding values of min and max (when min
and/or max is/are non-scalar value) or min and max themselves (when min and/or max
is/are a number). When min is #f, negative infinity is assumed. When max is #f, positive
infinity is assumed.

If all the elements in vec are within the range, #f is returned. Otherwise, the index of the
leftmost element of vec that is out of range is returned.

(u8vector-range-check ’#u8(3 1 0 2) 0 3) ⇒ #f

(u8vector-range-check ’#u8(3 1 0 2) 1 3) ⇒ 2

(u8vector-range-check ’#u8(4 32 64 98) 0 ’#u8(10 40 70 90))

⇒ 3

;; Range check in a program

(cond

((u8vector-range-check u8v 1 31)

=> (lambda (i)

(errorf "~sth vector element is out of range: ~s"

i (u8vector-ref u8v i))))

(else (do-something u8v)))

[Function]TAGvector-clamp vec min max
[Function]TAGvector-clamp! vec min max

{gauche.uvector} Vec must be a TAGvector, and each of min and max must be either a
TAGvector, a vector or a list of the same length as vec, or a number, or #f.

Like TAGvector-range-check, these procedures check if each element of vec are within the
range between minval and maxval inclusive, which are derived from min and max. If the
value is less than minval, it is replaced by minval. If the value is grater than maxval, it is
replaced by maxval.

TAGvector-clamp creates a copy of vec and do clamp operation on it, while TAGvector-
clamp! modifies vec. Both return the clamped vector.

(s8vector-clamp ’#s8(8 14 -3 -22 0) -10 10) ⇒ #s8(8 10 -3 -10 0)

Chapter 9: Library modules - Gauche extensions 458

9.35.4 Uvector block I/O

A uniform vector can be seen as an abstraction of a chunk of memory. So you might want to
use it for binary I/O. Yes, you can do it.

[Function]read-uvector class size :optional iport endian
{gauche.uvector} Reads size elements of uvector of class class from iport, and returns fleshly
created uvector. If iport is omitted, the curret input port is used.

For example, you can read input as an octet stream as follows:

(with-input-from-string "abcde"

(^[] (read-uvector <u8vector> 5)))

⇒ #u8(97 98 99 100 101)

If the input port has aleady reached EOF, an EOF object is returned. The returned uvector
can be shorter than size if the input reaches EOF before size elements are read.

If the iport is a buffered port with ‘modest’ or ‘none’ buffering mode (see Section 6.22.4
[File ports], page 207), read-uvector may return before size elements are read, even if iport
hasn’t reached EOF. The ports connected to a pipe or a network socket behave so by default.

The data is read as a byte stream, so if you give uniform vectors other than s8vector or
u8vector, your result may affected by the endianness. If the optional argument endian is
given, the input is interpreted in that endianness. When omitted, the value of the parameter
default-endian is used. See Section 6.3.7 [Endianness], page 114, for more about endian
handling.

If the size of the input data is unknown and you need to read everything until EOF, use
port->uvector below.

R7RS has read-bytevector; it is the same as passing <u8vector> to read-uvector.

[Function]read-uvector! vec :optional iport start end endian
{gauche.uvector} Reads a chunk of data from the given input port iport, and stores it to
the uniform vector vec. You can give any uniform vector. If optional start and end arguments
are given, they specify the index range in vec that is to be filled, and the rest of the vector
remains untouched. Otherwise, entire vector is used. A special value -1 for end indicates the
end of vec. If iport is omitted, the current input port is used.

If the input reached EOF before the required region of vec is filled, the rest of the vector is
untouched.

If iport is already reached EOF when read-uvector! is called, an EOF object is returned.
Otherwise, the procedure returns the number of elements read (not bytes).

If the iport is a buffered port with ‘modest’ or ‘none’ buffering mode (see Section 6.22.4 [File
ports], page 207), read-uvector! may return before all the elements in vec is filled, even if
iport hasn’t reached EOF. The ports connected to a pipe or a network socket behave so by
default. If you know there will be enough data arriving and want to make sure vec is filled,
change the buffering mode of iport to ‘full’.

The data is read as a byte stream, so if you give uniform vectors other than s8vector or
u8vector, your result may affected by the endianness. If the optional argument endian is
given, the input is interpreted in that endianness. When omitted, the value of the parameter
default-endian is used. See Section 6.3.7 [Endianness], page 114, for more about endian
handling.

[Function]read-block! vec :optional iport start end endian
{gauche.uvector} An old name of read-uvector!. Supported for the backward compati-
bility, but new code should use read-uvector!.

Chapter 9: Library modules - Gauche extensions 459

[Function]port->uvector iport :optional class
{gauche.uvector} Read data from the input port iport until EOF and store them into a
uvector of class. If class is omitted, <u8vector> is used.

If you specify a class of uvector whose element is more than an octet, the input data is packed
with platform’s native byteorder.

This procedure is parallel to port->string etc. (see Section 6.22.7.4 [Input utility functions],
page 216).

[Function]write-uvector vec :optional oport start end endian
{gauche.uvector} Writes out the content of the uniform vector vec ’as is’ to the output
port oport. If oport is omitted, the current output port is used. If optional start and end
arguments are given, they specify the index range in vec to be written out. A special value
-1 for end indicates the end of vec. This procedure returns an unspecified value.

If you write out a uniform vector except s8vector and u8vector, the care should be taken
about the endianness, as in read-uvector. The optional argument endian specifies the
output endian. When it is omitted, the value of the parameter default-endian is used (see
Section 6.3.7 [Endianness], page 114).

[Function]write-block vec :optional oport start end endian
{gauche.uvector} An old name of write-uvector. Supported for the backward compati-
bility, but new code should use write-uvector.

9.36 gauche.version - Comparing version numbers

[Module]gauche.version
This module provides a convenient procedure to compare version numbers or revision num-
bers, such as "0.5.1", "3.2-3" or "8.2pl1". Usually each release of software component
has a version number, and you can define order between them. For example, version "1.2.3"
is newer than "1.2" and older than "2.1". You can compare those version numbers like this:

(version<? "2.2.3" "2.2.11") ⇒ #t

(version<? "2.3.1" "2.3") ⇒ #f

(version<? "2.3.1-1" "2.3.1-10") ⇒ #t

(version<? "13a" "5b") ⇒ #f

There are no standard way to name versions, so I chose one convention. This won’t work for
all possible variations, but I think it covers typical cases.

Strictly speaking, you can only define partial order between version numbers, for there can
be branches. This module uses simple measure and just assumes the version numbers can be
fully ordered.

The version number here is defined by the following syntax.

<version> : <principal-release>

| <version> <post-subrelease>

| <version> <pre-subrelease>

<principal-release> : <relnum>

<post-subrelease> : [.-] <relnum>

<pre-subrelease> : _ <relnum>?

<relnum> : [0-9A-Za-z]+

Typically <relnum> is composed by numeric part and extension part. For example, "23a"
is composed by an integer 23 and extension "a". If <relnum> doesn’t begins with digits, we
assume its numeric part is -1.

Chapter 9: Library modules - Gauche extensions 460

Then, the order of <relnum> is defined as follows:

1. If relnum A and relnum B have different numeric part, we ignore the extension and order
them numerically, e.g. "3b" < "4a".

2. If relnum A and relnum B have the same numeric part, we compare extension by alpha-
betically, e.g. "4c" < "4d" and "5" < "5a".

Given the order of <relnum>, the order of version numbers are defined as follows:

1. Decompose each version number into a list of <principal-release> and subsequence
subrelease components. We call each element of the list "release components".

2. If the first release component of both lists are the same, remove it from both. Repeat
this until the head of the lists differ.

3. Now we have the following cases.

1. Both lists are empty: versions are the same.

2. One list (A) is empty and the other list (B) has post-subrelease at head: A is prior
to B

3. One list (A) is empty and the other list (B) has pre-subrelease at head: B is prior
to A

4. List A’s head is post-subrelease and list B’s head is pre-subrelease: B is prior to A

5. Both lists have post-subrelease or pre-subrelease at head: compare their relnums.

Here are some examples:

"1" < "1.0" < "1.1" < "1.1.1" < "1.1.2" < "1.2" < "1.11"

"1.2.3" < "1.2.3-1" < "1.2.4"

"1.2.3" < "1.2.3a" < "1.2.3b"

"1.2_" < "1.2_rc0" < "1.2_rc1" < "1.2" < "1.2-pl1" < "1.2-pl2"

"1.1-patch112" < "1.2_alpha"

The reason of having <pre-subrelease> is to allow "release candidate" or "pre-release"
version.

A trick: If you want “version 1.2 release or later”, you can say (version<=? "1.2" v). This
excludes prerelease versions such as 1.2_pre3. If you want “verison 1.2 prelease or later”,
you can say (version<=? "1.2_" v), which includes 1.2_pre1 etc., but excludes anything
below, such as 1.1.99999.

It is common if you want to specify acceptable versions with combination of conditions, e.g.
“version 1.3 or later, except version 1.4.1” or “greater than version 1.1 and below 1.5”. A
version spec is an S-expression to represent that condition. You can use version-satisfy?

to check if given version satisfies the spec.

The syntax of version spec is as follows.

<version-spec> : <version>

| (<op> <version>)

| (and <version-spec> ...)

| (or <version-spec> ...)

| (not <version-spec>)

<version> : version string

<op> : = | < | <= | > | >=

[Function]version=? ver1 ver2
[Function]version<? ver1 ver2
[Function]version<=? ver1 ver2
[Function]version>? ver1 ver2

Chapter 9: Library modules - Gauche extensions 461

[Function]version>=? ver1 ver2
{gauche.version} Returns a boolean value depending on the order of two version number
string ver1 and ver2. If the arguments contain invalid strings as the defined version number,
an error is signaled.

[Function]version-compare ver1 ver2
{gauche.version} Compares two version number strings ver1 and ver2, and returns either
-1, 0, or 1, depending whether ver1 is prior to ver2, ver1 is the same as ver2, or ver1 is after
ver2, respectively.

[Function]relnum-compare rel1 rel2
{gauche.version} This is lower-level procedure of version-compare. Compares two release
numbers (relnums) rel1 and rel2, and returns either -1, 0, or 1 depending whether rel1 is
prior to rel2, rel1 is the same as rel2, or rel1 is after rel2, respectively.

The following procedures are to check if a given version satisfies a version specification.

[Function]valid-version-spec? spec
{gauche.version} This is a syntax checker. Returns #t if spec is a valid version specfi-
cation, #f otherwise. See gauche.version module description for the definition of version
specification.

[Function]version-satisfy? spec version
{gauche.version} Returns #t if version satisfies a version specfication spec, #f otherwise.
See gauche.version module description for the definition of version specification.

9.37 gauche.vport - Virtual ports

[Module]gauche.vport
Virtual ports, or procedural ports, are the ports whose behavior can be programmed in
Scheme.

This module provides two kinds of virtual ports: Fully virtual ports, in which every I/O op-
eration invokes user-provided procedures, and virtual buffered ports, in which I/O operations
are done on an internal buffer and user-provided procedures are called only when the buffer
needs to be filled or flushed.

This module also provides virtual buffered ports backed up by a uniform vector, as an example
of the feature.

Fully virtual ports

This type of virtual ports are realized by classes <virtual-input-port> and <virtual-output-

port>. You can customize the port behavior by setting appropriate slots with procedures.

[Class]<virtual-input-port>
{gauche.vport} An instance of this class can be used as an input port. The behavior of the
port depends on the settings of the instance slot values.

To work as a meaningful input port, at least either one of getb or getc slot must be set.
Otherwise, the port returns EOF for all input requests.

[Instance Variable of <virtual-input-port>]getb
If set, the value must be a procedure that takes no arguments. Every time binary input
is required, the procedure is called.

The procedure must return an exact integer between 0 and 255 inclusive, or #f or an EOF
object. If it returns an integer, it becomes the value read from the port. If it returns other
values, the port returns EOF.

Chapter 9: Library modules - Gauche extensions 462

If the port is requested a character input and it doesn’t have the getc procedure, the port
calls this procedure, possibly multiple times, to construct a whole character.

[Instance Variable of <virtual-input-port>]getc
If set, the value must be a procedure that takes no arguments. Every time character input
is required, the procedure is called.

The procedure must return a character, #f or an EOF object. If it returns a character, it
becomes the value read from the port. If it returns other values, the port returns EOF.

If the port is requested a binary input and it doesn’t have the getb procedure, the port
calls this procedure, then converts a character into a byte sequence, and use it as the
binary value(s) read from the port.

[Instance Variable of <virtual-input-port>]gets
If set, the value must be a procedure that takes one argument, a positive exact integer. It
is called when the block binary input, such as read-uvector, is requested. It must return
a (maybe incomplete) string up to the specified size, or #f or EOF object. If it returns a
null string, #f or EOF object, the port thinks it reached EOF. If it returns other string,
it is used as the result of block read. It shouldn’t return a string larger than the given
size (Note: you must count size (bytes), not the number of characters). The reason of this
procedure is efficiency; if this procedure is not provided, the port calls getb procedure
repeatedly to prepare the block of data. In some cases, providing block input can be much
more efficient (e.g. suppose you’re reading from a block of memory chunk).

You can leave this slot unset if you don’t need to take such advantage.

[Instance Variable of <virtual-input-port>]ready
If set, the value must be a procedure that takes one boolean argument. It is called
when char-ready? or byte-ready? is called on the port. The value returned from your
procedure will be the result of these procedures.

The boolean argument is #t if char-ready? is called, or #f if byte-ready? is called.

If unset, char-ready? and byte-ready? always return #t on the port

[Instance Variable of <virtual-input-port>]close
If set, the value must be a procedure that takes no arguments. It is called when the port
is closed. Return value is discarded. You can leave this unset if you don’t need to take an
action when the port is closed.

This procedure may be called from a finalizer, so you have to be careful to write it. See
the note on finalization below.

[Instance Variable of <virtual-input-port>]seek
If set, the value must be a procedure that takes two arguments, offset and whence. The
meaning of them is the same as the arguments to port-seek (see Section 6.22.3 [Common
port operations], page 204). The procedure must adjust the port’s internal read pointer
so that the next read begins from the new pointer. It should return the updated pointer
(the byte offset from the beginning of the port).

If unset, call of port-seek and port-tell on this port will return #f.

Note that this procedure may be called for the purpose of merely querying the current
position, with 0 as offset and SEEK_CUR as whence. If your port knows the read pointer
but cannot move it, you can still provide this procedure, which returns the current pointer
position for such queries and returns #f for other arguments.

Chapter 9: Library modules - Gauche extensions 463

[Class]<virtual-output-port>
{gauche.vport} An instance of this class can be used as an output port. The behavior of
the port depends on the settings of the instance slot values.

To work as an output port, at least either one of putb or putc slot has to be set.

[Instance Variable of <virtual-output-port>]putb
If set, the value must be a procedure that takes one argument, a byte value (exact integer
between 0 and 255, inclusive). Every time binary output is required, the procedure is
called. The return value of the procedure is ignored.

If this slot is not set and binary output is requested, the port may signal an <io-unit-

error> error.

[Instance Variable of <virtual-output-port>]putc
If set, the value must be a procedure that takes one argument, a character. Every time
character output is required, the procedure is called. The return value of the procedure is
ignored.

If this slot is not set but putb slot is set, the virtual port decomposes the character into
a sequence of bytes then calls putb procedures.

[Instance Variable of <virtual-output-port>]puts
If set, the value must be a procedure that takes a (possibly incomplete) string. The return
value of the procedure is ignored.

This is for efficiency. If this slot is not set, the virtual port calls putb or putc repeatedly
to output a chunk of data. But if your code can perform chunked output efficiently, you
can provide this procedure.

[Instance Variable of <virtual-output-port>]flush
If set, the value must be a procedure that takes no arguments. It is called when flushing
a port is required (e.g. flush is called on the port, or the port is being closed).

This procedure is useful that your port does some sort of buffering, or needs to keep some
state. If your port doesn’t do stateful operation, you can leave this unset.

This procedure may be called from a finalizer, and needs a special care. See notes on
finalizers below.

[Instance Variable of <virtual-output-port>]close
The same as <virtual-input-port>’s close slot.

[Instance Variable of <virtual-output-port>]seek
The same as <virtual-input-port>’s seek slot.

Virtual buffered ports

This type of virtual ports are realized by classes <buffered-input-port> and
<buffered-output-port>. You can customize the port behavior by setting appropriate slots
with procedures.

Those ports have internal buffer and only calls Scheme procedures when the buffer needs to
be filled or flushed. Generally it is far more efficient than calling Scheme procedures for every
I/O operation. Actually, the internal buffering mechanism is the same as Gauche’s file I/O
ports.

These ports uses u8vector as a buffer. See Section 9.35 [Uniform vectors], page 447, for the
details.

Chapter 9: Library modules - Gauche extensions 464

[Class]<buffered-input-port>
{gauche.vport} An instance of this class behaves as an input port. It has the following
instance slots. For a meaningful input port, you have to set at least fill slot.

[Instance Variable of <buffered-input-port>]fill
If set, it must be a procedure that takes one argument, a u8vector. It must fill the data
from the beginning of the vector. It doesn’t need to fill the entire vector if there’s not so
many data. However, if there are remaining data, it must fill at least one byte; if the data
isn’t readily available, it has to wait until some data becomes available.

The procedure must return a number of bytes it actually filled. It may return 0 or an
EOF object to indicate the port has reached EOF.

[Instance Variable of <buffered-input-port>]ready
If set, it must be a procedure that takes no arguments. The procedure must return a true
value if there are some data readily available to read, or #f otherwise. Unlike fully virtual
ports, you don’t need to distinguish binary and character I/O.

If this slot is not set, the port is regarded as it always has data ready.

[Instance Variable of <buffered-input-port>]close
If set, it must be a procedure that takes no arguments. The procedure is called when
the virtual buffered port is closed. You don’t need to set this slot unless you need some
cleaning up when the port is closed.

This procedure may be called from a finalizer, and needs special care. See the note on
finalization below.

[Instance Variable of <buffered-input-port>]filenum
If set, it must be a procedure that returns underlying file descriptor number (exact non-
negative integer). The procedure is called when port-file-number is called on the port.

If there’s no such underlying file descriptor, you can return #f, or you can leave this slot
unset.

[Instance Variable of <buffered-input-port>]seek
If set, it must be a procedure that takes two arguments, o↑set and whence. It works the
same way as <virtual-input-port>’s seek procedure; see above.

This procedure may be called from a finalizer, and needs special care. See the note on
finalization below.

Besides those slot values, you can pass an exact nonnegative integer as the :buffer-size

keyword argument to the make method to set the size of the port’s internal buffer. If
:buffer-size is omitted, or zero is passed, the system’s default buffer size (something like
8K) is used. :buffer-size is not an instance slot and you cannot set it after the instance of
the buffered port is created. The following example specifies the buffered port to use a buffer
of size 64K:

(make <buffered-input-port> :buffer-size 65536 :fill my-filler)

[Class]<buffered-output-port>
{gauche.vport} An instance of this class behaves as an output port. It has the following
instance slots. You have to set at least flush slot.

[Instance Variable of <buffered-output-port>]flush
If set, it must be a procedure that takes two arguments, an u8vector buffer and a flag.
The procedure must output data in the buffer to somewhere, and returns the number of
bytes actually output.

If the flag is false, the procedure may output less than entire buffer (but at least one byte).
If the flag is true, the procedure must output entire buffer.

Chapter 9: Library modules - Gauche extensions 465

[Instance Variable of <buffered-output-port>]close
Same as <buffered-input-port>’s close slot.

[Instance Variable of <buffered-output-port>]filenum
Same as <buffered-input-port>’s filenum slot.

[Instance Variable of <buffered-output-port>]seek
Same as <buffered-input-port>’s seek slot.

Besides those slot values, you can pass an exact nonnegative integer as the :buffer-size

keyword argument to the make method to set the size of the port’s internal buffer. See the
description of <buffered-input-port> above for the details.

Uniform vector ports

The following two procedures returns a buffered input/output port backed up by a uniform
vector. The source or destination vector can be any type of uniform vector, but they will
be aliased to u8vector (see uvector-alias in Section 9.35.2 [Uvector conversion operations],
page 453).

If used together with pack/unpack (see Section 12.2 [Packing Binary Data], page 584), it is
useful to parse or construct binary data structure. It is also an example of using virtual ports;
read gauche/vport.scm (or ext/vport/vport.scm in the source tree) if you’re curious about
the implementation.

[Function]open-input-uvector uvector
{gauche.vport} Returns an input port that reads the content of the given uniform vector
uvector from its beginning. If reading operation reaches the end of uvector, EOF is returned.
Seek operation is also implemented.

[Function]open-output-uvector :optional uvector :key extendable
{gauche.vport} Returns an output port that uses the given uvector as the storage for the
data output to the port.

If uvector is completely filled, what happens after that depends on extendable - if it is
false (default), the rest of data is discarded silently. If it is true, the storage is extended
automatically to accomodate more data.

If you give true value to extendable, you have to retrieve the result by get-output-uvector

below, since the uvector you passed in won’t contain spilled data.

As a special case, you can omit uvector argument; then u8vector is used as the storage. In
that case you can’t specify extendable keyword argument, but it is assumed true, since it
won’t make sense otherwise. Use get-output-uvector to retrieve the stored result.

Seek operation is also implemented. Note that the meaning of SEEK_END whence differ be-
tween extendable and fixed-size uvector ports. For extendable ports, the end whence placed
next to the biggest offset of the data ever written; if you open a port and just write one byte,
the end whence is the second byte, no matter how big the existing buffer is. On the other
hand, for fixed-size uvector ports, end whence is fixed to the next to the end of the given
buffer, no matter how much data you’ve written to it. In the latter case, you can’t seek on
or past the end (you need to pass negative number along SEEK_END to port-seek).

[Function]get-output-uvector port :key shared
{gauche.vport} If port is a port created by open-output-uvector, returns a uvector that
contains accumulated data. If port is not a port created by open-output-uvector, #f is
returned.

Chapter 9: Library modules - Gauche extensions 466

The returned uvector is the same type as the one passed to open-output-uvector, containing
up to actually written data; it may be smaller than the uvector passed to open-output-

uvector; it can be larger if the port is extendable.

If the type of uvector is other than s8vector and u8vector, and the written data doesn’t
fill up the whole element won’t be in the result. For example, if you use s32vector to create
the port, then write 7 bytes to it, get-output-uvector returns a single element s32vector,
for the last 3 bytes does not consist a whole 32bit integer.

By default, the returned vector is a fresh copy of the contents. Passing true value to shared
may avoid copying and allow sharing storage for the one being used by port. If you do so,
keep in mind that if you seek back and write to port subsequently, the content of returned
vector may be changed.

List ports

The following procedures allow you to use list of characters or octets as a source of an input
port. These are (a kind of) opposite of port->list family (see Section 6.22.7.4 [Input utility
functions], page 216) or port->char-lseq famliy (see Section 6.19.2 [Lazy sequences], page 185).

[Function]open-input-char-list char-list
[Function]open-input-byte-list byte-list

{gauche.vport} Creates and returns an input port that uses the given list of characters and
bytes as the source.

(read (open-input-char-list ’(#\a #\b)))

⇒ ab

[Function]get-remaining-input-list port
{gauche.vport} If port is the one created by open-input-char-list or open-input-byte-
list, returns a list of remaining data that hasn’t been read yet. If the port already read
everything, or the port is not the one created by open-input-char-list or open-input-

byte-list, an empty list is returned.

A caveat: Gauche allows mixing binary input and textual input from the same port. If
you read or even peek a byte from a port created from a character list, the port buffers a
character and disassembles it to bytes; the disassembled character may not be included in
the remaining input list.

Generator ports

The following procedures allow you to use character generators or byte generators as a source
of an input port. These are (a kind of) opposite of port->char-generator family (see
Section 9.10.1 [Generator constructors], page 344).

[Function]open-input-char-generator cgen
[Function]open-input-byte-generator bgen

{gauche.vport} Creates and returns an input port that uses the given generators as the
source. The cgen argument must be a generator that yields characters. The bgen argument
must be a generator that yields bytes (exact integers between 0 and 255, inclusive). An error
will be raised if the given generator yields incorrect type of objects.

(read (open-input-char-generator (string->generator "foo")))

⇒ foo

Since the generators are objects relying on side effects, you shouldn’t use cgen or bgen after
you pass them to those procedures; if you use them afterwards, the result is undefined.

Chapter 9: Library modules - Gauche extensions 467

[Function]get-remaining-input-generator port
{gauche.vport} If port is the one created by open-input-char-generator or open-input-
byte-generator, returns a generator that yields the characters or bytes that haven’t been
read yet. If the port already read everything, an empty generator is returned.

Once you take the remaining input generator, you should no longer read from the input
generator ports; they share internal states and mixing them will likely to cause unexpected
behaviors. If side-effects safe behavior is desired, use lazy sequence and input list ports.

Note on finalization

If an unclosed virtual port is garbage collected, its close procedure is called (in case of virtual
buffered ports, its flush procedure may also be called before close procedure). It is done by
a finalizer of the port. Since it is a part of garbage-collection process (although the Scheme
procedure itself is called outside of the garbage collector main part), it requires special care.

• It is possible that the object the virtual port has a reference may already be finalized. For
example, if a virtual port X holds the only reference to a sink port Y, to which the output
goes. X ’s flush procedure sends its output to Y. However, if flush procedure can be
called from a finalizer, it may be possible that Y ’s finalizer has already been called and Y
is closed. So X ’s flush procedure has to check if Y has not been closed.

• You cannot know when and in which thread the finalizer runs. So if the procedure like
close or flush of virtual ports need to lock or access the global resource, it needs to take
extra care of avoiding dead lock or conflict of access.

Even in single thread programs, the finalizer can run anywhere in Scheme programs, so
effectively it should be considered as running in a different thread.

468

10 Library modules - R7RS standard libraries

Gauche predates R7RS, and for the convenience, Gauche makes quite a few procedures as built-
in (see Chapter 6 [Core library], page 88). Although the set of Gauche’s core features are
mostly superset of R7RS, some functions and syntaxes have different names and/or interface
from R7RS.

R7RS fully-compatible syntaxes and functions are available in the set of modules described
in this chapter. Since R7RS programs and libraries needs to follow a specific format (import
declaration or define-library form), generally there’s no ambiguity in whether you’re looking
at R7RS code or Gauche-specific code. Also, it is totally transparent to load R7RS library into
Gauche-specific code or vice versa. However, you need to be aware of which “world” you’re in
when you code.

If you’re familiar with Gauche, take a look at the section Section 10.1 [R7RS integration],
page 468, which describes how you can go back and forth between Gauche and R7RS.

10.1 R7RS integration

10.1.1 Traveling between two worlds back and forth

When you start Gauche, either in REPL or as a script, you’re in user module, which inherits
gauche module. Likewise, when you read a library, the initial module inherits gauche module
(until you call select-module). That’s why you can access all the built-in procedures of Gauche
without saying (use something). (See Section 4.13.5 [Module inheritance], page 72, for the
details about inheriting modules).

On the other hand, R7RS requires to be explicit about which namespaces you’ll be using,
by import form, e.g. (import (scheme base)). Besides, R7RS library must be explicitly en-
closed by define-library form. Before the first import form of a program, or outside of
define-library, is beyond R7RS world—the standard defines nothings about it.

These facts let Gauche to set up appropriate “world”, and you can use R7RS code and
traditional Gauche code transparently.

NB: As explained in Section 10.1.2 [Three forms of import], page 470, R7RS import is rather
different from Gauche import, so we note the former r7rs#import and the latter gauche#import
in this section for clarity. When you write code don’t use prefixes r7rs# and gauche#; just write
import.

Loading R7RS libraries

The define-library form is defined as a macro in gauche module; it sets up R7RS environment
before evaluating its contents. So, when you load an R7RS library (either from Gauche code
via use form, or from R7RS code via r7rs#import form), Gauche starts loading the file in
gauche module, but immediately see define-library form, and the rest is handled in R7RS
environment.

Suppose you have an R7RS library (mylib foo) with the following code:

(define-library (mylib foo)

(import (scheme base))

(export snoc)

(begin

(define (snoc x y) (cons y x))))

It should be saved as mylib/foo.scm in one of the directories in *load-path*.

From R7RS code, this library can be loaded by r7rs#import:

(import (mylib foo))

Chapter 10: Library modules - R7RS standard libraries 469

(snoc 1 2) ⇒ (2 . 1)

To use this library from Gauche code, concatenate elements of library names by . to get a
module name, and use it:

(use mylib.foo)

(snoc 1 2) ⇒ (2 . 1)

Loading Gauche libraries

To use Gauche library foo.bar from R7RS code, split the module name by . to make a list for
the name of the library. For example, gauche.lazy module can be used from R7RS as follows:

(import (gauche lazy))

For SRFI modules, R7RS implementations have a convention to name it as (srfi n), and
Gauche follows it. The following code loads srfi-1 and srfi-13 from R7RS code:

(import (srfi 1) (srfi 13))

(It’s not that Gauche treat srfi name specially; installation of Gauche includes adapter
libraries such as srfi/1.scm.)

A tip: To use Gauche’s built-in features (the bindings that are available by default in Gauche
code) from R7RS code, import (gauche base) library (see Section 9.2 [Importing gauche built-
ins], page 308):

(import (gauche base))

filter ⇒ #<closure filter>

Running R7RS scripts

R7RS scripts always begin with import form. However, r7rs#import has a different syntax and
semantics from gauche#import—so we employ a trick.

When gosh is started, it loads the given script file in user module. We have a separate
user#import macro, which examines its arguments and if it is R7RS import syntax, switch
to the r7rs.user module and run the r7rs#import. Otherwise, it runs gauche#import. See
Section 10.1.2 [Three forms of import], page 470, for the details.

An example of R7RS script:

(import (scheme base) (scheme write))

(display "Hello, world!\n")

If you’re already familiar with Gauche scripts, keep in mind that R7RS program doesn’t treat
main procedure specially; it just evaluates toplevel forms from top to bottom. So the following
script doesn’t output anything:

(import (scheme base) (scheme write))

(define (main args)

(display "Hello, world!\n")

0)

To access the command-line arguments in R7RS scripts, use command-line in (scheme

process-context) library (see Section 10.2.12 [R7RS process context], page 479, also see
Section 6.25.2 [Command-line arguments], page 233).

Using R7RS REPL

When gosh is invoked with -r7 option and no script file is given, it enters an R7RS REPL mode.
For the convenience, the following modules (“libraries”, in R7RS term) are pre-loaded.

(scheme base) (scheme case-lambda) (scheme char)

Chapter 10: Library modules - R7RS standard libraries 470

(scheme complex) (scheme cxr) (scheme eval)

(scheme file) (scheme inexact) (scheme lazy)

(scheme load) (scheme process-context) (scheme read)

(scheme repl) (scheme time) (scheme write)

Besides, the history variables *1, *2, *3, *1+, *2+, *3+, *e and *history are available (See
Section 3.2.1 [Working in REPL], page 19, for the details of history variables).

You can know you’re in R7RS REPL by looking at the prompt, where gosh shows the current
module (r7rs.user):

gosh[r7rs.user]>

To switch Gauche REPL from R7RS REPL, import (gauche base) and select user module
using select-module:

gosh[r7rs.user]> (import (gauche base))

#<undef>

gosh[r7rs.user]> (select-module user)

#<undef>

gosh>

(You can (select-module gauche) but that’s usually not what you want to do—changing
gauche module can have unwanted side effects.)

When you’re working on R7RS code in file and load it into R7RS REPL (for example, if
you’re using Emacs Scheme mode, C-c C-l does the job), make sure the file is in proper shape
as R7RS; that is, the file must start with appropriate import declarations, or the file contains
define-library form(s). If you load file without those forms, it is loaded into Gauche’s user
module no matter what your REPL’s current module is, and the definitions won’t be visible
from r7rs.user module by default.

Switching from Gauche REPL

By default, gosh enters Gauche REPL when no script file is given. See Section 3.2.1 [Working
in REPL], page 19, for detailed explanation of using REPL.

To switch Gauche REPL to R7RS REPL, simply use r7rs-style import; user#import knows
you want R7RS and make a switch.

gosh> (import (scheme base))

#<undef>

gosh[r7rs.user]>

If you don’t start gosh with -r7 option, however, only the libraries you given to user#import
are loaded at this moment.

If you want to switch the “vanilla” r7rs environment, that is, even not loading (scheme

base), then you can use r7rs module and directly select r7rs.user:

gosh> (use r7rs)

gosh> (select-module r7rs.user)

gosh[r7rs.user]>

If you do this, the only bindings visible initially are import and define-library; even
define is undefined! You have to manually do (import (scheme base)) etc. to start writing
Scheme in this environment.

10.1.2 Three import forms

For historical reasons, Gauche has three import forms; the original Gauche’s import, R7RS
import, and the hybrid import.

Chapter 10: Library modules - R7RS standard libraries 471

Usually it is clear that the code is written in traditional Gauche or in R7RS, and usage of
import is typically idiomatic, so there’s not much confusion in practice. Only when you talk
about import outside of code, you might need to specify which one you’re talking.

The hybrid import is what we described user#import in the previous section (see
Section 10.1.1 [Traveling between two worlds back and forth], page 468). It understands both
of Gauche’s import and R7RS import. So what you really need to know is the first two.

Gauche’s module system design is inherited from STk, and we’ve been used import for purely
name-space level operation; that is, it assumes the module you import from already exists in
memory. Loading a file that defines the module (if necessary) is done by separate primitives,
require. In most cases one file defines one module, and using that module means require it
then import it (it’s so common that Gauche has a macro for it—use). However, separating
those two sometimes comes handy when you need some nontrivial hacks. See Section 4.13.4
[Using modules], page 70, for the details of Gauche’s import.

R7RS leaves out the relation between modules (libraries) and files in order to give imple-
mentation freedom. If necessary, its import must load a file implicitly and transparently. So
R7RS’s import is semantically Gauche’s use.

The hybrid import only appears at the beginning of the Scheme scripts. It finds out whether
the script is in the traditional Gauche code or in the R7RS code. See Section 10.1.1 [Traveling
between two worlds back and forth], page 468, for the details.

Now we’ll explain R7RS import:

[Special Form]import import-spec . . .
[R7RS] Imports libraries specified by import-specs. What R7RS calls libraries are what
Gauche calls modules; they’re the same thing.

R7RS libraries are named by a list of symbols or integers, e.g. (scheme base) or (srfi

1). It is translated to Gauche’s module name by joining the symbols by periods; so, R7RS
(scheme base) is Gauche’s scheme.base. Conversely, Gauche’s data.queue is available as
(data queue) in R7RS. To use those two libraries, R7RS program needs this form at the
beginning.

(import (scheme base)

(data queue))

It works just like Gauche’s use forms; that is, if the named module doesn’t exist in the
current process, it loads the file; then the module’s exported bindings become visible from
the current module.

(use scheme.base)

(use data.queue)

(You may wonder what if R7RS library uses symbols with periods in them. Frankly, we
haven’t decided yet. It’ll likely be that we use some escaping mechanism; for the time being
you’d want to stick with alphanumeric characters and hyphens as possible.)

Just like Gauche’s use, you can select which symbols to be imported (or not imported),
rename specific symbols, or add prefix to all imported symbols. The formal syntax of R7RS
import syntax is as follows:

<import declaration> : (import <import-set> <import-set> ...)

<import-set> : <library-name>

| (only <import-set> <identifier> <identifier> ...)

| (except <import-set> <identifier> <identifier> ...)

| (prefix <import-set> <identifier>)

| (rename <import-set>

(<identifier> <identifier>)

(<identifier> <identifier>) ...)

Chapter 10: Library modules - R7RS standard libraries 472

<library-name> : (<identifier-or-base-10-integer>

<identifier-or-base-10-integer> ...)

10.2 R7RS small language

10.2.1 R7RS library form

R7RS libraries are defined by define-library form.

In R7RS view, define-library form itself does not belong to a Scheme code—it exists
outside of the Scheme world. It defines the boundary of R7RS Scheme; inside define-library
there is R7RS world, but outside, it’s not a business of R7RS. For example, you can’t generate
define-library by a macro, within R7RS specification.

In Gauche, we implement R7RS world inside Gauche world; define-library itself is inter-
preted in the Gauche world. In fact, define-library is a Gauche macro. However, if you’re
writing portable R7RS code, you should forget how define-library is implemented, and do
not put anything outside of define-library form.

[Macro]define-library library-name library-decl . . .
[R7RS] Defines a library library-name, which is a list of symbols or base-10 integer:

<library-name> : (<identifier-or-base-10-integer>

<identifier-or-base-10-integer> ...)

Library declarations library-decl can be export declarations, import declarations, begin-list
of Scheme code, include forms, or cond-expand forms.

<library-decl> : (export <export-spec> ...)

| <import declaration>

| (begin <command-or-definition> ...)

| (include <string> <string2> ...)

| (include-ci <string> <string2> ...)

| (include-library-declarations

<string> <string2> ...)

| (cond-expand <cond-expand-clause>

<cond-expand-clause2> ...)

| (cond-expand <cond-expand-clause>

<cond-expand-clause2> ...

(else <library-decl> ...))

The export declaration is the same Gauche’s export form; see Section 4.13.4 [Using modules],
page 70.

The import declaration is R7RS’s import form, described in Section 10.1.2 [Three forms of
import], page 470.

The include and include-ci declarations are the same as Gauche’s; see Section 4.11 [Inclu-
sions], page 63. Note that Gauche allows any code to be included—the content of the named
file is simply wrapped with begin and substituted with these forms—but in R7RS definition,
what you include must contain only Scheme code (not one of the library declarations or
define-library form).

The include-library-declarations declaration works like include, but the content of the
read file is interpreted as library declarations instead of Scheme code.

The cond-expand declaration is also the same as Gauche’s; see Section 4.12 [Feature condi-
tional], page 64. When used directly below define-library, it must expands to one of the
library declarations.

Chapter 10: Library modules - R7RS standard libraries 473

10.2.2 scheme.base - R7RS base library

[Module]scheme.base
Exports bindings of R7RS (scheme base) library. From R7RS programs, those bindings are
available by (import (scheme base)).

Bindings common to Gauche’s built-ins

The following syntaxes and procedures are the same as Gauche’s builtins:

Primitive expression types
quote if include include-ci lambda

Derived expression types
cond case and or when unless cond-expand let let* letrec letrec*

let-values let*-values begin do make-parameter parameterize

guard quasiquote unquote unquote-splicing case-lambda

Macros

let-synatx letrec-syntax syntax-rules syntax-error define-syntax

Variable definitions
define define-values

Record type definitions
define-record-type

Equivalence predicates
eqv? eq? equal?

Numbers

number? complex? real? rational? integer? exact? exact-integer?

= < > <= >= zero? positive? negative? odd? even? max min + * - / abs

floor/ floor-quotient floor-remainder

truncate/ truncate-quotient truncate-remainder

quotient modulo remainder gcd lcm numerator denominator

floor ceiling truncate round rationalize square exact-integer-sqrt

expt inexact exact number->string string->number

Booleans

not boolean? boolean=?

Pairs and lists
pair? cons car cdr set-car! set-cdr! caar cadr cdar cddr null? list?

make-list list length append reverse list-tail list-ref list-set!

memq memv member assq assv assoc list-copy

Symbols

symbol? symbol=? symbol->string string->symbol

Characters
char? char=? char<? char>? char<=? char>=? char->integer integer->char

Strings

string? make-string string string-length string-ref string-set!

string=? string<? string>? string<=? string>=? substring string-append

string->list list->string string-copy string-copy! string-fill!

Chapter 10: Library modules - R7RS standard libraries 474

Vectors

vector? make-vector vector vector-length vector-ref vector-set!

vector->list list->vector vector->string string->vector

vector-copy vector-copy! vector-append vector-fill!

Control features
procedure? apply map call-with-current-continuation call/cc

values call-with-values dynamic-wind

Exception

error

Environments and evaluation
scheme-report-environment null-environment

Input and output
input-port? output-port? port? current-input-port current-output-port

current-error-port close-port close-input-port close-output-port

open-input-string open-output-string get-output-string

read-char peek-char read-line eof-object? eof-object char-ready?

newline write-char

Bytevector utilities

[Function]bytevector n . . .
[Function]bytevector? obj
[Function]make-bytevector size :optional byte
[Function]bytevector-length bv
[Function]bytevector-u8-ref bv index
[Function]bytevector-u8-set! bv index byte
[Function]bytevector-copy bv :optional start end
[Function]bytevector-copy! to at from :optional start end
[Function]bytevector-append bv . . .

[R7RS base] {scheme.base} R7RS’s bytevector is Gauche’s u8vector.

These are equivalent to gauche.uvector’s u8vector, u8vector?, make-u8vector,
u8vector-length, u8vector-ref, u8vector-set!, u8vector-copy, u8vector-copy!, and
u8vector-append, respectively. (see Section 9.35 [Uniform vectors], page 447).

These two procedures are the same as the ones in gauche.unicode module (see Section 9.34.1
[Unicode transfer encodings], page 443):

utf8->string string->utf8

Control features

[Function]string-map proc str . . .
[Function]string-for-each proc str . . .

[R7RS base] {scheme.base} These take different arguments from string-map and
string-for-each in SRFI-13 (see Section 11.5.10 [SRFI-13 String mapping], page 524), so
provided only in scheme.base module to avoid confusion.

If you pass only one string argunemt, however, it works exactly the same way in both srfi-13

and scheme.base.

[Function]with-exception-handler handler thunk
[R7RS base] {scheme.base} handler is evaluated in the dynamic environment of the call
to handler, except that the current exception handler is that in place for the call to
with-exception-handler.

Chapter 10: Library modules - R7RS standard libraries 475

If the exception is not continuable, it is reraised after evaluating handler and handled by the
exception handler in place for the call to with-exception-handler.

This slightly differs from Gauche’s built-in with-exception-handler, which calls handler
without replacing the current exception handler. See Section 6.20.3 [Handling exceptions],
page 194, for the details.

[Function]raise obj
[Function]raise-continuable obj

[R7RS base] {scheme.base} Gauche’s raisemay return if obj isn’t a <serious-condition>.
Distinguishing continuable and noncontinuable exception throw by the procedure has an issue
when your exception handler wants to reraise the condition (you don’t know if the original
condition is raised by raise or raise-continuable!). Yet R7RS adoted that model, so we
compel.

R7RS raise is a wrapper of Gauche’s raise, which throws an error if Gauche’s raise returns.

R7RS raise-continuable is currently just an alias of Gauche’s raise—as long as you don’t
pass <serious-condition>, it may return. It is not exactly R7RS comformant—it won’t
return if you pass <serious-condition> or object of one of its subclasses (e.g. <error>),
but it’s weired to expect returning from raising <error>, isn’t it?

[Function]error-object? exc
[R7RS base] {scheme.base} Defined as (condition-has-type? exc <error>))

[Function]error-object-message exc
[R7RS base] {scheme.base} If exc is a <message-condition>, returns its message-prefix
slot; otherwise, returns an empty string.

[Function]error-object-irritants exc
[R7RS base] {scheme.base} If exc is a <message-condition>, returns its message-args

slot; otherwise, returns an empty string.

[Function]read-error? exc
[R7RS base] {scheme.base} Defined as (condition-has-type? e <read-error>)).

[Function]file-error? exc
[R7RS base] {scheme.base} At this moment, Gauche doesn’t have distinct <file-error>

condition, but most file errors are thrown as one of <system-error>s. This procedure checks
error code of <system-error> and returns #t if the error is likely to be related to the
filesystem.

Input and output

[Function]textual-port? port
[Function]binary-port? port

[R7RS base] {scheme.base} Gauche’s port can handle both, so these are equivalent to port?.

[Function]input-port-open? iport
[Function]output-port-open? oport

[R7RS base] {scheme.base} Checks whether iport/oport is an input/output port and it is
not closed.

[Function]open-input-bytevector u8vector
[Function]open-output-bytevector
[Function]get-output-bytevector port

[R7RS base] {scheme.base} These are basically the same as open-input-uvector,
open-output-uvector and get-output-uvector in gauche.vport (see Section 9.37 [Virtual
ports], page 461), except that R7RS procedures only deal with <u8vector>.

Chapter 10: Library modules - R7RS standard libraries 476

[Function]read-u8 :optional iport
[Function]peek-u8 :optional iport
[Function]u8-ready? :optional iport

[R7RS base] {scheme.base} These are aliases to read-byte, peek-byte and byte-ready?,
respectively.

[Function]read-bytevector size :optional iport
[R7RS base] {scheme.base} Equivalent to (read-uvector <u8vector> size iport). See
Section 9.35.4 [Uvector block I/O], page 458.

[Function]read-bytevector! bv :optional iport start end
[R7RS base] {scheme.base} An alias to read-uvector!. See Section 9.35.4 [Uvector block
I/O], page 458.

[Function]write-u8
[R7RS base] {scheme.base} An alias to write-byte.

[Function]write-bytevector bv :optional oport start end
[R7RS base] {scheme.base} Equivalent to write-uvector. See Section 9.35.4 [Uvector block
I/O], page 458.

[Function]flush-output-port :optional oport
[R7RS base] {scheme.base} An alias to flush.

[Function]features
[R7RS base] {scheme.base} Returns a list of symbols of supported feature identifiers, rec-
ognized by cond-expand (see Section 4.12 [Feature conditional], page 64).

10.2.3 scheme.case-lambda - R7RS case-lambda

[Module]scheme.case-lambda
Exports bindings of R7RS (scheme case-lambda) library. From R7RS programs, those
bindings are available by (import (scheme case-lambda)).

The only binding exported from this module is case-lambda, and it is the same as Gauche’s
built-in case-lambda; see Section 4.3 [Making Procedures], page 40, for the details.

10.2.4 scheme.char - R7RS char library

[Module]scheme.char
Exports bindings of R7RS (scheme char) library. From R7RS programs, those bindings are
available by (import (scheme char)).

The following procedures are the same as Gauche’s builtin procedures; see Section 6.10
[Characters], page 133.

char-alphabetic? char-ci<=? char-ci<? char-ci=? char-ci>=? char-ci>?

char-downcase char-foldcase char-lower-case? char-numeric?

char-upcase char-upper-case? char-whitespace?

The following procedures are the same as the ones provided in gauche.unicode module (see
Section 9.34.3 [Full string case conversion], page 446). They use full case folding by Unicode
standard (e.g. taking into account of German eszett).

string-ci<=? string-ci<? string-ci=? string-ci>=? string-ci>?

string-downcase string-foldcase string-upcase

Chapter 10: Library modules - R7RS standard libraries 477

[Function]digit-value c
[R7RS char] {scheme.char} If c is a character with Nd general category—that is, if it repre-
sents a decimal digit—this procedure returns the value the character represents. Otherwise
it returns #f.

(digit-value #\3) ⇒ 3

(digit-value #\z) ⇒ #f

Note that Unicode defines about two dozen sets of digit characters.

(digit-value #\x11068) ⇒ 2

Gauche’s built-in procedure digit->integer has more general interface (see Section 6.10
[Characters], page 133).

(digit-value c) ≡ (digit->integer c 10 #t)

10.2.5 scheme.complex - R7RS complex numbers

[Module]scheme.complex
Exports bindings of R7RS (scheme complex) library. From R7RS programs, those bindings
are available by (import (scheme complex)).

This module provides the following bindings, all of which are Gauche built-in (see Section 6.3.5
[Numerical conversions], page 110).

angle imag-part magnitude make-polar make-rectangular real-part

10.2.6 scheme.cxr - R7RS cxr accessors

[Module]scheme.cxr
Exports bindings of R7RS (scheme cxr) library. From R7RS programs, those bindings are
available by (import (scheme cxr)).

This module provides the following bindings, all of which are Gauche built-in (see Section 6.6.4
[List accessors and modifiers], page 118).

caaar caadr cadar caddr cdaar cdadr cddar cdddr caaaar caaadr caadar

caaddr cadaar cadadr caddar cadddr cdaaar cdaadr cdadar cdaddr cddaar

cddadr cdddar cddddr

10.2.7 scheme.eval - R7RS eval

[Module]scheme.eval
Exports bindings of R7RS (scheme eval) library. From R7RS programs, those bindings are
available by (import (scheme eval)).

[Function]eval expr environment
[R7RS eval] {scheme.eval} This is the same as Gauche’s built-in eval (see Section 6.21
[Eval and repl], page 202).

[Function]environment import-list . . .
[R7RS eval] {scheme.eval} This is R7RS way to create an environment specifier suitable to
pass to eval. In Gauche, an environment specifier is just a module object.

The argument is the same as what r7rs#import takes. This procedure creates an empty
environment (as a fresh anonymous module; see make-module in Section 4.13.6 [Module
introspection], page 72, for the details), then imports the bindings as specified by import-
lists.

Chapter 10: Library modules - R7RS standard libraries 478

The following example creates an environment that includes scheme.base bindings plus
select-module syntax from Gauche.

(environment

’(scheme base)

’(only (gauche base) select-module))

⇒ #<module #f> ; an anonymous module

10.2.8 scheme.file - R7RS file library

[Module]scheme.file
Exports bindings of R7RS (scheme file) library. From R7RS programs, those bindings are
available by (import (scheme file)).

The following bindings provided in this module are Gauche built-in (see Section 6.22.4 [File
ports], page 207, and Section 6.25.4.4 [File stats], page 240).

call-with-input-file call-with-output-file

file-exists?

open-input-file open-output-file

with-input-from-file with-output-to-file

The following binding is the same as one in file.util (see Section 12.23.4 [File operations],
page 641).

delete-file

[Function]open-binary-input-file ↓lename
[Function]open-binary-output-file ↓lename

[R7RS file] {scheme.file} In Gauche, ports are both textual and binary at the same time,
so these R7RS procedures are just aliases of open-input-file and open-output-file, re-
spectively. See Section 6.22.4 [File ports], page 207.

10.2.9 scheme.inexact - R7RS inexact numbers

[Module]scheme.inexact
Exports bindings of R7RS (scheme inexact) library. From R7RS programs, those bindings
are available by (import (scheme inexact)).

This module provides the following bindings, all of which are Gauche built-in (see Section 6.3.4
[Arithmetics], page 103, and Section 6.3.2 [Numerical predicates], page 101).

acos asin atan cos exp finite? infinite? log nan? sin sqrt tan

10.2.10 scheme.lazy - R7RS lazy evaluation

[Module]scheme.lazy
Exports bindings of R7RS (scheme lazy) library. From R7RS programs, those bindings are
available by (import (scheme lazy)).

The following bindings this module provides are Gauche built-ins (see Section 6.19.1 [Delay
force and lazy], page 185).

delay force promise?

[Special Form]delay-force promise
[R7RS lazy] {scheme.lazy} This is the same as Gauche’s built-in lazy. see Section 6.19.1
[Delay force and lazy], page 185, for the discussion about when this form should be used.

Chapter 10: Library modules - R7RS standard libraries 479

[Function]make-promise obj
[R7RS lazy] {scheme.lazy} If obj is a promise, it is returned as is. Otherwise, A promise,
which yields obj when forced, is returned. Because this is a procedure, expression passed as
obj is eagerly evaluated, so this doesn’t have effect on lazy evaluation, but can be used to
ensure you have a promise.

This procedure is important on implementations where force only takes a promise, and
portable code should use this procedure to yield a value that can be passed to force.

If you write Gauche-specific code, however, force can take non-promise values, so you don’t
need this.

10.2.11 scheme.load - R7RS load

[Module]scheme.load
Exports bindings of R7RS (scheme load) library. From R7RS programs, those bindings are
available by (import (scheme load)).

[Function]load ↓le :optional env
[R7RS load] {scheme.load} R7RS load takes environment as an optional argument, while
Gauche load takes it as a keyword argument (among other keyword arguments). See
Section 6.23.1 [Loading Scheme file], page 225.

In Gauche, env is just a module. In portable code, you can create a module with desired
bindings with R7RS environment procedure; see Section 10.2.7 [R7RS eval], page 477.

10.2.12 scheme.process-context - R7RS process context

[Module]scheme.process-context
Exports bindings of R7RS (scheme process-context) library. From R7RS programs, those
bindings are available by (import (scheme process-context)).

The following bindings are the same as Gauche built-ins (see Section 6.25.2 [Command-line
arguments], page 233, and Section 6.25.1 [Program termination], page 232):

command-line exit

The following bindings are the same as SRFI-98 (see Section 11.18 [Accessing environment
variables], page 549):

get-environment-variable get-environment-variables

[Function]emergency-exit :optional (obj 0)
[R7RS process-context] {scheme.process-context} Terminate the program without running
any clean-up procedures (after thunks of dynamic-wind). Internally, it calls the _exit(2)

system call directly. The optional argument is used for the process exit code.

This is almost the same as Gauche’s sys-exit, except that sys-exit requires the exit code
object (see Section 6.25.1 [Program termination], page 232).

10.2.13 scheme.read - R7RS read

[Module]scheme.read
Exports bindings of R7RS (scheme read) library. From R7RS programs, those bindings are
available by (import (scheme read)).

The only binding exported from this module is read, which is the same as Gauche’s built-in.
See Section 6.22.7.1 [Reading data], page 212.

Chapter 10: Library modules - R7RS standard libraries 480

10.2.14 scheme.repl - R7RS repl

[Module]scheme.repl
Exports bindings of R7RS (scheme repl) library. From R7RS programs, those bindings are
available by (import (scheme repl)).

The only binding exported from this module is interaction-environment, which is the
same as Gauche’s built-in. See Section 6.21 [Eval and repl], page 202.

10.2.15 scheme.time - R7RS time

[Module]scheme.time
Exports bindings of R7RS (scheme time) library. From R7RS programs, those bindings are
available by (import (scheme time)).

[Function]current-second
[R7RS time] {scheme.time} Returns a real number represents the number of seconds since
the midnight of Jan. 1, 1970 TAI (which is 23:59:52, Dec 31, 1969 UTC, that is, -8 seconds
before Unix Epoch.) Number of leap seconds were inserted since then, and as of 2014, UTC
is 35 seconds behind TAI. That means the number returned is 27 seconds larger than the
unix time, which is returned from sys-time or sys-gettimeofday.

The reason that R7RS adopts TAI is that it is monotonic and suitable to take difference of
two timepoints. The unix time returned by sys-time and sys-gettimeofday are defined in
terms of UTC date and time, so if the interval spans across leap seconds, it won’t reflect the
actual number of seconds in the interval. (The precise definition is given in section 4.15 of
IEEE Std 1003.1, 2013 Edition, a.k.a Single Unix Specification 4.)

However, since we don’t know yet when the next leap second happen, the current implemen-
tation just uses a fixed amount of offset from the unix time.

Just be aware the difference, or you’ll be surprised if you pass the return value of
current-second to the UTC time formatter such as sys-strftime, or compare it with
the file timestamps which uses the unix time. You can convert between TAI and UTC using
srfi-19 (see Section 11.7.4 [SRFI-19 Date], page 529).

[Function]current-jiffy
[R7RS time] {scheme.time} Returns an exact integer measuring a real (wallclock) time
elapsed since some point in the past, which does not change while a process is running. The
time unit is (/ jiffies-per-second)-th second.

The absolute value of current jiffies doesn’t matter, but the difference can be used to measure
the time interval.

[Function]jiffies-per-second
Returns a constant to tell how many time units used in current-jiffy consists of a second.
Currently this is 10^9 on 64bit architectures (that is, nanosecond resolution) and 10^4 on
32bit architectures (100 microseconds resolution).

The resolution for 32bit architectures is unfortunately rather coarse, but if we make it finer
the current jiffy value easily becomes bignums, taking time to allocate and operate, beating
the purpose of benchmarking. With the current choice, we have 53,867 seconds before we
spill into bignum. On 64bit architectures we have enough bits not to worry about bignums,
with nanosecond resolution.

If you want to do more finer benchmarks on 32bit machines, you need to roll your own with
sys-clock-gettime-monotonic or sys-gettimeofday.

Chapter 10: Library modules - R7RS standard libraries 481

10.2.16 scheme.write - R7RS write

[Module]scheme.write
Exports bindings of R7RS (scheme write) library. From R7RS programs, those bindings
are available by (import (scheme write)).

This module provides the following bindings, all of which are Gauche built-in (see
Section 6.22.8.3 [Object output], page 219).

display write write-shared write-simple

10.2.17 scheme.r5rs - R5RS compatibility

[Module]scheme.r5rs
This module is to provide R5RS environment in R7RS programs. The following bindings
are exported. Note that lambda is scheme#lambda, without the support of extended formals
(:optional etc.) See Section 4.3 [Making Procedures], page 40, for the details of extended
formals.

* + - / < <= = > >= abs acos and angle append apply asin assoc assq

assv atan begin boolean? caaaar caaadr caaar caadar caaddr caadr

caar cadaar cadadr cadar caddar cadddr caddr cadr

call-with-current-continuation call-with-input-file

call-with-output-file call-with-values car case cdaaar cdaadr cdaar

cdadar cdaddr cdadr cdar cddaar cddadr cddar cdddar cddddr cdddr cddr

cdr ceiling char->integer char-alphabetic? char-ci<=? char-ci<?

char-ci=? char-ci>=? char-ci>? char-downcase char-lower-case?

char-numeric? char-ready? char-upcase char-upper-case? char-whitespace?

char<=? char<? char=? char>=? char>? char? close-input-port

close-output-port complex? cond cons cos current-input-port

current-output-port define define-syntax delay denominator display

do dynamic-wind eof-object? eq? equal? eqv? eval even? exact->inexact

exact? exp expt floor for-each force gcd if imag-part inexact->exact

inexact? input-port? integer->char integer? interaction-environment

lambda lcm length let let* let-syntax letrec letrec-syntax list

list->string list->vector list-ref list-tail list? load log magnitude

make-polar make-rectangular make-string make-vector map max member

memq memv min modulo negative? newline not null-environment null?

number->string number? numerator odd? open-input-file open-output-file

or output-port? pair? peek-char positive? procedure? quasiquote quote

quotient rational? rationalize read read-char real-part real? remainder

reverse round scheme-report-environment set! set-car! set-cdr! sin

sqrt string string->list string->number string->symbol string-append

string-ci<=? string-ci<? string-ci=? string-ci>=? string-ci>?

string-copy string-fill! string-length string-ref string-set!

string<=? string<? string=? string>=? string>? string? substring

symbol->string symbol? tan truncate values vector vector->list

vector-fill! vector-length vector-ref vector-set! vector?

with-input-from-file with-output-to-file write write-char zero?

10.3 R7RS large

R7RS large is still under development, and we’re gradually adding support of the libraries that
has been passed.

Chapter 10: Library modules - R7RS standard libraries 482

10.3.1 scheme.list - R7RS lists

[Module]scheme.list
This module is a rich collection of list manipulation procedures, and same as srfi-1.

Note that Gauche supports quite a few scheme.list procedures as built-in. The following
procedures can be used without loading scheme.list module. For the manual entries of
these procedures, Section 6.6 [Pairs and Lists], page 116.

null-list? cons* last member

take drop take-right drop-right take! drop-right!

delete delete! delete-duplicates delete-duplicates!

assoc alist-copy alist-delete alist-delete!

any every filter filter! fold fold-right find find-tail

split-at split-at! iota

List constructors

[Function]xcons cd ca
[R7RS list] {scheme.list} Equivalent to (cons ca cd). Useful to pass to higher-order pro-
cedures.

[Function]list-tabulate n init-proc
[R7RS list] {scheme.list} Constructs an n-element list, in which each element is generated
by (init-proc i).

(list-tabulate 4 values) ⇒ (0 1 2 3)

[Function]circular-list elt1 elt2 . . .
[R7RS list] {scheme.list} Constructs a circular list of the elements.

(circular-list ’z ’q) ⇒ (z q z q z q ...)

List predicates

[Function]not-pair? x
[R7RS list] {scheme.list} Same as (lambda (x) (not (pair? x))).

SRFI-1 says: Provided as a procedure as it can be useful as the termination condition for
list-processing procedures that wish to handle all finite lists, both proper and dotted.

[Function]list= elt= list . . .
[R7RS list] {scheme.list} Determines list equality by comparing every n-th element of given
lists by the procedure elt=.

It is an error to apply list= to anything except proper lists.

The equality procedure must be consistent with eq?, i.e.

(eq? x y) ⇒ (elt= x y).

List selectors

[Function]first pair
[Function]second pair
[Function]third pair
[Function]fourth pair
[Function]fifth pair
[Function]sixth pair
[Function]seventh pair

Chapter 10: Library modules - R7RS standard libraries 483

[Function]eighth pair
[Function]ninth pair
[Function]tenth pair

[SRFI-1] {scheme.list} Returns n-th element of the (maybe improper) list.

[Function]car+cdr pair
[R7RS list] {scheme.list} Returns two values, (car pair) and (cdr pair).

List miscellaneous routines

[Function]zip clist1 clist2 . . .
[R7RS list] {scheme.list} Equivalent to (map list clist1 clist2 ...). If zip is passed
n lists, it returns a list as long as the shortest of these lists, each element of which is an
n-element list comprised of the corresponding elements from the parameter lists.

(zip ’(one two three)

’(1 2 3)

’(odd even odd even odd even odd even))

⇒ ((one 1 odd) (two 2 even) (three 3 odd))

(zip ’(1 2 3)) ⇒ ((1) (2) (3))

At least one of the argument lists must be finite:

(zip ’(3 1 4 1) (circular-list #f #t))

⇒ ((3 #f) (1 #t) (4 #f) (1 #t))

[Function]unzip1 list
[Function]unzip2 list
[Function]unzip3 list
[Function]unzip4 list
[Function]unzip5 list

[R7RS list] {scheme.list} unzip1 takes a list of lists, where every list must contain at least
one element, and returns a list containing the initial element of each such list. unzip2 takes
a list of lists, where every list must contain at least two elements, and returns two values: a
list of the first elements, and a list of the second elements. unzip3 does the same for the first
three elements of the lists, and so on.

(unzip2 ’((1 one) (2 two) (3 three))) ⇒
(1 2 3) and
(one two three)

List fold, unfold & map

[Function]pair-fold kons knil clist1 clist2 . . .
[Function]pair-fold-right kons knil clist1 clist2 . . .

[R7RS list] {scheme.list} Like fold and fold-right, but the procedure kons gets each cdr

of the given clists, instead of car.

(pair-fold cons ’() ’(a b c d e))

⇒ ((e) (d e) (c d e) (b c d e) (a b c d e))

(pair-fold-right cons ’() ’(a b c d e))

⇒ ((a b c d e) (b c d e) (c d e) (d e) (e))

[Function]unfold p f g seed :optional tail-gen
[R7RS list] {scheme.list} Fundamental recursive list constructor. Defined by the following
recursion.

(unfold p f g seed tail-gen) ≡

Chapter 10: Library modules - R7RS standard libraries 484

(if (p seed)

(tail-gen seed)

(cons (f seed)

(unfold p f g (g seed))))

That is, p determines where to stop, g is used to generate successive seed value from the
current seed value, and f is used to map each seed value to a list element.

(unfold (pa$ = 53) integer->char (pa$ + 1) 48)

⇒ (#\0 #\1 #\2 #\3 #\4)

[Function]unfold-right p f g seed :optional tail
[R7RS list] {scheme.list} Fundamental iterative list constructor. Defined by the following
recursion.

(unfold-right p f g seed tail) ≡
(let lp ((seed seed) (lis tail))

(if (p seed)

lis

(lp (g seed) (cons (f seed) lis))))

(unfold-right (pa$ = 53) integer->char (pa$ + 1) 48)

⇒ (#\4 #\3 #\2 #\1 #\0)

[Function]map! f clist1 clist2 . . .
[R7RS list] {scheme.list} The procedure f is applied to each element of clist1 and corre-
sponding elements of clist2s, and the result is collected to a list. Cells in clist1 is reused to
construct the result list.

[Function]map-in-order f clist1 clist2 . . .
[R7RS list] {scheme.list} A variant of map, but it guarantees to apply f on each elements
of arguments in a left-to-right order. Since Gauche’s map implementation follows the same
order, this function is just a synonym of map.

[Function]pair-for-each f clist1 clist2 . . .
[R7RS list] {scheme.list} Like for-each, but the procedure f is applied on clists themselves
first, then each cdrs of them, and so on.

(pair-for-each write ’(a b c))

⇒ prints (a b c)(b c)(c)

List partitioning

[Function]partition pred list
[Function]partition! pred list

[R7RS list] {scheme.list} filter and remove simultaneously, i.e. returns two lists, the
first is the result of filtering elements of list by pred, and the second is the result of removing
elements of list by pred.

(partition odd? ’(3 1 4 5 9 2 6))

⇒ (3 1 5 9) (4 2 6)

partition! is the linear-update variant. It may destructively modifies list to produce the
result.

List searching

[Function]take-while pred clist
[Function]take-while! pred list

[R7RS list] {scheme.list} Returns the longest initial prefix of clist whose elements all satisfy
pred.

Chapter 10: Library modules - R7RS standard libraries 485

[Function]drop-while pred clist
[R7RS list] {scheme.list} Drops the longest initial prefix of clist whose elements all satisfy
pred, and returns the rest.

[Function]span pred clist
[Function]span! pred list
[Function]break pred clist
[Function]break! pred list

[R7RS list] {scheme.list} span is equivalent to (values (take-while pred clist) (drop-

while pred clist)). break inverts the sense of pred.

[Function]list-index pred clist1 clist2 . . .
[R7RS list] {scheme.list} Returns the index of the leftmost element that satisfies pred. If
no element satisfies pred, #f is returned.

Association lists

[Function]alist-cons key datum alist
[R7RS list] {scheme.list} Returns (cons (cons key datum) alist). This is an alias of the
Gauche builtin procedure acons.

Lists as sets

These procedures use a list as a set, that is, the elements in a list matter, but their order doesn’t.

All procedures in this category takes a comparison procedure elt=, as the first argument,
which is used to determine two elements in the given sets are the same.

Since lists require linear time to search, those procedures aren’t suitable to deal with large
sets. See Section 10.3.4 [R7RS sets], page 494, if you know your sets will contain more than a
dozen items or so.

See also Section 12.60 [Combination library], page 731, which concerns combinations of ele-
ments in the set.

[Function]lset<= elt= list1 . . .
[R7RS list] {scheme.list} Returns #t iff all elements in list1 are also included in list2, and
so on. If no lists are given, or a single list is given, #t is returned.

[Function]lset= elt= list1 list2 . . .
[R7RS list] {scheme.list} Returns #t if all elements in list1 are in list2, and all elements in
list2 are in list1, and so on.

(lset= eq? ’(b e a) ’(a e b) ’(e e b a)) ⇒ #t

[Function]lset-adjoin elt= list elt . . .
[R7RS list] {scheme.list} Adds elt . . . to the set list, if each one is not already a member
of list. (The order doesn’t matter).

(lset-adjoin eq? ’(a b c) ’a ’e) ⇒ ’(e a b c)

[Function]lset-union elt= list1 . . .
[R7RS list] {scheme.list} Returns the union of the sets list1

[Function]lset-intersection elt= list1 list2 . . .
[R7RS list] {scheme.list} Returns a set of elements that are in every lists.

[Function]lset-difference elt= list1 list2 . . .
[R7RS list] {scheme.list} Returns a set of elements that are in list1 but not in list2. In
n-ary case, binary differece operation is simply folded.

Chapter 10: Library modules - R7RS standard libraries 486

[Function]lset-xor elt= list1 . . .
[R7RS list] {scheme.list} Returns the exclusive-or of given sets; that is, the returned set
consists of the elements that are in either list1 or list2, but not in both. In n-ary case, binary
xor operation is simply folded.

[Function]lset-diff+intersection elt= list1 list2 . . .
[R7RS list] {scheme.list} Returns two sets, a difference and an intersection of given sets.

[Function]lset-union! elt= list . . .
[Function]lset-intersection! elt= list1 list2 . . .
[Function]lset-difference! elt= list1 list2 . . .
[Function]lset-xor! elt= list1 . . .
[Function]lset-diff+intersection! elt= list1 list2 . . .

[R7RS list] {scheme.list} Linear update variant of the corresponding procedures. The cells
in the first list argument may be reused to construct the result.

10.3.2 scheme.vector - R7RS vectors

[Module]scheme.vector
This module adds rich set of vector operations to the built-in / R7RS vector procedures.

The following procedures are built-in. See Section 6.14 [Vectors], page 160, for the description.
We only explain the procedures that are not built-in.

make-vector vector vector?

vector-ref vector-set! vector-length

vector-fill! vector-copy vector-copy!

vector-append vector->list list->vector

reverse-list->vector vector->string string->vector

vector-map vector-map! vector-for-each

This module is srfi-133, which supersedes srfi-43 (see Section 11.12 [Vector library
(Legacy)], page 542). Note that the interface of following procedures in srfi-43 are changed
for the consistency:

vector-map vector-map! vector-for-each

vector-fold vector-fold-right vector-count

Some of the functionalities of srfi-43 version is supported by built-in procedures (e.g. Built-
in vector-map-with-index is the same as srfi-43’s vector-map). So there’s little point for
new code to use srfi-43.

Vector constructors

[Function]vector-unfold f length seed . . .
[R7RS vector] {scheme.vector} Creates a vector of length length, filling elements left to
right by calling f repeatedly.

The procedure f must take as many arguments as one plus number of seed values, and must
return the same number of values. The first argument is the index. The first return value is
used for the element of the result vector, and the rest of return values are passed to the next
call of f.

(vector-unfold (^[i] (* i i)) 5)

⇒ #(0 1 4 9 16)

(vector-unfold (^[i x] (values (cons i x) (* x 2))) 8 1)

⇒ #((0 . 1) (1 . 2) (2 . 4) (3 . 8)

(4 . 16) (5 . 32) (6 . 64) (7 . 128))

Chapter 10: Library modules - R7RS standard libraries 487

[Function]vector-unfold-right f length seed . . .
[R7RS vector] {scheme.vector} Creates a vector of length length, filling elements right to
left by calling f repeatedly.

The procedure f must take as many arguments as one plus number of seed values, and must
return the same number of values. The first argument is the index. The first return value is
used for the element of the result vector, and the rest of return values are passed to the next
call of f.

(vector-unfold-right (^[i] (* i i)) 5)

⇒ #(0 1 4 9 16)

(vector-unfold-right (^[i x] (values (cons i x) (* x 2))) 8 1)

⇒ #((0 . 128) (1 . 64) (2 . 32) (3 . 16)

(4 . 8) (5 . 4) (6 . 2) (7 . 1))

[Function]vector-reverse-copy vec :optional start end
[R7RS vector] {scheme.vector} Copies the vector vec with reversing its elements. Optional
start and end arguments can limit the range of the input.

(vector-reverse-copy ’#(a b c d e) 1 4)

⇒ #(d c b)

[Function]vector-concatenate list-of-vectors
[R7RS vector] {scheme.vector} Same as (apply vector-append list-of-vectors).

[Function]vector-append-subvectors spec . . .
[R7RS vector] {scheme.vector} The number of arguments must be multiple of 3. The
argument list must be in the following format, where each vecN is a vector, and startN and
endN are nonnegative integers:

vec1 start1 end1 vec2 start2 end2 ...

This procedure creates a new vector by concatenating subvectors specified by each triplet.
That is, it works as if it’s the following code, except it avoids copying each subvector:

(vector-append (vector-copy vec1 start1 end1)

(vector-copy vec2 start2 end2)

...)

Here’s an example:

(vector-append-subvectors ’#(a b c d e) 0 3

’#(f g h i j) 2 5)

⇒ #(a b c h i j)

Vector predicates

[Function]vector-empty? vec
[R7RS vector] {scheme.vector} Returns #t if vec’s length is zero, and #f if vec’s length is
more than zero. Signals an error if vec is not a vector.

[Function]vector= elt= vec . . .
[R7RS vector] {scheme.vector} Compares vecs element-wise, using given predicate elt=.
Returns #t iff lengths of all the vectors are the same, and every corresponding elements are
equal by elt=. Elt= is always called with two arguments and must return #t iff two are the
same.

Chapter 10: Library modules - R7RS standard libraries 488

Vector iteration

[Function]vector-fold kons knil vec1 vec2 . . .
[R7RS vector] {scheme.vector} Kons is a procedure that takes n+1 arguments, where n is
the number of given vectors. For each element of the given vectors, kons is called as (kons
seed e_1i e_2i ...), where and e ni is the i-th element of the vector n. If the lengths of
the vectors differ, iteration stops when the shortest vector is exhausted.

The initial value of seed is knil, and the return value from kons is used as the next seed value.
The last return value of kons is returned from vector-fold.

The iteration is strictly left to right.

Note that the seed value precedes elements, which is opposite to fold (see Section 9.5.1
[Mapping over collection], page 323). It’s an unfortunate historical glitch; vector-fold-
left would be more consistent name.

(vector-fold (^[a b] (cons b a)) ’() ’#(a b c d))

⇒ (d c b a)

[Function]vector-fold-right kons knil vec1 vec2 . . .
[R7RS vector] {scheme.vector} Like vector-fold, but elements in the vec1 vec2 . . . are
visited from right to left.

Unlike fold-right (see Section 9.28.3 [Mapping over sequences], page 414), the procedure
kons takes the accumulated value in the first argument.

(vector-fold-right (^[a b] (cons b a)) ’() ’#(a b c d))

⇒ (a b c d)

[Function]vector-count pred vec1 vec2 . . .
[R7RS vector] {scheme.vector} Applies pred on each elements in argument vectors (if N
vectors are given, pred takes N arguments, the first being i-th element of vec1, the second
being i-th element of vec2, etc.) Then returns the number of times pred returned true value.
The order pred applied to each element is unspecified.

(vector-count odd? ’#(0 1 2 3 4)

⇒ 2

(vector-count < ’#(7 3 9 1 5) ’#(6 8 2 3 8 8))

⇒ 3

[Function]vector-cumulate f seed vec
[R7RS vector] {scheme.vector} Returns a fresh vector with the same size of vec, with the
elements calculated as follows:

The first element of result vector is a result of procedure f called with seed and the first
element of vec.

The i-th element of result vector is a result of procedure f called with i-1-th element of result
vector and i-th element of vec.

(vector-cumulate string-append "z" ’#("a" "b" "c"))

⇒ #("za" "zab" "zabc")

Vector searching

[Function]vector-index pred vec1 vec2 . . .
[Function]vector-index-right pred vec1 vec2 . . .

[R7RS vector] {scheme.vector} Returns the index of the first or the last elements in
vec1 vec2 . . . that satisfy pred, respectively. Returns #f if no elements satisfy pred. In
vector-index, comparison ends at the end of the shortest vector. For vector-index-right,
all the vectors must have the same length.

Chapter 10: Library modules - R7RS standard libraries 489

[Function]vector-skip pred vec1 vec2 . . .
[Function]vector-skip-right pred vec1 vec2 . . .

[R7RS vector] {scheme.vector} Like vector-index and vector-index-right, except that
the result of pred is negated. That is, returns the index of the first or the last elements that
don’t satisfy pred.

[Function]vector-binary-search vec value cmp :optional start end
[R7RS+] {scheme.vector} Look for value in a sorted vector vec, and returns its index if it
is found, or #f if it is not found.

Comparison of value and an element in vec is done by a procedure cmp, which takes two
arguments, and should return a negative integer if the first argument is less than the second,
0 if they are the same, and a positive integer if the first is greater than the second.

Elements in vec must be ordered from smaller to greater w.r.t. cmp. Using that fact, this
procedure performs binary search instead of linear search.

The optional arguments start and end are an extention to SRFI-133, and can be used to limit
the range of the search in start-th element (inclusive) to end-th element (exclusive).

[Function]vector-any pred vec1 vec2 . . .
[R7RS vector] {scheme.vector} Applies pred on each corresponding elements of vec1 vec2
. . . left to right, and as soon as pred returns non-#f value, the procedure stops iteration and
returns the value.

If no elements that satisfy pred are found, it returns #f.

Vectors can have different lengths. Iteration stops at the end of the shortest.

[Function]vector-every pred vec1 vec2 . . .
[R7RS vector] {scheme.vector} Applies pred on each corresponding elements of vec1 vec2
. . . left to right. If all the elements (when the lengths of vectors differ, the first N elements
where N is the length of the shortest) satisfy pred, returns the last result of pred. If any of
the elements don’t satisfy pred, it returns #f immediately without looking further.

(vector-every < ’#(1 2 3 4 5) ’#(2 3 4 4 5)

⇒ #f

(vector-every (^[x y] (and (real? x) (real? y) (- x y)))

’#(1 2 3)

’#(2 4 6))

⇒ -3

[Function]vector-partition pred vec
[R7RS vector] {scheme.vector} Allocates a fresh vector of the same size as vec, then fill it
with elements in vec that satisfy pred, followed by elements that don’t satisfy pred.

Returns two values, the newly created vector and an exact integer of the index of the first
element that doesn’t satisfy pred in the returned vector.

(vector-partition odd? ’#(1 2 3 4 5 6 7 8))

⇒ #(1 3 5 7 2 4 6 8) and 4

Vector mutators

[Function]vector-swap! vec i j
[R7RS vector] {scheme.vector} Swaps vector vec’s i-th and j-th elements. Returns unspec-
ified value.

(rlet1 v (vector ’a ’b ’c ’d ’e)

(vector-swap! v 0 2))

⇒ #(c b a d e)

Chapter 10: Library modules - R7RS standard libraries 490

[Function]vector-reverse! vec :optional start end
[R7RS vector] {scheme.vector} Reverse the elements of vec. Returns an undefined value.
Optional start and end arguments can limit the range of operation.

(rlet1 v (vector ’a ’b ’c ’d ’e)

(vector-reverse! v 0 4))

⇒ #(d c b a e)

[Function]vector-reverse-copy! target tstart source :optional sstart send
[R7RS vector] {scheme.vector} Like vector-copy!, but reverses the order of elements from
start.

(rlet1 v (vector ’a ’b ’c ’d ’e)

(vector-reverse-copy! v 2 ’#(1 2)))

⇒ #(a b 2 1 e)

It is ok to pass the same vector to target and source; it always works even if the regions of
source and destination are overlapping.

(rlet1 v (vector ’a ’b ’c ’d ’e)

(vector-reverse-copy! v 1 v 1))

⇒ #(a e d c b)

[Function]vector-unfold! f rvec start end seeds . . .
[Function]vector-unfold-right! f rvec start end seeds . . .

[R7RS vector] {scheme.vector} Fill rvec starting from index start (inclusive) and ending at
index end (exclusive), with the elements calculated by f.

The procedure f takes the number of seed values seeds . . . plus one arguments. The first
argument is the current index, followed by seed values. The same number of values as the
arguments must be returned from f ; the first return value is used to fill the current element
of rvec, and the rest of the values are used as the next seed values.

The result vector is filled from left to right by vector-unfold!, and right to left by
vector-unfold-right!. The return value is unspecified.

(let1 rvec (vector ’a ’b ’c ’d ’e ’f)

(vector-unfold! (^[i] (+ i 1)) rvec 1 4)

rvec)

⇒ #(a 2 3 4 e f)

(let1 rvec (vector ’a ’b ’c ’d ’e ’f)

(vector-unfold-right! (^[i] (+ i 1)) rvec 1 4)

rvec)

⇒ #(a 2 3 4 e f)

(let1 rvec (vector ’a ’b ’c ’d ’e ’f)

(vector-unfold! (^[i x] (values x (* x 2))) rvec 1 5 10)

rvec)

⇒ #(a 10 20 40 80 f)

(let1 rvec (vector ’a ’b ’c ’d ’e ’f)

(vector-unfold! (^[i x] (values x (* x 2))) rvec 1 5 10)

rvec)

⇒ #(a 80 40 20 10 f)

Chapter 10: Library modules - R7RS standard libraries 491

Vector conversion

[Function]reverse-vector->list vec :optional start end
[R7RS vector] {scheme.vector} Same as (reverse (vector->list vec start end)), but
more efficient.

10.3.3 scheme.sort - R7RS sort

[Module]scheme.sort
Provides utilities to sort, and to work on sorted lists/vectors. This module is the same as
srfi-132.

Gauche has built-in sort and merge procedures (see Section 6.24 [Sorting and merging],
page 230). This module has a bit different API. Notably, the ordering predicate comes first
than the sequence to be sorted, and the procedures dealing with vectors uniformly support
start/end arguments

This module also provide useful procedures working on sorted or partially sorted sequences.

[Function]list-sort elt< lis
[Function]list-sort! elt< lis
[Function]list-stable-sort elt< lis
[Function]list-stable-sort! elt< lis

[R7RS sort] {scheme.sort} Sort elements in a list lis according to the ordering predicate
elt<, which takes two elements from lis and returns true iff the first argument is strictly less
than the second argument.

Returns a sorted list. The procedures with bang are allowed, but not required, to reuse lis.
The “stable” variation guarantees stable sort.

These are basically the same as Gauche’s built-in sort, sort!, stable-sort and
stable-sort!, except the Gauche’s version works on any sequences and takes arguments
differently. (See Section 6.24 [Sorting and merging], page 230.)

[Function]list-sorted? elt< lis
[R7RS sort] {scheme.sort} Returns true if the list list is sorted according to the ordering
predicate elt<.

See also sorted? in Section 6.24 [Sorting and merging], page 230.

[Function]list-merge elt< lis1 lis2
[Function]list-merge! elt< lis1 lis2

[R7RS sort] {scheme.sort} Given two sorted lists lis1 and lis2, returns a new sorted list
according to the ordering predicate elt<.

Note that list-merge! works in-place, that is, all the pairs in lis1 and lis2 are reused.

See also merge and merge! in Section 6.24 [Sorting and merging], page 230.

[Function]vector-sort elt< vec :optional start end
[Function]vector-stable-sort elt< vec :optional start end

[R7RS sort] {scheme.sort} Sort elements in a vector vec according to the ordering predicate
elt<, which takes two elements from vec and returns true iff the first argument is strictly less
than the second argument. Returns a fresh sorted vector. The “stable” variation guarantees
stable sort.

When the optional start and/or end arguments are given, only the portion from start (in-
clusive) and end (exlusive) of vec are looked at. The result vector’s length is end - start).
When end is omitted, the length of vec is assumed.

See also sort and stable-sort in Section 6.24 [Sorting and merging], page 230.

Chapter 10: Library modules - R7RS standard libraries 492

[Function]vector-sort! elt< vec :optional start end
[Function]vector-stable-sort! elt< vec :optional start end

[R7RS sort] {scheme.sort} Sort elements “in-place” in a vector vec according to the ordering
predicate elt<, which takes two elements from vec and returns true iff the first argument is
strictly less than the second argument. Upon successful return, vec’s elements are sorted.
Returns unspecified value; the caller must rely on the side effect.

When the optional start and/or end arguments are given, only the portion from start (inclu-
sive) and end (exlusive) of vec are sorted; other elements will remain intact. When end is
omitted, the length of vec is assumed.

See also sort! and stable-sort! in Section 6.24 [Sorting and merging], page 230.

[Function]vector-sorted? elt< vec :optional start end
[R7RS sort] {scheme.sort} Returns true iff vec between start (inclusive) and end (exlusive)
is sorted according to the ordering predicate elt<. If start and/or end is/are omitted, 0 and
the length of vec are assumed, respectively.

See also sorted? in Section 6.24 [Sorting and merging], page 230.

[Function]vector-merge elt< vec1 vec2 :optional start1 end1 start2 end2
[Function]vector-merge! elt< rvec vec1 vec2 :optional rstart start1 end1 start2

end2
[R7RS sort] {scheme.sort} Merge two sorted vectors vec1 and vec2 into one vector, accord-
ing to the ordering predicate elt<.

The optional argument start1 and end1 restricts vec1’s portion to be looked at, and start2
and end2 restricts vec2’s portion to be looked at.

The functional version vector-merge allocates a fresh vector to hold the result, and returns
it.

The side-effecting version vector-merge! uses rvec. to hold the result. The procedure doesn’t
return a meaningful value. The optional rstart argument specifies the index of rvec from
which the result is filled; the default is 0.

[Function]list-delete-neighbor-dups elt= lis
[Function]list-delete-neighbor-dups! elt= lis
[Function]vector-delete-neighbor-dups elt= vec :optional start end)
[Function]vector-delete-neighbor-dups! elt= vec :optional start end)

[R7RS sort] {scheme.sort} From the given list lis or vector vec, these procedures delete
adjacent duplicate elements. Equivalence is checked by elt= procedure.

(list-delete-neighbor-dups eq? ’(m i s s i s s i p p i))

⇒ (m i s i s i p i)

The non-destructive versions list-delete-neighbor-dups and vector-delete-neighbor-

dups returns a freshly allocated list and vector, respectively.

The destructive list-delete-neighbor-dups! works in-place, reusing pairs of lis. No allo-
cation will be done.

The destructive vector-delete-neighbor-dups! has a bit different interface. It updates
vec in-place, but since we can’t change the length of the vector, it gathers the result from
the beginning of the vec, then returns the next index newend of vec—that is, after calling
this procedure, [start, newend) holds the result. The elements between [newend, end) will
remain intact.

The optional start and end arguments limits the region of vec to be looked at.

(vector-delete-neighbor-dups eq? ’#(a a a b b c c d d e e f f) 3 10)

⇒ #(b c d e)

Chapter 10: Library modules - R7RS standard libraries 493

(let1 v ’#(a a a b b c c d d e e f f)

(cons (vector-delete-neighbor-dups! eq? v 3 10) v))

⇒ (7 . #(a a a b c d e d d e e f f))

Note: The gauche.sequence module provides neighbor duplicate deletion on generic se-
quences. Those procedures are implemented by the generic versions as shown below. See
Section 9.28.4 [Other operations over sequences], page 415, for the details.

list-delete-neighbor-dups

delete-neighbor-dups

list-delete-neighbor-dups!

delete-neighbor-dups-squeeze!

vector-delete-neighbor-dups

delete-neighbor-dups

vector-delete-neighbor-dups!

delete-neighbor-dups!

[Function]vector-select! elt< vec k :optional start end
[R7RS sort] {scheme.sort} Select k-th smallest element in vec according to the ordering
predicate elt<. K is zero based, i.e. 0 means the smallest. The optional start and end
arguments limits the range of vec to be looked at, and defaulted to 0 and the length of vec,
respectively. K must satisfy start <= k < end.

This procedure runs in O(n) time, and requires no extra stroage. This procedure may partially
modify vec.

[Function]vector-separate! elt< vec k :optional start end
[R7RS sort] {scheme.sort} Find k-th smallerst element in vec (pivot) between between start
and end, according to the ordering predicate elt<, then rearrange elements between start and
end so that elements smaller than the pivot comes between start and start + k, and the
rest of the elements come afterwards. When omitted, start is 0 and end is the lenght of the
vec.

This can be used as a building block for in-place divide-and-conquer algorithms. Runs in
O(n) time.

[Function]vector-find-median elt< vec knil :optional mean
[Function]vector-find-median! elt< vec knil :optional mean

[R7RS sort] {scheme.sort} Find median value of elements in vec, when ordered by the
ordering predicate elt<. Non-destructive version vector-find-median runs in O(n) time.
The destructive version vector-find-median! is specified to leave vec sorted, so it runs in
O(n log n).

1. If vec is empty, knil is returned. This is the only case knil is used.

2. If vec has odd number of elements, the element falls in the exactly the midpoint when
ordered, is returned.

3. If vec has even number of elements, the two elements closest to the midpoint is chosen
and passed to the procedure mean, and its result is returned. The default of mean is an
arithmetic mean of numbers.

(vector-find-median < #() 0)

⇒ 0

(vector-find-median < #(78 61 19 38 51) 0)

Chapter 10: Library modules - R7RS standard libraries 494

⇒ 51

(vector-find-median < #(78 61 19 38 51 52) 0)

⇒ 103/2

10.3.4 scheme.set - R7RS sets

[Module]scheme.set
Sets and bags are unordered collection of Scheme values. A set doesn’t count duplicates; if
you add an item which is already in a set, you still have one item of the kind. A bag counts
duplicates; if you add an item which is already in a bag, you have two items of the kind.

To check whether the items are “the same”, sets and bags takes a comparator at constrution
time. The comparator doesn’t need to have an ordering predicate (we don’t need to order the
elements) but has to have a hash function. See Section 6.2.4 [Basic comparators], page 95,
for the details of comparators.

This module is originally specified as srfi-113, and then incorporated to R7RS large.

As a Gauche’s extension, sets and bags implement collection protocol (see Section 9.5 [Collec-
tion framework], page 322, for the details), and generic collection operations can be applied.

(coerce-to <list> (set eq-comparator ’a ’b ’a ’b))

⇒ (a b) ; order may differ

(coerce-to <list> (bag eq-comparator ’a ’b ’a ’b))

⇒ (a a b b) ; order may differ

Constructors

[Function]set comparator elt . . .
[Function]bag comparator elt . . .

[R7RS set] {scheme.set} Creates a new set and bag from given elements elt Given
comparator will be used to compare equality of elements.

(set->list (set eq-comparator ’a ’b ’a ’b))

⇒ (a b)

(bag->list (bag eq-comparator ’a ’b ’a ’b))

⇒ (a a b b)

[Function]set-unfold stop? mapper successor seed comparator
[Function]bag-unfold stop? mapper successor seed comparator

[R7RS set] {scheme.set} Procedurally creates a set or a bag. The first three arguments,
stop?, mapper and successor, are all procedures that takes one argument, the current seed
value. It may be easier to know their types:

seed :: Seed

stop? :: Seed -> Boolean

mapper :: Seed -> ElementType

successor :: Seed -> Seed

The stop? procedure takes the current seed value and returns a boolean value - if it is true,
iteration stops.

The mapper procedure takes the current seed value and returns an item, which is to be
included in the resulting set or bag.

The successor procedure takes the current seed value and returns the next seed value.

Chapter 10: Library modules - R7RS standard libraries 495

And the seed argument gives the initial seed value.

(set->list (set-unfold (^s (= s 75))

integer->char

(^s (+ s 1))

65

eqv-comparator))

⇒ (#\D #\H #\A #\E #\I #\J #\B #\F #\C #\G)

Predicates

[Function]set-contains? set obj
[Function]bag-contains? bag obj

[R7RS set] {scheme.set} Check if obj is in the set or the bag.

[Function]set-empty? set
[Function]bag-empty? bag

[R7RS set] {scheme.set} Returns #t iff the given set or bag is empty.

[Function]set-disjoint? set1 set2
[Function]bag-disjoint? bag1 bag2

[R7RS set] {scheme.set} Returns #t iff the given arguments (sets or bags) don’t have com-
mon items. Both arguments must have the same comparator—otherwise an error is signaled.

Accessors

[Function]set-member set obj default
[Function]bag-member bag obj default

[R7RS set] {scheme.set} Returns an element in the given set or bag which is equal to obj
in terms of the set’s or the bag’s comparator. If no such element is found, default will be
returned.

Note that the returned object doesn’t need to be “the same” as obj in a usual sense. See the
following example:

(let s (set string-ci-comparator "abc" def")

(set-member s "ABC" #f))

⇒ "abc"

[Function]set-element-comparator set
[Function]bag-element-comparator bag

[R7RS set] {scheme.set} Returns the comparator used to compare the elements for the set
or the bag.

Updaters

[Function]set-adjoin set elt . . .
[Function]bag-adjoin bag elt . . .

[R7RS set] {scheme.set} Returns a newly created set or bag that contains all the elements
in the original set/bag, plus given elements. The new set/bag’s comparator is the same as
the original set/bag’s one.

[Function]set-replace set elt
[Function]bag-replace bag elt

[R7RS set] {scheme.set} Returns a newly created set/bag with the same comparator with
the original set/bag, and the same elements, except that the elements equal to elt (in terms

Chapter 10: Library modules - R7RS standard libraries 496

of set/bag’s comparator) is replaced by elt. If the original set/bag doesn’t contain an element
equal to elt, the original one is returned.

(let ((s (set string-ci-comparator "ABC" "def")))

(set->list (set-replace s "abc")))

⇒ ("abc" "def")

[Function]set-delete set elt . . .
[Function]bag-delete bag elt . . .

[R7RS set] {scheme.set} Returns a newly created set or bag that has the same comparator
and the same elements in the original set/bag, except that the item which is equal to elt.

[Function]set-delete-all set elt-list
[Function]bag-delete-all bag elt-list

[R7RS set] {scheme.set} Returns a newly created set or bag with the same comparator of
the original set/bag, with the elements of the original set/bag except the ones listed in elt-list.

[Function]set-adjoin! set elt . . .
[Function]bag-adjoin! bag elt . . .
[Function]set-replace! set elt
[Function]bag-replace! bag elt
[Function]set-delete! set elt . . .
[Function]bag-delete! bag elt . . .
[Function]set-delete-all! set elt-list
[Function]bag-delete-all! bag elt-list

[R7RS set] {scheme.set} These are the linear update versions of their counterparts. It works
just like the ones without !, except that the original set/bag may be reused to produce the
result, instead of new one being allocated.

Note that it’s not guaranteed that the original set/bag is modified, so you should use the
return value of them, instead of relying on the side effects.

[Function]set-search! set elt failure success
[Function]bag-search! bag elt failure success

[R7RS set] {scheme.set} Lookup-and-modify procedures. The failure and success arguments
are procedures.

First, they search elt in the given set/bag. If an item that matches elt is found, the success
procedure is called with three arguments, as follows:

(success item update remove)

The update argument is a procedure that takes two arguments, as (update new-item

retval). It replaces the matching item in the set/bag with new-item, and returns retval. The
remove argument is a procedure that takes one argument, as (remove retval). It removes
the mathing item in the set/bag, and returns retval.

If an item that matches elt is not found, the failure procedure is called with two arguments,
as follows:

(failure insert ignore)

The insert argument is a procedure that takes one argument, as (insert retval). It inserts
elt into the set/bag, and returns retval. The ignore argument is a procedure that takes one
argument, as (ignore retval). It just returns retval.

The return values of set-search! and bag-search! is the modified set/bag (which may or
may not be eq? to the passed one), and the value returned by success or failure procedures.

Note that retval isn’t used in this process; it is just to provide one of the return values of
set-search!/bag-search!, for the procedures passed to success or failure are expected to
be tail-called.

Chapter 10: Library modules - R7RS standard libraries 497

If there are more than one item that matches elt in a bag, bag-search! only invokes success
for the first item it finds. You can recurse into bag-search! in the failure procedure to visit
all matching items. It is guaranteed that success and failure procedures are tail-called.

The whole set

[Function]set-size set
[Function]bag-size bag

[R7RS set] {scheme.set} Returns the number of items in the set/bag.

[Function]set-find pred set failure
[Function]bag-find pred bag failure

[R7RS set] {scheme.set} Apply pred on each item in the set/bag, and returns the first item
on which pred returns true. Since sets and bags are unordered, if there are more than one
items that satisfy pred, you won’t know which one will be returned.

If there’re no items that satisfy pred, a thunk failure is called and its result is returned.

[Function]set-count pred set
[Function]bag-count pred bag

[R7RS set] {scheme.set} Returns the number of items that satisfy pred in the set/bag.

[Function]set-any? pred set
[Function]bag-any? pred bag

[R7RS set] {scheme.set} Returns true iff any item in the set/bag satisfy pred.

[Function]set-every? pred set
[Function]bag-every? pred bag

[R7RS set] {scheme.set} Returns true iff every item in the set/bag satisfy pred.

Mapping and folding

[Function]set-map comparator proc set
[Function]bag-map comparator proc bag

[R7RS set] {scheme.set} Create and return a new set/bag with the comparator comparator,
whose items are calculated by applying proc to each element in the original set/bag.

[Function]set-for-each proc set
[Function]bag-for-each proc bag

[R7RS set] {scheme.set} Apply proc to each element in the set/bag. The result of proc is
ignored. Return value is undefined.

[Function]set-fold proc seed set
[Function]bag-fold proc seed bag

[R7RS set] {scheme.set} For each item in the set/bag, call proc with two arguments, an
item and a seed value. What proc returns becomes the next seed value. The seed argu-
ment gives the initial seed value, and the last return value of proc will be the result of
set-fold/bag-fold.

(bag-fold + 0 (bag eqv-comparator 1 1 2 2 3 3 4 4))

⇒ 20

[Function]set-filter pred set
[Function]bag-filter pred bag

[R7RS set] {scheme.set} Returns a newly created set/bag with the same comparator of the
original set/bag, and its content consists of items from the original set/bag that satisfy pred.

(set->list (set-filter odd? (set eqv-comparator 1 2 3 4 5)))

⇒ (1 3 5)

Chapter 10: Library modules - R7RS standard libraries 498

[Function]set-remove pred set
[Function]bag-remove pred bag

[R7RS set] {scheme.set} Returns a newly created set/bag with the same comparator of the
original set/bag, and its content consists of items from the original set/bag that does not
satisfy pred.

(set->list (set-remove odd? (set eqv-comparator 1 2 3 4 5)))

⇒ (2 4)

[Function]set-partition pred set
[Function]bag-partition pred bag

[R7RS set] {scheme.set} Returns two sets or bags, both have the same comparator of the
original set or bag. The first one consists of the items from the original set/bag that satisfy
pred, and the second one consists of the items that don’t.

(receive (in out) (set-remove odd? (set eqv-comparator 1 2 3 4 5))

(values (set->list in)

(set->list out)))

⇒ (1 3 5) and (2 4)

[Function]set-filter! pred set
[Function]bag-filter! pred bag
[Function]set-remove! pred set
[Function]bag-remove! pred bag
[Function]set-partition! pred set
[Function]bag-partition! pred bag

[R7RS set] {scheme.set} Linear update versions of their counterparts (the procedures with-
out !). They work like their respective counterpart, but they are allowed (but not required)
to reuse the original set/bag to produce the result(s).

Note that it is not guaranteed that the original set/bag is modified, so you have to use the
return value(s) instead of relying on the side effects.

Copying and conversion

[Function]set-copy set
[Function]bag-copy bag

[R7RS set] {scheme.set} Returns a copy of the set/bag.

[Function]set->list set
[Function]bag->list bag

[R7RS set] {scheme.set} Returns a list of all items in the set/bag. Since sets and bags are
unordered, there’s no guarantee on the order of items.

[Function]list->set comparator elt-list
[Function]list->bag comparator elt-list

[R7RS set] {scheme.set} Creates a set or a bag with the given comparator, and the list of
element. Functionally equivalent to the followings:

(apply set comparator elt-list)

(apply bag comparator elt-list)

[Function]list->set! set elt-list
[Function]list->bag! bag elt-list

[R7RS set] {scheme.set} Add items in elt-list to the existing set/bag, and returns the up-
dated set/bag. The original set/bag is also modified. Functionally equivalent to the follow-
ings:

(apply set-adjoin! set elt-list)

Chapter 10: Library modules - R7RS standard libraries 499

(apply bag-adjoin! bag elt-list)

[Function]bag->set bag
[Function]set->bag set

[R7RS set] {scheme.set} Conversions between a bag and a set. Returns a newly created bag
or set, respectively.

If bag has duplicated items, bag->set coerces them to one item.

[Function]set->bag! bag set
[R7RS set] {scheme.set} Adds all items in set to bag, and returns bag. Both bag and set
must have the same comparator.

[Function]bag->alist bag
[R7RS set] {scheme.set} Returns a list of (item . count), where item is an item in bag,
and count is the number of that item in the bag.

[Function]alist->bag comparator alist
[R7RS set] {scheme.set} Creates a new bag with comparator, and fills it according to alist,
which must be a list of (item . count).

If there’s duplicate items in alist, only fist one counts.

Subsets

[Function]set=? set1 set2 . . .
[Function]bag=? bag1 bag2 . . .

[R7RS set] {scheme.set} Returns true iff all sets/bags have exactly same items.

The comparators of the argument sets/bags are not checked, but assumed to be the same, in
terms of the equality of items.

[Function]set<? set1 set2 . . .
[Function]bag<? bag1 bag2 . . .
[Function]set>? set1 set2 . . .
[Function]bag>? bag1 bag2 . . .
[Function]set<=? set1 set2 . . .
[Function]bag<=? bag1 bag2 . . .
[Function]set>=? set1 set2 . . .
[Function]bag>=? bag1 bag2 . . .

[R7RS set] {scheme.set} Returs true iff each preceding set/bag is a proper subset of, a
proper superset of, a subset of, or a superset of the following set/bags, respectively.

Again, the comparators of the argument sets/bags are not checked, but assumed to be the
same, in terms of the equality of items.

Set theory operations

[Function]set-union set1 set2 . . .
[Function]bag-union bag1 bag2 . . .

[R7RS set] {scheme.set} Returns a newly allocated set or bag which is a union of all the
sets/bags.

[Function]set-intersection set1 set2 . . .
[Function]bag-intersection bag1 bag2 . . .

[R7RS set] {scheme.set} Returns a newly allocated set or bag which is an intersection of all
the sets/bags.

Chapter 10: Library modules - R7RS standard libraries 500

[Function]set-difference set1 set2 . . .
[Function]bag-difference bag1 bag2 . . .

[R7RS set] {scheme.set} Returns a newly created set or bag that contains items in set1/bag1
except those are also in set2/bag2

(sort (set->list (set-difference (set eqv-comparator 1 2 3 4 5 6 7)

(set eqv-comparator 3 5 7 9 11 13)

(set eqv-comparator 4 8 16 32))))

⇒ (1 2 6)

[Function]set-xor set1 set2
[Function]bag-xor bag1 bag2

[R7RS set] {scheme.set} Returns a newly created set or bag that consists of items that are
either in set1/bag1 or set2/bag2, but not in both.

(sort (set->list (set-xor (set eqv-comparator 2 3 5 7 11 13 17)

(set eqv-comparator 3 5 7 9 11 13 15))))

⇒ (2 9 15 17)

[Function]set-union! set1 set2 . . .
[Function]bag-union! bag1 bag2 . . .
[Function]set-intersection! set1 set2 . . .
[Function]bag-intersection! bag1 bag2 . . .
[Function]set-difference! set1 set2 . . .
[Function]bag-difference! bag1 bag2 . . .
[Function]set-xor! set1 set2
[Function]bag-xor! bag1 bag2

[R7RS set] {scheme.set} Linear update versions of their corresponding procedures. Those
procedures works like their !-less counterparts, except that they are allowed to, but not
required to, reuse set1/bag1 to produce the result.

The caller should always use the returned set/bag instead of relying on the side effects.

Bag-specific procedures

[Function]bag-sum bag1 bag2 . . .
[Function]bag-sum! bag1 bag2 . . .

[R7RS set] {scheme.set} Returns a bag that gathers all the items in given bags, counting
duplicates. The functional version bag-sum always creates new bag to return. The linear
update version bag-sum! is allowed to, but not required to, modify bag1 to produce the
result.

(sort (bag->list (bag-sum (bag eqv-comparator 1 1 2 4 5 5 6)

(bag eqv-comparator 3 3 5 9))))

⇒ (1 1 2 3 3 4 5 5 5 6 9)

Note the difference from bag-union:

(sort (bag->list (bag-union (bag eqv-comparator 1 1 2 4 5 5 6)

(bag eqv-comparator 3 3 5 9))))

⇒ (1 1 2 3 3 4 5 5 6 9)

[Function]bag-product n bag
[Function]bag-product! n bag

[R7RS set] {scheme.set} Returns a bag that contains every item as n-times many as the
original bag. A fresh bag is created and returned by bag-product, while bag-product! may
reuse bag to produce the result.

(sort (bag->list (bag-product 2 (bag eq-comparator ’a ’b ’r ’a))))

⇒ (a a a a b b r r)

Chapter 10: Library modules - R7RS standard libraries 501

[Function]bag-unique-size bag
[R7RS set] {scheme.set} Returns the number of unique elements in bag.

(bag-unique-size (bag eqv-comparator 1 1 2 2 3 3 4))

⇒ 4

[Function]bag-element-count bag elt
[R7RS set] {scheme.set} Returns the number of specified element elt in bag.

(bag-element-count (bag eqv-comparator 1 1 2 2 2 3 3) 2)

⇒ 3

[Function]bag-for-each-unique proc bag
[R7RS set] {scheme.set} For each unique item in bag, calls proc with two arguments: The
item, and the count of the item in the bag.

[Function]bag-fold-unique proc seed bag
[R7RS set] {scheme.set} For each unique item in bag, calls proc with three arguments: The
item, the count of the item, and the previous seed value. The seed argument provides the
initial seed value; the result of proc is used for the next seed value, and the last result of
proc is returned from bag-fold-unique.

(sort (bag-fold-unique acons ’()

(bag equal-comparator "a" "a" "b" "b" "b" "c" "d"))

string<? car)

⇒ (("a" . 2) ("b" . 3) ("c" . 1) ("d" . 1))

[Function]bag-increment! bag elt count
[Function]bag-decrement! bag elt count

[R7RS set] {scheme.set} Linear update bag to increase or decrease the count of elt in it by
count, which must be an exact integer. Note that the element count won’t get below zero; if
a bag has two a’s, and you call (bag-decrement! bag ’a 100), you get a bag with zero a’s.

Comparators

[Comparator]set-comparator
[Comparator]bag-comparator

[R7RS comparator] {scheme.set} Comparators to be used to compare sets or bags. They
don’t provide comparison procedure, for you cannot define a total order among sets or bags.
They do provide hash functions.

10.3.5 scheme.charset - R7RS character sets

[Module]scheme.charset
Implements character set library, originally defined as SRFI-14. Note that the following
character-set procedures are Gauche’s build-in. See Section 6.11 [Character set], page 137.

char-set char-set? char-set-contains? char-set-copy

char-set-complement char-set-complement!

In Gauche, the <char-set> class inherits <collection> and implements the collection pro-
tocol, so that the generic operations defined in gauche.collection can also be used (see
Section 9.5 [Collection framework], page 322).

10.3.5.1 Character-set constructors

[Function]list->char-set char-list :optional base-cs

Chapter 10: Library modules - R7RS standard libraries 502

[Function]list->char-set! char-list base-cs
[R7RS comparator] {scheme.charset} Constructs a character set from a list of characters
char-list. If base-cs is given, it must be a character set, and the characters in it are added to
the result character set. List->char-set! is allowed, but not required, to reuse base-cs to
store the result.

[Function]string->char-set s :optional base-cs
[Function]string->char-set! s base-cs

[R7RS charset] {scheme.charset} Like list->char-set and list->char-set!, but take a
list of characters from a string s.

[Function]char-set-filter pred char-set :optional base-cs
[Function]char-set-filter! pred char-set base-cs

[R7RS charset] {scheme.charset} Returns a character set containing every character c in
char-set such that (pred c) returns true. If a character set base-cs is given, its content
is added to the result. The linear update version char-set-filter! is allowed, but not
required, to modify base-cs to store the result.

[Function]ucs-range->char-set lower upper :optional error? base-cs
[Function]ucs-range->char-set! lower upper error? base-cs

[R7RS charset] {scheme.charset} Creates

[Function]integer-range->char-set lower upper :optional error? base-cs
[Function]integer-range->char-set! lower upper error? base-cs

{scheme.charset}

[Function]->char-set x
[R7RS charset] {scheme.charset} A convenience function to coerce various kinds of objects
to a char-set. The argument x can be a collection of characters, a char-set, or a character.
If the argument is a char-set, it is returned as-is. If the argument is a character, a char-set
with that single character is returned.

Note: R7RS (scheme charset)’s ->char-set only accepts a string, a char-set or a character
as an argument. Gauche extends it so that it can accept any collection of characters.

10.3.5.2 Character-set comparison

[Function]char-set= char-set1 . . .
[R7RS charset] {scheme.charset} Returns #t iff all the character sets have exactly the same
members.

(char-set=) ⇒ #t

(char-set= (char-set)) ⇒ #t

(char-set= (string->char-set "cba")

(list->char-set #\a #\b #\c))

⇒ #t

[Function]char-set<= char-set1 . . .
[R7RS charset] {scheme.charset}

[Function]char-set-hash char-set :optional bound
[R7RS charset] {scheme.charset}

Chapter 10: Library modules - R7RS standard libraries 503

10.3.5.3 Character-set iteration

[Function]char-set-cursor char-set
[R7RS charset] {scheme.charset}

[Function]char-set-ref char-set cursor
[R7RS charset] {scheme.charset}

[Function]char-set-cursor-next char-set cursor
[R7RS charset] {scheme.charset}

[Function]end-of-char-set? ccursor
[R7RS charset] {scheme.charset}

[Function]char-set-fold kons knil char-set
[R7RS charset] {scheme.charset}

[Function]char-set-unfold pred fun gen seed :optional base-char-set
[Function]char-set-unfold! pred fun gen seed base-char-set

[R7RS charset] {scheme.charset}

[Function]char-set-for-each proc char-set
[R7RS charset] {scheme.charset}

[Function]char-set-map proc char-set
[R7RS charset] {scheme.charset}

10.3.5.4 Character-set query

[Function]char-set-every pred char-set
[Function]char-set-any pred char-set
[Function]char-set-count pred char-set

[R7RS charset] {scheme.charset} These procedures apply pred to each character in char-set.

char-set-every returns #f as soon as pred returns #f. Otherwise, it returns the result of
the last application of pred.

char-set-any returns as soon as pred returns a true value, and the return value is the one
pred returns. If pred returns #f for all characters, #f is returned.

char-set-count returns the number of times pred returns a true value.

Note that char-set can be huge (e.g. a complement of small char-set), which can make these
procedures take very long.

[Function]char-set->list char-set
[Function]char-set->string char-set

[R7RS charset] {scheme.charset} Returns a list of each character, or a string consisting of
each character, in char-set, respectively. Be careful to apply this on a large char set.

10.3.5.5 Character-set algebra

[Function]char-set-adjoin char-set char1 . . .
[Function]char-set-adjoin! char-set char1 . . .

[R7RS charset] {scheme.charset} Returns a character set that adds char1 . . . to char-set.

[Function]char-set-delete char-set char1 . . .
[Function]char-set-delete! char-set char1 . . .

[R7RS charset] {scheme.charset}

Chapter 10: Library modules - R7RS standard libraries 504

[Function]char-set-union char-set . . .
[Function]char-set-union! char-set1 char-set2 . . .

[R7RS charset] {scheme.charset}

[Function]char-set-intersection char-set . . .
[Function]char-set-intersection! char-set1 char-set2 . . .

[R7RS charset] {scheme.charset}

[Function]char-set-difference char-set1 char-set2 . . .
[Function]char-set-difference! char-set1 char-set2 . . .

[R7RS charset] {scheme.charset}

[Function]char-set-xor char-set . . .
[Function]char-set-xor! char-set1 char-set2 . . .

[R7RS charset] {scheme.charset}

[Function]char-set-diff+intersection char-set1 char-set2 . . .
[Function]char-set-diff+intersection! char-set1 char-set2 char-set3 . . .

[R7RS charset] {scheme.charset}

10.3.5.6 Predefined character-set

[Variable]char-set:letter
[R7RS charset] {scheme.charset}

[Variable]char-set:blank
[R7RS charset] {scheme.charset}

[Variable]char-set:iso-control
[R7RS charset] {scheme.charset}

[Variable]char-set:digit
[Variable]char-set:hex-digit

[R7RS charset] {scheme.charset}

[Variable]char-set:graphic
[R7RS charset] {scheme.charset}

[Variable]char-set:lower-case
[Variable]char-set:upper-case
[Variable]char-set:title-case

[R7RS charset] {scheme.charset}

[Variable]char-set:printing
[R7RS charset] {scheme.charset}

[Variable]char-set:punctuation
[R7RS charset] {scheme.charset}

[Variable]char-set:whitespace
[R7RS charset] {scheme.charset}

[Variable]char-set:symbol
[R7RS charset] {scheme.charset}

[Variable]char-set:ascii
[R7RS charset] {scheme.charset}

Chapter 10: Library modules - R7RS standard libraries 505

[Variable]char-set:empty
[R7RS charset] {scheme.charset}

[Variable]char-set:full
[R7RS charset] {scheme.charset}

10.3.6 scheme.hash-table - R7RS hash tables

[Module]scheme.hash-table
This module provides hash table library, originally defined as srfi-125.

Hash table provided with this module is the same as Gauche’s built-in hash table. However,
srfi-125 introduces procedures that conflict with Gauche’s original procedures, so Gauche
provides those procedures built-in but under aliases. See Section 6.15 [Hashtables], page 163,
for the built-in hash table procedures.

With this module, procedures are provided as defined in R7RS. Use this module when you’re
writing portable code.

Srfi-125 also defines compatiblity procedures with srfi-69, although saying they’re deprecated.
Those deprecated procedures are supported in this module, too.

The following procedures are the same as Gauche’s built-in.

hash-table-unfold hash-table? hash-table-contains?

hash-table-exists? hash-table-empty? hash-table=?

hash-table-mutable? hash-table-ref hash-table-ref/default

hash-table-set! hash-table-update!/default

hash-table-clear! hash-table-size hash-table-keys

hash-table-values hash-table-copy hash-table-empty-copy

hash-table->alist hash-table-union! hash-table-intersection!

hash-table-differnce! hash-table-xor!

See Section 6.15 [Hashtables], page 163, for the description of those procedures.

The following procedures are also provided as Gauche’s built-in, but with -r7 suffix.

hash-table hash-table-delete! hash-table-intern!

hash-table-update! hash-table-pop! hash-table-find

hash-table-count hash-table-map hash-table-for-each

hash-table-map! hash-table-map->list

hash-table-prune!

[Function]make-hash-table comparator arg . . .
[Function]make-hash-table equal-proc hash-proc arg . . .

[R7RS hash-table] {scheme.hash-table} This enhances built-in make-hash-table with the
second form, that takes two procedures instead of one comparator, as srfi-69.

In the srfi-69 form, equal-proc is a procedure taking two keys to see if they are the same, and
hash-proc is a procedure taking a key to calculate its hash value (nonnegative fixnum). The
compatibility form is deprecated and should be avoided in the new code.

The optional arg dots are ignored in Gauche.

[Function]hash-table cmpr key value . . .
[R7RS hash-table] {scheme.hash-table} This is the same as built-in hash-table-r7 (see
Section 6.15 [Hashtables], page 163).

Construct a new hash table with key-comparator cmpr. It is populated by key value . . . ,
which is a list with keys and values appear alternatively. It is an error if the length of
key-value list is not even.

Chapter 10: Library modules - R7RS standard libraries 506

Note that srfi-125 defines this procedure to return an immutable hash table if the implemen-
tation supports one. Gauche doesn’t provide immutable hash tables (we do have immutable
map instead, see Section 12.10 [Immutable map], page 597), but when you’re writing a
portable program, be careful not to modify the table returned by this procedure.

[Function]alist->hash-table alist cmpr arg . . .
[Function]alist->hash-table equal-proc hash-proc cmpr arg . . .

[R7RS hash-table] {scheme.hash-table} This enhances built-in alist->hash-table with
the second form, that takes two procedures instead of one comparator, as srfi-69.

In the srfi-69 form, equal-proc is a procedure taking two keys to see if they are the same, and
hash-proc is a procedure taking a key to calculate its hash value (nonnegative fixnum). The
compatibility form is deprecated and should be avoided in the new code.

The optional arg dots are ignored in Gauche.

[Function]hash-table-delete! ht key . . .
[R7RS hash-table] {scheme.hash-table} This is the same as built-in hash-table-delete!-

r7.

Deletes entries associated with the given keys from the table ht. It is ok if ht doesn’t have
key. Returns the number of entries that are actually deleted.

It differs from built-in hash-table-delete! in two points: The bulit-in one can take exactly
one key, and returns a boolean indicating if the entry is actually deleted.

[Function]hash-table-intern! ht key failure
[R7RS hash-table] {scheme.hash-table} This is the same as built-in hash-table-intern!-

r7.

Search key in ht. If it is found, returns the associated value. If it is not found, call failure
without artuments, and insert a new entry associating key and the value failure returns, and
returns that new value.

[Function]hash-table-update! ht key updater :optional failure success
[R7RS hash-table] {scheme.hash-table} This is the same as built-in hash-table-update!-

r7. It takes differnt optional arguments from built-in hash-table-update!.

Updater is a procedure that takes one argument, failure is a thunk, and success is a procedure
that takes one argument.

Works the same as follows, except maybe more efficiently.

(hash-table-set! ht key (updater (hash-table-ref ht key failure success)))

[Function]hash-table-pop! ht
[R7RS hash-table] {scheme.hash-table} This is the same as built-in hash-table-pop!-r7.
It is a completely different procedure as built-in hash-table-pop!.

Removes an arbitrary entry in the hash table ht, and returns the removed entry’s key and
value as two values.

If ht is empty, an error is signalled.

[Function]hash-table-find proc ht failure
[R7RS hash-table] {scheme.hash-table} This is the same as built-in hash-table-find-r7.
It takes different arguments from built-in hash-table-find.

Calls proc with a key and a value of each entry in ht, until proc returns non-false value. If
proc returns non-false value, hash-table-find immediately returns it. If proc returns #f

for all entries, calls a thunk failure and returns its result.

Chapter 10: Library modules - R7RS standard libraries 507

[Function]hash-table-count ht
[R7RS hash-table] {scheme.hash-table} This is the same as built-in hash-table-count-r7.

Calls proc with a key and a value of each entry in ht, and returns the number of times when
proc returned true.

[Function]hash-table-map proc cmpr ht
[R7RS hash-table] {scheme.hash-table} This is the same as built-in hash-table-map-r7.
This is different from built-in hash-table-map.

Creates a fresh hashtable with a key comparator cmpr, then populate it by inserting the key
and the result of applying proc on the value of each entry in ht.

[Function]hash-table-map! proc ht
[R7RS hash-table] {scheme.hash-table} This is the same as built-in hash-table-map!-r7.

Calls proc on the value of each entry in ht, and update the entry with the result of proc.

[Function]hash-table-map->list proc ht
[R7RS hash-table] {scheme.hash-table} This is the same as built-in hash-table-

map->list-r7, and same as built-in hash-table-map (not the scheme.hash-table’s
hash-table-map) except the order of the arguments.

Apply proc on a key and a value of each entry in ht, in arbitrary order, and returns a list of
results.

[Function]hash-table-for-each proc ht
[Function]hash-table-for-each ht proc

[R7RS hash-table] {scheme.hash-table} Apply proc on a key and a value of each entry in
ht. The result of proc is discarded. Returns an unspecified value.

This procedure allows arguments in both order for the compatibility— the first way is the
scheme.hash-table recommended one, which is the same as built-in hash-table-for-each-

r7, and the latter way is compatible with srfi-69, which is the same as built-in hash-table-

for-each.

It is unfortunate that this compatibility thing is extremely confusing; especially in Gauche,
you can make anything applicable, so the distinction between procedures and other objects
is blurred.

We recommend that you stick to one way or another within a module; if your mod-
ule uses built-in interface, use (hash-table-for-each ht proc). If your module imports
scheme.hash-table, use (hash-table-for-each proc ht).

[Function]hash-table-fold proc seed ht
[Function]hash-table-fold ht proc seed

[R7RS hash-table] {scheme.hash-table} The proc argument takes three arguments, a key,
a value, and the current seed value. The procedure applies proc for each entry in ht, using
seed as the first seed value, and using the previous result of proc as the subsequent seed
value. Returns the result of the last call of seed.

This procedure allows arguments in both order for the compatibility— the first way is the
scheme.hash-table recommended one, which is the same as built-in hash-table-fold-r7,
and the latter way is compatible with srfi-69, which is the same as built-in hash-table-fold.

It is unfortunate that this compatibility thing is extremely confusing. We recommend that
you stick to one way or another within a module; if your module uses built-in interface, use
the second interface. If your module imports scheme.hash-table, use the first interface.

Chapter 10: Library modules - R7RS standard libraries 508

[Function]hash-table-prune! proc ht
[R7RS hash-table] {scheme.hash-table} This is the same as built-in hash-table-prune!-

r7.

Apply proc on a key and a value of each entry in ht, and deletes the entry if proc returns a
true value. This procedure returns an unspecified value.

[Function]hash-table-merge! ht1 ht2
[R7RS hash-table] {scheme.hash-table} This is the same as hash-table-union!, and pro-
vided just for the compatibility with srfi-69. Deprecated.

[Function]hash obj :optional ignore
[Function]string-hash obj :optional ignore
[Function]string-ci-hash obj :optional ignore
[Function]hash-by-identity obj :optional ignore

[R7RS hash-table] {scheme.hash-table} Provided for the compatibility with srfi-69, and are
deprecated.

The first three are the same as built-in default-hash, string-hash, and string-ci-hash,
except that these accept an optional second argument, which is ignored. Note that hash-by-
identity is also defined as the same as default-hash except the ignored optional second
argument, per srfi-125, although the name suggests that it would work as if eq-hash.

Do not use these procedures in the new code; you can use comparators instead
(default-comparator, string-comparator, string-ci-comparator and eq-comparator,
see Section 6.2.4.3 [Predefined comparators], page 98). If you do need hash function, you
should still avoid hash and hash-by-identity, and use default-hash and eq-hash instead.

[Function]hash-table-equivalence-function ht
[Function]hash-table-hash-function ht

[R7RS hash-table] {scheme.hash-table} Provided for the compatibility with srfi-69, and are
deprecated.

Returns the equivalence function and hash function of a hash table ht.

For the introspection, we recommend to use built-in hash-table-comparator. (Unfortu-
nately, it is not included in scheme.hash-table, though.)

10.3.7 scheme.ideque - R7RS immutable deques

[Module]scheme.ideque
This module provides a functional double-ended queue (deque, pronounced as “deck”), with
amortized O(1) access of queue operations on either end.

It also serves as a convenient bidrectional list structures in a sense that operations from the
end of the list is just as efficient as the ones from the front.

Note: If you don’t need immutability and wants space-efficient deque, you can also use
data.ring-buffer as a deque (see Section 12.13 [Ring buffer], page 607).

This module was originally defined as srfi-134, then became a part of R7RS large.

Gauche’s data.ideque is a superset of this module. See Section 12.9 [Immutable deques],
page 596.

[Function]ideque element . . .
[R7RS ideque] {scheme.ideque} Returns an ideque with the given elements.

[Function]ideque-unfold p f g seed
[R7RS ideque] {scheme.ideque}

Chapter 10: Library modules - R7RS standard libraries 509

[Function]ideque-unfold-right p f g seed
[R7RS ideque] {scheme.ideque}

[Function]ideque-tabulate size init
[R7RS ideque] {scheme.ideque}

[Function]ideque? idq
[R7RS ideque] {scheme.ideque}

[Function]ideque-empty? idq
[R7RS ideque] {scheme.ideque}

[Function]ideque-add-front idq x
[Function]ideque-add-back idq x

[R7RS ideque] {scheme.ideque}

[Function]ideque-front idq
[Function]ideque-back idq

[R7RS ideque] {scheme.ideque}

[Function]ideque-remove-front idq
[Function]ideque-remove-back idq

[R7RS ideque] {scheme.ideque}

[Function]ideque-reverse idq
[R7RS ideque] {scheme.ideque}

[Function]ideque= idq idq2 . . .
[R7RS ideque] {scheme.ideque}

[Function]ideque-ref idq n
[R7RS ideque] {scheme.ideque}

[Function]ideque-take idq n
[Function]ideque-take-right idq n

[R7RS ideque] {scheme.ideque}

[Function]ideque-drop idq n
[Function]ideque-drop-right idq n

[R7RS ideque] {scheme.ideque}

[Function]ideque-split-at idq n
[R7RS ideque] {scheme.ideque}

[Function]ideque-length idq
[R7RS ideque] {scheme.ideque}

[Function]ideque-append idq . . .
[R7RS ideque] {scheme.ideque}

[Function]ideque-zip idq idq2 . . .
[R7RS ideque] {scheme.ideque}

[Function]ideque-map proc idq . . .
[R7RS ideque] {scheme.ideque}

[Function]ideque-filter-map proc idq . . .
[R7RS ideque] {scheme.ideque}

Chapter 10: Library modules - R7RS standard libraries 510

[Function]ideque-for-each proc idq . . .
[Function]ideque-for-each-right proc idq . . .

[R7RS ideque] {scheme.ideque}

[Function]ideque-fold proc knil idq . . .
[Function]ideque-fold-right proc knil idq . . .

[R7RS ideque] {scheme.ideque}

[Function]ideque-append-map proc idq . . .
[R7RS ideque] {scheme.ideque}

[Function]ideque-filter pred idq
[Function]ideque-remove pred idq

[R7RS ideque] {scheme.ideque}

[Function]ideque-partition pred idq
[R7RS ideque] {scheme.ideque}

[Function]ideque-find pred idq :optional failure
[Function]ideque-find-right pred idq :optional failure

[R7RS ideque] {scheme.ideque}

[Function]ideque-take-while pred idq
[Function]ideque-take-while-right pred idq

[R7RS ideque] {scheme.ideque}

[Function]ideque-drop-while pred idq
[Function]ideque-drop-while-right pred idq

[R7RS ideque] {scheme.ideque}

[Function]ideque-span pred idq
[Function]ideque-break pred idq

[R7RS ideque] {scheme.ideque}

[Function]ideque-any pred idq . . .
[Function]ideque-every pred idq . . .

[R7RS ideque] {scheme.ideque}

[Function]ideque->list idq
[Function]list->ideque list

[R7RS ideque] {scheme.ideque}

[Function]ideque->generator idq
[Function]generator->ideque gen

[R7RS ideque] {scheme.ideque}

10.3.8 scheme.generator - R7RS generators

[Module]scheme.generator
A generator is a thunk to generate a sequence of values, potentially terminated by EOF. The
interface was first defined in srfi-121, then incorporated R7RS large as (scheme generator).

Gauche provides a generator library gauche.generator, which is a superset of
scheme.generator. See Section 9.10 [Generators], page 344, for the details.

The following procedures are defined in this module. Please see the respective manual section
for each entry.

• Section 9.10.1 [Generator constructors], page 344:

generator make-iota-generator make-range-generator

Chapter 10: Library modules - R7RS standard libraries 511

make-coroutine-generator make-bits-geneartor make-for-each-generator

make-unfold-generator list->generator vector->generator

reverse-vector->generator string->generator

• Section 9.10.2 [Generator operations], page 348:

gcons* gappend gcombine gfilter gremove

gtake gdrop gtake-while gdrop-while gdelete

gdelete-neighbor-dups gindex gselect

• Section 9.10.3 [Generator consumers], page 353:

generator->list generator->reverse-list generator->vector

generator->vector! generator->string

generator-count generator-any genreator-every

generator-unfold

• Section 6.18.9 [Folding generated values], page 183:

generator-fold generator-for-each generator-find

10.3.9 scheme.lseq - R7RS lazy sequences

[Module]scheme.lseq
This module provides lightweight lazy sequence (lseq), conceptually represented by a pair
of element and generator. When the rest of sequence is taken, the generator is evaluated
and yields another pair of element and generator, and so on. The overhead is one allocation
of a pair per element. It is much lighter than streams (see Section 12.69 [Stream library],
page 746), which requires to create a thunk for every element.

Gauche already has built-in support for such lazy sequences; we go futher to make it behave
like ordinary pairs—that is, if you take cdr of a lazy pair, we automatically forces the generator
so it is indistinguishable from an ordinary pair, modulo side effects. See Section 6.19.2 [Lazy
sequences], page 185.

Srfi-127, the original srfi for this module, is a bit ambiguous whether its lazy sequence must be
implemented with a pair whose cdr is a generator procedure, or it refers to the pair+generator
as a conceptual model. Considering of the purpose of lazy sequence, the concrete implemen-
tation shouldn’t matter; that is, the user of lazy sequence should not count on the fact that
the lseq is an improper list terminated by a generator procedure. Instead, an lseq should be
treated as an opaque object that can be passed to scheme.lseq procedures.

With that premise, we implement this module as just a thin wrapper of Gauche’s native lazy
sequence. It is upper-compatible, except that the code that assumes the internal structure
could break. Notably, the constructor generator->lseq is the same as Gauche’s built-in,
which returns Gauche’s lseq, undistinguishable to the oridnary list.

(procedure? (generator->lseq (generator 1)))

;; => #t, in srfi-127 reference implementation,

;; #f, in our implementation.

[Function]lseq? x
[R7RS lseq] {scheme.lseq} Returns true iff x is an object that can be passed to lseq proce-
dures. In Gauche, it returns #t if x is a pair or an empty list, since a lazy pair is indistin-
guishable from a pair.

[Function]lseq=? elt=? lseq1 lseq2
[R7RS lseq] {scheme.lseq} Compare two lseqs element-wise using elt=? and returns #t iff
two lseqs are equal.

Chapter 10: Library modules - R7RS standard libraries 512

[Function]lseq-car lseq
[Function]lseq-first lseq

[R7RS lseq] {scheme.lseq} Returns the first item of lseq. If lseq is empty, an error is raised.
In Gauche, these are just aliases of car.

[Function]lseq-cdr lseq
[Function]lseq-rest lseq

[R7RS lseq] {scheme.lseq} Returns the rest of lseq. If lseq is empty, an error is raised. In
Gauche, these are just aliases of cdr.

[Function]lseq-take lseq k
[Function]lseq-drop lseq k

[R7RS lseq] {scheme.lseq} Returns an lseq that has first k items, or an lseq that skips first
k items, respectively.

An error is signaled when the resulting lseq of lseq-take reached at the end of sequence
before k items are taken. It is different from Gauche’s ltake, which simply returns () in
such case.

On the other hand, lseq-drop is the same as drop in Gauche; it just drops k items from the
head of input sequence, regardless of whether it is an ordinary list or lseq.

[Function]lseq-realize lseq
[R7RS lseq] {scheme.lseq} Realizes all the elements in lseq, resulting an ordinary list.

[Function]lseq->generator lseq
[R7RS lseq] {scheme.lseq} Creates a generator from lseq. In Gauche, this is same as
list->generator.

[Function]lseq-length lseq
[R7RS lseq] {scheme.lseq} Returns the length of lseq. All the elements in lseq are realized
as the side effect. In Gauche, this is same as length.

[Function]lseq-append lseq lseq2 . . .
[R7RS lseq] {scheme.lseq} Append one or more lseqs lazily. This is the same as lappend
in Gauche.

[Function]lseq-zip lseq lseq2 . . .
[R7RS lseq] {scheme.lseq} Returns a lazy sequence in which the first element is a list of
first elements of lseqs, and so on.

[Function]lseq-map proc lseq lseq2 . . .
[R7RS lseq] {scheme.lseq} Lazy map. The same as Gauche’s lmap. Returns a lazy sequence.

[Function]lseq-for-each proc lseq lseq2 . . .
[R7RS lseq] {scheme.lseq} This one consumes all the input lseqs, applying proc on each
corresponding elements of the input sequences for the side effects. In Gauche, it is the same
as for-each, for Gauche doesn’t distinguish lseqs and ordinary lists.

[Function]lseq-filter pred lseq
[Function]lseq-remove pred lseq

[R7RS lseq] {scheme.lseq} Returns an lseq that contains elements from the input lseq that
satisfy or don’t satisfy pred, respectively. Lseq-filter is the same as Gauche’s lfilter.

[Function]lseq-take-while pred lseq
[Function]lseq-drop-while pred lseq

[R7RS lseq] {scheme.lseq} These are the same as Gauche’s ltake-while and drop-while

(the latter doesn’t have l-prefix, since it just drops items from the head of the input sequence,
regardless of whether it is an ordinary list or an lseq.

Chapter 10: Library modules - R7RS standard libraries 513

[Function]lseq-find pred lseq
[Function]lseq-find-tail pred lseq
[Function]lseq-any pred lseq
[Function]lseq-every pred lseq
[Function]lseq-index pred lseq
[Function]lseq-member pred lseq :optional eq
[Function]lseq-memq pred lseq
[Function]lseq-memv pred lseq

[R7RS lseq] {scheme.lseq} In Gauche, these are the same as the corresponding list functions,
find, find-tail, any, every, list-index, member, memq and memv, respectively, for all of
those functions won’t look at input more than necessary so lseqs work just as well as ordinary
lists.

10.3.10 scheme.box - R7RS boxes

[Module]scheme.box
This module defines the box datatype, which is a simple container that can hold one Scheme
object. It can be used as a minimal data storage, or a sort of mutable indirect “pointer”.

Traditionally a pair (with ignoring its cdr) or a single-element vector has been used for
this purpose; in modern Scheme you can also define a record type with one mutable field.
Nevertheless, a box is very common abstraction to describe various algorithms, and having
common interface to it is useful.

The srfi leaves some details to implementations. Here are our choices:

• We don’t support autoboxing; that is, it is an error to pass non-box value to the procedure
expecting boxed value and vice versa.

• Comparing two boxes with equal? compares their contents when two are not eqv?. In
the spec, when two boxes are eqv? then they must also be equal? to each other, but it’s
up to the implementation when two are not eqv?.

When you’re writing portable code, be careful not to depend on the equal? behavoir.

[Function]box val
[R7RS box] {scheme.box} Returns a fresh box object that contains the value val.

[Function]box? obj
[R7RS box] {scheme.box} Returns #t iff obj is a box object.

[Function]unbox box
[R7RS box] {scheme.box} Returns box’s content.

[Function]set-box! box val
[R7RS box] {scheme.box} Mutate box’s content with val. Returns unspecified value.

10.3.11 scheme.list-queue - R7RS list queues

[Module]scheme.list-queue
A library of simple queue based on lists. Gauche has a queue support in data.queue module,
which also includes MT-safe queue (see Section 12.11 [Queue], page 599). This library is
implemented on top of data.queue’s <queue> object and mainly provided for portable code.

The list-queue is just an instance of <queue>, so you can pass a queue created by make-queue

to scheme.list-queue API and a list-queue created by make-list-queue to Gauche’s queue
API.

Note: Some API of this library requires to return internal pairs the queue uses, for the
efficiency. The pair’s car/cdr will be mutated by subsequent queue operation, and also any
mutation done on the pair would cause inconsistency in the original queue.

Chapter 10: Library modules - R7RS standard libraries 514

[Function]make-list-queue lis :optional last
[R7RS list-queue] {scheme.list-queue} Creates and returns a list-queue whose initial con-
tent is lis. In Gauche, a list queue is just an instance of <queue> (see Section 12.11 [Queue],
page 599).

The cells in lis are owned by the queue; the caller shouldn’t mutate it afterwords, nor assume
its structure remains the same.

The optional last argument must be the last pair of lis. If it is passed, make-list-queue will
skip scanning lis and just hold a reference to last as the tail of the queue.

[Function]list-queue elt . . .
[R7RS list-queue] {scheme.list-queue} Creates and returns a list-queue whose initial con-
tent is elt In Gauche, a list queue is just an instance of <queue> (see Section 12.11
[Queue], page 599).

[Function]list-queue-copy queue
[R7RS list-queue] {scheme.list-queue} Returns a copy of a list-queue queue.

[Function]list-queue-unfold p f g seed :optional queue
[R7RS list-queue] {scheme.list-queue} Prepend queue with the items generated by
(unfold p f g seed) and returns the updated queue. See Section 10.3.1 [R7RS lists],
page 482, for unfold. If queue is omitted, a fresh queue is created.

(list-queue-unfold (pa$ = 5) ; p

(pa$ * 2) ; f

(pa$ + 1) ; g

0 ; seed

(list-queue ’x ’y ’z))

⇒ a queue containing (0 2 4 6 8 x y z)

[Function]list-queue-unfold-right p f g seed :optional queue
[R7RS list-queue] {scheme.list-queue} Append queue with the items generated by
(unfold-right p f g seed) and returns the updated queue. See Section 10.3.1 [R7RS lists],
page 482, for unfold-right. If queue is omitted, a fresh queue is created.

(list-queue-unfold-right (pa$ = 5) ; p

(pa$ * 2) ; f

(pa$ + 1) ; g

0 ; seed

(list-queue ’x ’y ’z))

⇒ a queue containing (x y z 8 6 4 2 0)

[Function]list-queue? obj
[R7RS list-queue] {scheme.list-queue} Returns true iff queue is a list-queue. In Gauche,
it is the same as queue? in the data.queue module.

[Function]list-queue-empty? queue
[R7RS list-queue] {scheme.list-queue} Returns true iff queue is empty. Same as
queue-empty? of data.queue.

[Function]list-queue-front queue
[R7RS list-queue] {scheme.list-queue} Returns the front element of the queue. An error
is thrown if queue is empty. Same as queue-front of data.queue.

[Function]list-queue-back queue
[R7RS list-queue] {scheme.list-queue} Returns the rear element of the queue. An error is
thrown if queue is empty. Same as queue-rear of data.queue.

Chapter 10: Library modules - R7RS standard libraries 515

[Function]list-queue-list queue
[R7RS list-queue] {scheme.list-queue} Returns the internal list of queue. Note that the
list would be modified by subsequent operations of queue, and any modification on the list
would make queue inconsistent. The primary purpose of this procedure is to implement other
queue-related operations with small overhead.

If you merely need a cheap access the content of the queue, consider list-queue-remove-
all!. That returns the list of elements of the queue without copying, and simultaneoulsy
reset the queue to empty, so it’s safe.

[Function]list-queue-fist-last queue
[R7RS list-queue] {scheme.list-queue} Returns two values, the first and last pair of queue.
If the queue is empty, two empty lists are returned.

This also returns the internal pair of the queue, so any subsequent operations of queue
would change the contents of the pairs, and any modification on the pairs would make queue
inconsistent. The purpose of this procedure is to implement other queue-related operations
with small overhead. This procedure should not be used in general.

[Function]list-queue-add-front! queue elt
[R7RS list-queue] {scheme.list-queue} Add elt to the front of queue. Same as
(queue-push! queue elt) of data.queue.

[Function]list-queue-add-back! queue elt
[R7RS list-queue] {scheme.list-queue} Add elt to the back of queue. Same as (enqueue!
queue elt) of data.queue.

[Function]list-queue-remove-front! queue
[R7RS list-queue] {scheme.list-queue} Remove an element from the front of queue and
returns the removed element. Throws an error if queue is empty. Same as dequeue! of
data.queue.

[Function]list-queue-remove-back! queue
[R7RS list-queue] {scheme.list-queue} Remove an element from the back of queue and
returns the removed element. Throws an error if queue is empty. This isn’t guaranteed to be
efficient; it is O(n) operation where n is the number of elements. In general, if you need this
operation frequently, you should consider double-ended queue. (See Section 12.9 [Immutable
deques], page 596, and also see Section 12.13 [Ring buffer], page 607.)

[Function]list-queue-remove-all! queue
[R7RS list-queue] {scheme.list-queue} Remove all the elements from queue and returns
them as a list. The list isn’t copied—this is O(1) operation. This should be preferred over
list-queue-list, for it’s safer. In Gauhce, this is the same as dequeue-all! in data.queue.

[Function]list-queue-set-list! queue lis :optional last
[R7RS list-queue] {scheme.list-queue} Modify queue to have the elements in lis as its
element. The original content of queue is discarded. If the optional last argument is provided,
it must be the last pair of lis, and the procedure uses that instead of scanning lis, to achieve
O(1) operation.

After calling this, lis is owned by queue and it may be mutated. The caller shouldn’t change,
or rely on lis afterwards.

[Function]list-queue-append queue . . .
[R7RS list-queue] {scheme.list-queue} Returns a fresh list-queue whose contents are con-
catenation of queues. The contents of arguments are intact. This is O(n) operation where n
is the total number of elements.

Chapter 10: Library modules - R7RS standard libraries 516

[Function]list-queue-append! queue . . .
[R7RS list-queue] {scheme.list-queue} Returns a list-queue whose contents are concate-
nation of queues. During the operation, the contents of queues may be mutated, and they
shouldn’t be used any longer. (In Gauche, to avoid accident, we actually empty all the
queues.) It is also noted that the result doesn’t need to be eq? to any of the arguments.
This is O(m) operation where m is the total number of queues (as opposed to the number of
elements).

[Function]list-queue-concatenate queues
[R7RS list-queue] {scheme.list-queue} (apply list-queue-append queues).

[Function]list-queue-map proc queue
[R7RS list-queue] {scheme.list-queue} Returns a fresh list-queue whose elements are ob-
tained by applying proc on every elements in queue.

[Function]list-queue-map! proc queue
[R7RS list-queue] {scheme.list-queue} Replaces every element in queue by the result of
application of proc on the element.

[Function]list-queue-for-each proc queue
[R7RS list-queue] {scheme.list-queue} Applies proc on every element of queue. The results
are discarded.

10.3.12 scheme.comparator - R7RS comparators

[Module]scheme.comparator
This module defines comparators and related procedures. Originally called srfi-128.

Gauche supports comparators fully compatible to scheme.comparator built-in. See
Section 6.2.4 [Basic comparators], page 95, for the following procedures defined in this
module.

comparator? comparator-ordered? comparator-hashable?

make-comparator make-pair-comparator

make-list-comparator make-vector-comparator

make-eq-comparator make-eqv-comparator make-equal-comparator

boolean-hash char-hash char-ci-hash string-hash

string-ci-hash symbol-hash number-hash

hash-bound hash-salt

make-default-comparator default-hash

comparator-register-default!

comparator-type-test-predicate comparator-equality-predicate

comparator-ordering-predicate comparator-hash-function

comparator-test-type comparator-check-type comparator-hash

=? <? >? <=? >=? comparator-if<=>

517

11 Library modules - SRFIs

This chapter lists modules that provides SRFI functionalities. Note that some of SRFI features
are built in Gauche core and not listed here. See Section 2.1 [Standard conformance], page 5,
for entire list of supported SRFIs.

(Even if a srfi is not listed here, you can still say (use srfi-N) or (import (srfi N)), as
far as srfi N is supporeted by Gauche.)

11.1 srfi-1 - List library

[Module]srfi-1
SRFI-1 has become a part of R7RS large. See Section 10.3.1 [R7RS lists], page 482.

11.2 srfi-4 - Homogeneous vectors

[Module]srfi-4
SRFI-4 is now implemented in gauche.uvector module See Section 9.35 [Uniform vectors],
page 447. This module simply inherits gauche.uvector for backward-compatibility.

11.3 srfi-5 - A compatible let form with signatures and rest
arguments

[Module]srfi-5
This module provides srfi-5’s extended let syntax.

[Macro]let ((var val) . . . [. (rest val . . .)]) body . . .
[Macro]let name ((var val) . . . [. (rest val . . .)]) body . . .
[Macro]let (name (var val) . . . [. (rest val . . .)]) body . . .

[SRFI-5] {srfi-5} The let syntax is extended in two ways.

• The extended let syntax accepts the name identifier (for named let syntax) within the
list of bindings (as in the third syntax above).

• The extended let syntax accepts the rest parameter binding which works like the rest
paremter in the lambda syntax.

See SRFI-5 document for rationale of this extension.

11.4 srfi-7 - Feature-based program configuration language

[Module]srfi-7
This module provides a program configuration metalanguage (program form) defined in srfi-7.
Gauche autoloads srfi-7 module, so you don’t need to say (use srfi-7) explicitly. Note that
the program form isn’t necessary to be a Scheme expression. Srfi-7 allows an implementation
to preprocess the program form to produce a Scheme program, then executes it with different
means. Gauche implements program form as a macro, so it can evaluates the form directly.
Nonetheless, it doesn’t make sense to mix program form and other forms in one file, or
expecting a return value of program form. A typical usage of program form is to prepare a
single file which just contains program form. (It can load other files using files clause (see
below) within the program form.) To execute such a program file in Gauche, you can just
load it.

Chapter 11: Library modules - SRFIs 518

[Configuration Language]program program-clause program-clause2 . . .
[SRFI-7] {srfi-7} This is a configuration language to structure a Scheme program, based
on availability of the features.

A Scheme program is constructed from the program form. Gauche evaluates the constructed
Scheme program on-the-fly.

Each program-clause needs to be one of the "Program Clauses" below.

[Program Clause]requires feature-id feature-id2 . . .
[SRFI-7] The feature-id’s are the same as srfi-0’s (see Section 4.12 [Feature conditional],
page 64). It tells that the following code requires these feature-id’s.

If a feature-id which is not supported in Gauche is given, an error is signaled.

[Program Clause]files ↓lename . . .
[SRFI-7] Inserts the content of the ↓lenames into a program. In Gauche, this clause just
causes ↓lenames to be loaded into the current module.

[Program Clause]code scheme-expression . . .
[SRFI-7] The scheme-expressions are inserted into a program.

[Program Clause]feature-cond clause clause2 . . .
[SRFI-7] Clause is a following form:

(requirement program-clause program-clause2 ...)

Where requirement should be one of the following:

• feature-id

• (and requirement ...)

• (or requirement ...)

• (not requirement)

The requirement of the last clause may be else.

Gauche checks each requirement one by one, and if it finds a fulfilled requirement, inserts the
program-clauses in that clause into the program.

11.5 srfi-13 - String library

[Module]srfi-13
Defines a large set of string-related functions. In Gauche, those functions are splitted to
number of files and the form (use srfi-13) merely sets up autoloading of those files. So
it is not likely to slow down the script startup. See SRFI-13 ([SRFI-13], page 763) for the
detailed specification and discussion of design issues. This manual serves as a reference
of function API. Some SRFI-13 functions are Gauche built-in and not listed here. Note:
SRFI-13 documents suggests the name of the module that implements these functions to be
“string-lib” and “string-lib-internals”. Gauche uses the name “srfi-13” for consistency.

11.5.1 General conventions

There are a few common factors in string library API, which I don’t repeat in each function
description

argument convention
The following argument names imply their types.

s, s1, s2 Those arguments must be strings.

Chapter 11: Library modules - SRFIs 519

char/char-set/pred
This argument can be a character, a character-set object, or a predicate
that takes a single character and returns a boolean value. “Applying
char/char-set/pred to a character” means, if char/char-set/pred is a
character, it is compared to the given character; if char/char-set/pred
is a character set, it is checked if the character set contains the given
character; if char/char-set/pred is a procedure, it is applied to the given
character. “A character satisfies char/char-set/pred” means such appli-
cation to the character yields true value.

start, end Lots of SRFI-13 functions takes these two optional arguments, which
limit the area of input string from start-th character (inclusive) to end-
th character (exclusive), where the operation is performed. When spec-
ified, the condition 0 <= start <= end <= length of the string must
be satisfied. Default value of start and end is 0 and the length of the
string, respectively.

shared variant
Some functions have variants with “/shared” attached to its name. SRFI-13 defines
those functions to allow to share the part of input string, for better performance.
Gauche doesn’t have a concept of shared string, and these functions are mere syn-
onyms of their non-shared variants. However, Gauche internally shares the storage
of strings, so generally you don’t need to worry about the overhead of copying
substrings.

right variant
Most functions works from left to right of the input string. Some functions have
variants with “-right” to its name, that works from right to left.

11.5.2 String predicates

[Function]string-null? s
[SRFI-13] {srfi-13} Returns #t if s is an empty string, "".

[Function]string-every char/char-set/pred s :optional start end
[SRFI-13] {srfi-13} Sees if every character in s satisfies char/char-set/pred. If so,
string-every returns the value that is returned at the last application of char/char-set/pred.
If any of the application returns #f, string-every returns #f immediately.

[Function]string-any char/char-set/pred s :optional start end
[SRFI-13] {srfi-13} Sees if any character in s satisfies char/char-set/pred. If so, string-any
returns the value that is returned by the application. If no character satisfies char/char-
set/pred, #f is returned.

11.5.3 String Constructors

[Function]string-tabulate proc len
[SRFI-13] {srfi-13} proc must be a procedure that takes an integer argument and returns
a character. string-tabulate creates a string, whose i-th character is calculated by (proc

i).

(string-tabulate

(lambda (i) (integer->char (+ i #x30))) 10)

⇒ "0123456789"

[Function]reverse-list->string char-list
[SRFI-13] {srfi-13} ≡ (list->string (reverse char-list)).

Chapter 11: Library modules - SRFIs 520

11.5.4 String selection

[Function]substring/shared s start :optional end
[SRFI-13] {srfi-13} In Gauche, this is the same as substring, except that the end argument
is optional.

(substring/shared "abcde" 2) ⇒ "cde"

[Function]string-copy! target tstart s :optional start end
[SRFI-13] {srfi-13} Copies a string s into a string target from the position tstart. The
target string must be mutable. Optional start and end arguments limits the range of s. If
the copied string run over the end of target, an error is signaled.

(define s (string-copy "abcde"))

(string-copy! s 2 "ZZ")

s ⇒ "abZZe"

It is ok to pass the same string to target and s; this always work even if the regions of source
and destination are overlapping.

Note that Gauche encourages you to treat strings as immutable objects. Internally, a string
is an indirect pointer to a immutable entity, and mutating a string means copying the original
entity and creating a new one. It doesn’t “save allocations”. Always use the functional version
string-copy unless you absolutely need to replace a string in-place. See Section 6.12.7 [String
utilities], page 145.

[Function]string-take s nchars
[Function]string-drop s nchars
[Function]string-take-right s nchars
[Function]string-drop-right s nchars

[SRFI-13] {srfi-13} Returns the first nchars-character string of s (string-take) or the
string without first nchars (string-drop). The *-right variation counts from the end of
string. It is guaranteed that the returned string is always a copy of s, even no character is
dropped.

(string-take "abcde" 2) ⇒ "ab"

(string-drop "abcde" 2) ⇒ "cde"

(string-take-right "abcde" 2) ⇒ "de"

(string-drop-right "abcde" 2) ⇒ "abc"

[Function]string-pad s len :optional char start end
[Function]string-pad-right s len :optional char start end

[SRFI-13] {srfi-13} If a string s is shorter than len, returns a string of len where char is
padded to the left or right, respectively. If s is longer than len, the rightmost or leftmost len
chars are taken. Char defaults to #\space. If start and end are provided, the substring of s
is used as the source.

(string-pad "abc" 10) ⇒ " abc"

(string-pad "abcdefg" 3) ⇒ "efg"

(string-pad-right "abc" 10) ⇒ "abc "

(string-pad "abcdefg" 10 #\+ 2 5)

⇒ "+++++++cde"

[Function]string-trim s :optional char/char-set/pred start end
[Function]string-trim-right s :optional char/char-set/pred start end

Chapter 11: Library modules - SRFIs 521

[Function]string-trim-both s :optional char/char-set/pred start end
[SRFI-13] {srfi-13} Removes characters that match char/char-set/pred from s.
String-trim removes the characters from left of s, string-trim-right does from right,
and string-trim-both does from both sides. Char/char-set/pred defaults to #[\s], i.e. a
char-set of whitespaces. If start and end are provided, the substring of s is used as the
source.

(string-trim " abc ") ⇒ "abc "

(string-trim-right " abc ") ⇒ " abc"

(string-trim-both " abc ") ⇒ "abc"

11.5.5 String comparison

[Function]string-compare s1 s2 proc< proc= proc> :optional start1 end1 start2
end2

[Function]string-compare-ci s1 s2 proc< proc= proc> :optional start1 end1 start2
end2

[SRFI-13] {srfi-13} Compares two strings s1 and s2 codepoint-wise from left. When mis-
match is found at the index k of s1, calls proc< with k if s1’s codepoint is smaller than the
corresponding s2’s, or calls proc> if s1’s one is greater than s2’s. If two strings are the same,
calls proc= with the index of the last compared position in s1.

(string-compare "abcd" "abzd"

(^i ‘(< ,i)) (^i ‘(= ,i)) (^i ‘(> ,i)))

⇒ (< 2)

(string-compare "abcd" "abcd"

(^i ‘(< ,i)) (^i ‘(= ,i)) (^i ‘(> ,i)))

⇒ (= 3)

The optional arguments restricts the range of the input strings; however, the index passed to
one of the procedures is always an index from the beginning of s1.

(string-compare "zzabcdyy" "abcz"

(^i ‘(< ,i)) (^i ‘(= ,i)) (^i ‘(> ,i)) 2 6 0 4)

⇒ (< 5)

(string-compare "zzabcdyy" "abcz"

(^i ‘(< ,i)) (^i ‘(= ,i)) (^i ‘(> ,i)) 2 5 0 3)

⇒ (= 4)

The case-insensitive variant, string-compare-ci, compares each codepoint with character-
wise case-folding. It won’t consider special case folding such as German eszett.

[Function]string= s1 s2 :optional start1 end1 start2 end2
[Function]string<> s1 s2 :optional start1 end1 start2 end2
[Function]string< s1 s2 :optional start1 end1 start2 end2
[Function]string<= s1 s2 :optional start1 end1 start2 end2
[Function]string> s1 s2 :optional start1 end1 start2 end2
[Function]string>= s1 s2 :optional start1 end1 start2 end2

[SRFI-13] {srfi-13} Compare two strings s1 and s2. Optional arguments can limit the
portion of strings to be compared. Comparison is done by character-wise.

Note: The builtin procedures string=? etc. can also be used for character-wise string
comparison, but they take arguments differently. See Section 6.12.6 [String Comparison],
page 144.

Chapter 11: Library modules - SRFIs 522

[Function]string-ci= s1 s2 :optional start1 end1 start2 end2
[Function]string-ci<> s1 s2 :optional start1 end1 start2 end2
[Function]string-ci< s1 s2 :optional start1 end1 start2 end2
[Function]string-ci<= s1 s2 :optional start1 end1 start2 end2
[Function]string-ci> s1 s2 :optional start1 end1 start2 end2
[Function]string-ci>= s1 s2 :optional start1 end1 start2 end2

[SRFI-13] {srfi-13} Compare two strings s1 and s2 in case-insensitive way. Optional argu-
ments can limit the portion of strings to be compared. Case folding and comparison is done
by character-wise, so they don’t consider case folding that affects multiple characters.

Note: We have two other sets of string comparison operations, both are named as
string-ci=? etc. The builtin version (see Section 6.12.6 [String Comparison], page 144)
does character-wise comparison. The one in gauche.unicode uses full-string case conversion
(see Section 9.34.3 [Full string case conversion], page 446). R7RS version is the latter.

[Function]string-hash s :optional bound start end
[Function]string-hash-ci s :optional bound start end

[SRFI-13] {srfi-13} (Note: Gauche has builtin string-hash and string-ci-hash accord-
ing to SRFI-128. See Section 6.2.3 [Hashing], page 92, for the details. SRFI-13’s API is
upper-compatible to SRFI-128’s. The underlying hash algorighm is the same as the builtin
ones, so string-hash returns the same value as the builtin ones for the same string if op-
tional arguments are omitted. On the other hand, the builtin string-ci-hash uses string
case folding (e.g. German eszett and SS are the same), while SRFI-13’s string-hash-ci uses
character-wise case folding. Unless there’s a strong reason, we recommend new code should
use builtin SRFI-128 version instead of SRFI-13.)

Calculates hash value of a string s. For string-hash-ci, character-wise case folding is done
before calculating the hash value.

If the optional bound argument is given, it must be a positive exact integer, and the return
value is limited below it. The optional start and end arguments allows using that portion for
calculation.

11.5.6 String Prefixes & Suffixes

[Function]string-prefix-length s1 s2 :optional start1 end1 start2 end2
[Function]string-suffix-length s1 s2 :optional start1 end1 start2 end2
[Function]string-prefix-length-ci s1 s2 :optional start1 end1 start2 end2
[Function]string-suffix-length-ci s1 s2 :optional start1 end1 start2 end2

[SRFI-13] {srfi-13} Returns the length of the longest common prefix/suffix of two strings,
s1 and s2. The optional arguments restrict the range of search. The *-ci variations use case
foling character comparison.

(string-prefix-length "abacus" "abalone") ⇒ 3

(string-prefix-length "machine" "umbrella") ⇒ 0

(string-suffix-length "peeking" "poking") ⇒ 4

(string-prefix-length "obvious" "oblivious" 2 7 4 9)

⇒ 5

[Function]string-prefix? s1 s2 :optional start1 end1 start2 end2
[Function]string-suffix? s1 s2 :optional start1 end1 start2 end2
[Function]string-prefix-ci? s1 s2 :optional start1 end1 start2 end2
[Function]string-suffix-ci? s1 s2 :optional start1 end1 start2 end2

[SRFI-13] {srfi-13} Returns true iff s1 is a prefix or suffix of s2, respectively. The optional
arguments limit the range of s1 and s2 to look at. The *-ci variations use case foling
character comparison.

Chapter 11: Library modules - SRFIs 523

(string-prefix? "sch" "scheme") ⇒ #t

(string-prefix? "lisp" "scheme") ⇒ #f

(string-suffix? "eme" "scheme") ⇒ #t

(string-suffix? "eme" "lisp") ⇒ #f

(string-prefix? "mit-scheme" "scheme-family" 4) ⇒ #t

11.5.7 String searching

[Function]string-index s char/char-set/pred :optional start end
[Function]string-index-right s char/char-set/pred :optional start end

[SRFI-13] {srfi-13} Looks for the first element in a string s that matches char/char-set/pred,
and returns its index. If char/char-set/pred is not found in s, returns #f. Optional start and
end limit the range of s to search.

(string-index "Aloha oe" #\a) ⇒ 4

(string-index "Aloha oe" #[Aa]) ⇒ 0

(string-index "Aloha oe" #[\s]) ⇒ 5

(string-index "Aloha oe" char-lower-case?) ⇒ 1

(string-index "Aloha oe" #\o 3) ⇒ 6

See also the Gauche built-in procedure string-scan (Section 6.12.7 [String utilities],
page 145), if you need speed over portability.

[Function]string-skip s char/char-set/pred :optional start end
[Function]string-skip-right s char/char-set/pred :optional start end

[SRFI-13] {srfi-13} Looks for the first element that does not match char/char-set/pred and
returns its index. If such element is not found, returns #f. Optional start and end limit the
range of s to search.

[Function]string-count s char/char-set/pred :optional start end
[SRFI-13] {srfi-13} Counts the number of elements in s that matches char/char-set/pred.
Optional start and end limit the range of s to search.

[Function]string-contains s1 s2 :optional start1 end1 start2 end2
[Function]string-contains-ci s1 s2 :optional start1 end1 start2 end2

[SRFI-13] {srfi-13} Looks for a string s2 inside another string s1. If found, returns an index
in s1 from where the matching string begins. Returns #f otherwise. Optional start1, end1,
start2 and end2 limits the range of s1 and s2.

See also the Gauche built-in procedure string-scan (Section 6.12.7 [String utilities],
page 145), if you need speed over portability.

11.5.8 String case mapping

[Function]string-titlecase s :optional start end
[Function]string-titlecase! s :optional start end
[Function]string-upcase s :optional start end
[Function]string-upcase! s :optional start end
[Function]string-downcase s :optional start end
[Function]string-downcase! s :optional start end

[SRFI-13] {srfi-13} Converts a string s to titlecase, upcase or downcase, respectively. These
operations uses character-by-character mapping provided by char-upcase etc. That is,
string-upcase and string-downcase can be understood as follow:

(string-upcase s)

Chapter 11: Library modules - SRFIs 524

≡ (string-map char-upcase s)

(string-downcase s)

≡ (string-map char-downcase s)

If you need full case mapping that handles the case when a character is mapped to more
than one characters, use the procedures with the same name in gauche.unicode module (see
Section 9.34.3 [Full string case conversion], page 446).

The linear-update version string-titlecase!, string-upcase! and string-downcase! de-
stroys s to store the result. Note that in Gauche, using those procedures doesn’t save any-
thing, since string mutation is expensive by design. They are provided merely for complete-
ness.

11.5.9 String reverse & append

[Function]string-reverse s :optional start end
[Function]string-reverse! s :optional start end

[SRFI-13] {srfi-13} Returns a string in which the character positions are reversed from s.
string-reverse! modifies s.

(string-reverse "mahalo") ⇒ "olaham"

(string-reverse "mahalo" 3) ⇒ "ola"

(string-reverse "mahalo" 1 4) ⇒ "aha"

(let ((s (string-copy "mahalo")))

(string-reverse! s 1 5)

s)

⇒ "mlahao"

[Function]string-concatenate string-list
[SRFI-13] {srfi-13} Concatenates list of strings.

(string-concatenate ’("humuhumu" "nukunuku" "apua" "‘a"))

⇒ "humuhumunukunukuapua‘a"

[Function]string-concatenate/shared string-list
[Function]string-append/shared s . . .

[SRFI-13] {srfi-13} “Shared” version of string-concatenate and string-append. In
Gauche, these are just synonyms of them.

[Function]string-concatenate-reverse string-list
[Function]string-concatenate-reverse/shared string-list

[SRFI-13] {srfi-13} Reverses string-list before concatenation. “Shared” version works the
same in Gauche.

11.5.10 String mapping

[Function]string-map proc s :optional start end
[Function]string-map! proc s :optional start end

[SRFI-13] {srfi-13} string-map applies proc on every character of s, and collects the results
into a string and returns it. On the other hand, string-map! modifies s.

(string-map char-upcase "wikiwiki") ⇒ "WIKIWIKI"

(string-map char-upcase "wikiwiki" 4) ⇒ "WIKI"

(let ((s (string-copy "wikiwiki")))

(string-map! char-upcase s 4)

s)

⇒ "wikiWIKI"

Chapter 11: Library modules - SRFIs 525

[Function]string-fold kons knil s :optional start end
[Function]string-fold-right kons knil s :optional start end

[SRFI-13] {srfi-13} Like fold and fold-right (see Section 6.6.5 [Walking over lists], page 121),
but works on a string instead of a list.

(string-fold cons ’() "abcde")

⇒ (#\e #\d #\c #\b #\a)

(string-fold-right cons ’() "abcde")

⇒ (#\a #\b #\c #\d #\e)

[Function]string-unfold p f g seed :optional base make-↓nal
[SRFI-13] {srfi-13} A fundamental string builder. The p, f and g are procedures, taking
the current seed value. The stop predicate p determines when to stop: If it returns a true
value, string building stops. The mapping function f returns a character from the current
seed value. The next seed function g returns a next seed value from the current seed value.
The seed argument gives the initial seed value.

(string-unfold (^n (= n 10))

(^n (integer->char (+ n 48)))

(^n (+ n 1))

0)

⇒ "0123456789"

The optional argument base is, when given, prepended to the result string. Another optional
argument make-↓nal is a procedure that takes the last return value of g and returns a string
that becomes the suffix of the result string.

(string-unfold (^n (= n 10))

(^n (integer->char (+ n 48)))

(^n (+ n 1))

0 "foo" x->string)

⇒ "foo012345678910"

[Function]string-unfold-right p f g seed :optional base make-↓nal
[SRFI-13] {srfi-13} Another fundamental string builder. The meanings of arguments are
the same as ‘string-unfold’. The only difference is that the string is build right-to-left.
The optional base, if given, becomes the suffix of result, and the result of make-↓nal becomes
the prefix.

(string-unfold-right (^n (= n 10))

(^n (integer->char (+ n 48)))

(^n (+ n 1))

0 "foo" x->string)

⇒ "109876543210foo"

[Function]string-for-each proc s :optional start end
[SRFI-13] {srfi-13} Apply proc on each character of string s, from left to right. Optional
start and end arguments limit the range of the input string.

[Function]string-for-each-index proc s :optional start end
[SRFI-13] {srfi-13} Call proc on each index of the string s.

11.5.11 String rotation

[Function]xsubstring s from :optional to start end
[SRFI-13] {srfi-13} Takes a substring of inifinite repetition of string s between index from
(inclusive) and index to (exclusive).

Chapter 11: Library modules - SRFIs 526

For example, if s is "abcde", we repeat it infinitely to both sides. So 5n-th character for
integer n is always #\a, which extends negative n as well.

(xsubstring "abcde" 2 10)

⇒ "cdeabcde"

(xsubstring "abcde" -9 -2)

⇒ "bcdeabc"

[Function]string-xcopy! target tstart s sfrom :optional sto start end
[SRFI-13] {srfi-13}

11.5.12 Other string operations

[Function]string-replace s1 s2 start1 end1 :optional start2 end2
[SRFI-13] {srfi-13} Returns a new string whose content is a copy of a string s1, except the
part beginning from the index start1 (inclusive) and ending at the index end1 (exclusive) are
replaced by a string s2. When optional start2 and end2 arguments are given, s2 is trimmed
first according to them. The size of the gap, (- end1 start1), doesn’t need to be the same
as the size of the inserted string. Effectively, this is the same as the following code.

(string-append (substring s1 0 start1)

(substring s2 start2 end2)

(substring s1 end1 (string-length s1)))

[Function]string-tokenize s :optional token-set start end
[SRFI-13] {srfi-13} Splits the string s into a list of substrings, where each substring is a
maximal non-empty contiguous sequence of characters from the character set token-set. The
default of token-set is char-set:graphic (see Section 10.3.5.6 [Predefined character-set],
page 504).

See also Gauche’s built-in string-split (see Section 6.12.7 [String utilities], page 145),
which provides similar features but different criteria.

11.5.13 String filtering

[Function]string-filter char/char-set/pred s :optional start end
[Function]string-delete char/char-set/pred s :optional start end

[SRFI-13] {srfi-13} Returns a string consists of characters in a string s that passes (or don’t
pass) the test indicated by char/char-set/pred, respectively.

(string-filter char-upper-case? "Hello, World!")

⇒ "HW"

(string-delete char-upper-case? "Hello, World!")

⇒ "ello, orld!"

(string-delete #\l "Hello, World!")

⇒ "Heo, Word!"

(string-filter #[\w] "Hello, World!")

⇒ "HelloWorld"

Note: Srfi-13 was revised after finalization to switch the order of arguments char/char-
set/pred and s was. At the time of finalization, the order was (string-filter s pred)

and Gauche implemented it accordingly. However, most existing implementations follows the
revised order, since that was what the srfi-13 reference implementation had.

Chapter 11: Library modules - SRFIs 527

So, from 0.9.4, we revised the API to comply the current srfi-13 spec, but we also accept the
old order as well not to break the old code. We recommend the new code to use the new
order.

11.5.14 Low-level string procedures

[Function]string-parse-start+end proc s args
[Function]string-parse-final-start+end proc s args

[SRFI-13] {srfi-13}

[Macro]let-string-start+end (start end [rest]) proc-exp s-exp args-exp body . . .
[SRFI-13] {srfi-13}

[Function]check-substring-spec proc s start end
[Function]substring-spec-ok? s start end

[SRFI-13] {srfi-13}

[Function]make-kmp-restart-vector s :optional c= start end
[SRFI-13] {srfi-13}

[Function]kmp-step pat rv c i c= p-start
[SRFI-13] {srfi-13}

[Function]string-kmp-partial-search pat rv s i :optional c= p-start s-start s-end
[SRFI-13] {srfi-13}

11.6 srfi-14 - Character-set library

[Module]srfi-14
SRFI-14 has become a part of R7RS large. See Section 10.3.5 [R7RS character sets], page 501.

11.7 srfi-19 - Time data types and procedures

[Module]srfi-19
This SRFI defines various representations of time and date, and conversion methods among
them.

On Gauche, time object is supported natively by <time> class (see Section 6.25.9 [Time],
page 254). Date object is supported by <date> class described below.

11.7.1 Time types

Time type is represented by a symbol. This module defines the following constant variables that
is bound to its name, for convenience.

[Constant]time-utc
[SRFI-19] {srfi-19} UTC time. Gauche’s built-in current-time always returns this type
(see Section 6.25.9 [Time], page 254).

[Constant]time-tai
[SRFI-19] {srfi-19} International Atomic Time. This time is a bit larger than UTC, due to
the leap seconds.

[Constant]time-monotonic
[SRFI-19] {srfi-19} Implementation-dependent monotonically increasing time. In Gauche,
this is the same as time-tai.

Chapter 11: Library modules - SRFIs 528

[Constant]time-duration
[SRFI-19] {srfi-19} Duration between two absolute time points.

[Constant]time-process
[SRFI-19] {srfi-19} CPU time in current process. Gauche calculates this from user time
and system time returned by POSIX times(3).

[Constant]time-thread
[SRFI-19] {srfi-19} CPU time in current thread. In the current implementation, this is the
same as time-process.

11.7.2 Time queries

[Function]current-time :optional time-type
[SRFI-19] {srfi-19} Extends Gauche built-in current-time (see Section 6.25.9 [Time],
page 254) to take optional time-type argument to specify the desired time type. time-type
must be one of the types described in Section 11.7.1 [SRFI-19 Time types], page 527.

[Function]current-date :optional tz-o↑set
[SRFI-19] {srfi-19} Returns the current date as an instance of <date> class (see
Section 11.7.4 [SRFI-19 Date], page 529). If tz-o↑set is given, it must be an offset from
UTC in number of seconds. If tz-o↑set is not given, returns the date in local time zone.

[Function]current-julian-day
[SRFI-19] {srfi-19} Returns the current julian day, a point in time as a real number of days
since -4714-11-24T12:00:00Z (November 24, -4714 at noon, UTC).

[Function]current-modified-julian-day
[SRFI-19] {srfi-19} Returns the current modified julian day, a point in time as a real number
of days since 1858-11-17T00:00:00Z (November 17, 1858 at midnight, UTC).

[Function]time-resolution
[SRFI-19] {srfi-19}

11.7.3 Time procedures

[Function]make-time type nanoseconds seconds
[SRFI-19] {srfi-19} Returns an instance of <time> class with specified initial values. Equiv-
alent to (make <time> :type type :second seconds :nanosecond nanoseconds).

(This function had been defined incorrectly before release 0.6.8; the arguments seconds and
nanoseconds were switched. Please check your code if it uses make-time).

[Function]time-type time
[Function]time-second time
[Function]time-nanosecond time
[Function]set-time-type! time type
[Function]set-time-second! time second
[Function]set-time-nanosecond! time nanosecond

[SRFI-19] {srfi-19} Getter and setter of <time> object slots.

[Function]copy-time time
[SRFI-19] {srfi-19} Returns a new instance of <time> whose content is the same as given
time

Chapter 11: Library modules - SRFIs 529

[Function]time=? time0 time1
[Function]time<? time0 time1
[Function]time<=? time0 time1
[Function]time>? time0 time1
[Function]time>=? time0 time1

[SRFI-19] {srfi-19} Compares two times. Types of both times must match.

[Function]time-difference time0 time1
[Function]time-difference! time0 time1

[SRFI-19] {srfi-19} Returns the difference of two times, in time-duration time. Types of
both times must match. Time-difference! modifies time0 to store the result.

[Function]add-duration time0 time-duration
[Function]add-duration! time0 time-duration
[Function]subtract-duration time0 time-duration
[Function]subtract-duration! time0 time-duration

[SRFI-19] {srfi-19} Adds or subtracts time-duration to or from time0. Type of returned
time is the same as time0. Type of time-duration must be time-duration. add-duration!
and subtract-duration! reuse time0 to store the result.

11.7.4 Date

[Class]<date>
{srfi-19} Represents a date.

[Instance Variable of <date>]nanosecond
Nanosecond portion of the date by an integer between 0 and 999,999,999, inclusive.

[Instance Variable of <date>]second
Second portion of the date by an integer between 0 and 60, inclusive. (60 for leap second).

[Instance Variable of <date>]minute
Minute portion of the date by an integer between 0 and 59, inclusive.

[Instance Variable of <date>]hour
Hour portion of the date by an integer between 0 and 23, inclusive.

[Instance Variable of <date>]day
Day portion of the date by an integer between 0 and 31, inclusive. The actual upper
bound of the day is determined by the year and the month. (Note: 1 is for the first day;
0 is allowed by the specification, but I don’t see why).

[Instance Variable of <date>]month
Month portion of the date by an integer between 1 and 12, inclusive. 1 for January, 2 for
February, and so on. (Note: this is different from POSIX’s <sys-tm> convention).

[Instance Variable of <date>]year
Year portion of the date.

[Instance Variable of <date>]zone-offset
The number of seconds east of GMT for this timezone, by an integer.

[Function]make-date nanosecond second minute hour day month year zone-o↑set
[SRFI-19] {srfi-19} Makes a <date> object from the given values. Note: this procedure
does not check if the values are in the valid range.

Chapter 11: Library modules - SRFIs 530

[Function]date? obj
[SRFI-19] {srfi-19} Returns true iff obj is a <date> object.

[Function]date-nanosecond date
[Function]date-second date
[Function]date-minute date
[Function]date-hour date
[Function]date-day date
[Function]date-month date
[Function]date-year date
[Function]date-zone-offset date

[SRFI-19] {srfi-19} Accessors.

[Function]date-year-day date
[Function]date-week-day date
[Function]date-week-number date day-of-week-starting-week

[SRFI-19] {srfi-19} Calculates the day number in the year (1 for January 1st), the day
number in the week (0 for Sunday, 1 for Monday, ...), and the ordinal week of the year which
holds this date, ignoring a first partial week, respectively.

Day-of-week-starting-week is the integer corresponding to the day of the week which is to be
considered the first day of the week (Sunday=0, Monday=1, etc.).

[Function]date->julian-day date
[Function]date->modified-julian-day date
[Function]date->time-monotonic date
[Function]date->time-tai date
[Function]date->time-utc date

[SRFI-19] {srfi-19} Conversions from date to various date/time types.

[Function]julian-day->date jd :optional tz-o↑set
[Function]julian-day->time-monotonic jd
[Function]julian-day->time-tai jd
[Function]julian-day->time-utc jd

[SRFI-19] {srfi-19} Conversions from julian-day to various date/time types.

[Function]modified-julian-day->date jd :optional tz-o↑set
[Function]modified-julian-day->time-monotonic jd
[Function]modified-julian-day->time-tai jd
[Function]modified-julian-day->time-utc jd

[SRFI-19] {srfi-19} Conversions from modified julian-day to various date/time types.

[Function]time-monotonic->date time :optional tz-o↑set
[Function]time-monotonic->julian-day time
[Function]time-monotonic->modified-julian-day time
[Function]time-monotonic->time-tai time
[Function]time-monotonic->time-tai! time
[Function]time-monotonic->time-utc time
[Function]time-monotonic->time-utc! time

[SRFI-19] {srfi-19} Conversions from time-monotonic to various date/time types.

[Function]time-tai->date time :optional tz-o↑set
[Function]time-tai->julian-day time
[Function]time-tai->modified-julian-day time
[Function]time-tai->time-monotonic time

Chapter 11: Library modules - SRFIs 531

[Function]time-tai->time-monotonic! time
[Function]time-tai->time-utc time
[Function]time-tai->time-utc! time

[SRFI-19] {srfi-19} Conversions from time-tai to various date/time types.

[Function]time-utc->date time :optional tz-o↑set
[Function]time-utc->julian-day time
[Function]time-utc->modified-julian-day time
[Function]time-utc->time-monotonic time
[Function]time-utc->time-monotonic! time
[Function]time-utc->time-tai time
[Function]time-utc->time-tai! time

[SRFI-19] {srfi-19} Conversions from time-utc to various date/time types.

11.7.5 Date reader and writer

[Function]date->string date :optional format-string
[SRFI-19+] {srfi-19} Converts a <date> object to a string, according to the format specified
by format-string. If format-string is omitted, "~c" is assumed.

A format string is copied to output, except a sequence begins with ~ which is replaced with
the following rules:

~~ A literal ~.

~a Locale’s abbreviated weekday name (Sun...Sat).

~A Locale’s full weekday name (Sunday...Saturday).

~b Locale’s abbreviate month name (Jan...Dec).

~B Locale’s full month name (January...December).

~c Locale’s date and time (e.g., "Fri Jul 14 20:28:42-0400 2000").

~d Day of month, zero padded (01...31).

~D Date (mm/dd/yy).

~e Day of month, blank padded (1...31).

~f Seconds+fractional seconds, using locale’s decimal separator (e.g. 5.2).

~h Same as ~b.

~H Hour, zero padded, 24-hour clock (00...23).

~I Hour, zero padded, 12-hour clock (01...12).

~j Day of year, zero padded.

~k Hour, blank padded, 24-hour clock (0...23).

~l Hour, blank padded, 12-hour clock (1...12).

~m Month, zero padded (01...12).

~M Minute, zero padded (00...59).

~n New line.

~N Nanosecond, zero padded.

~p Locale’s AM or PM.

~r Time, 12 hour clock, same as "~I:~M:~S ~p".

Chapter 11: Library modules - SRFIs 532

~s Number of full seconds since "the epoch" (in UTC).

~S Second, zero padded (00...60).

~t Horizontal tab.

~T Time, 24 hour clock, same as "~H:~M:~S".

~U Week number of year with Sunday as first day of week (01...53).

~V Week number of year with Monday as first day of week (00...52).

~w Day of week (0...6).

~W Week number of year with Monday as first day of week (00...52).

~x Locale’s date representation, for example: "07/31/00".

~X Locale’s time representation, for example: "06:51:44".

~y Last two digits of year (00...99).

~Y Year.

~z Time zone in RFC-822 style.

~1 ISO-8601 year-month-day format.

~2 ISO-8601 hour-minute-second-timezone format.

~3 ISO-8601 hour-minute-second format.

~4 ISO-8601 year-month-day-hour-minute-second-timezone format.

~5 ISO-8601 year-month-day-hour-minute-second format.

Note: currently Gauche doesn’t honor process’s locale setting, and it always formats the date
as if the locale is "C". It may be changed in future, so you shouldn’t rely on, for example,
~a always formatted as "Sun".."Sat".

There’s no portable way to ensure you’ll get "C" locale formats since there’s no standard
way to set process’s locale yet. However, Gauche provides a way to ensure the locale to be
"C", as an extension to srfi-19. Insert @ between ~ and the directive character, such as ~@a.

[Function]string->date string template-string
[SRFI-19] {srfi-19}

11.8 srfi-27 - Sources of Random Bits

[Module]srfi-27
This module provides SRFI-27 pseudo random generator interface, using Mersenne Twister
algorithm (see Section 12.25 [Mersenne-Twister random number generator], page 646) as the
backbone.

[Function]random-integer n
[SRFI-27] {srfi-27} Returns a random exact integer between [0, n-1], inclusive, using the
default random source. To set a random seed for this procedure, use random-source-

randomize! or random-source-pseudo-randomize! on default-random-source.

[Function]random-real
[SRFI-27] {srfi-27} Returns a random real number between (0, 1), exclusive, using the
default random source. To set a random seed for this procedure, use random-source-

randomize! or random-source-pseudo-randomize! on default-random-source.

Chapter 11: Library modules - SRFIs 533

[Variable]default-random-source
[SRFI-27] {srfi-27} Keeps the default random source that is used by random-integer and
random-real.

[Function]make-random-source
[SRFI-27] {srfi-27} Creates and returns a new random source. In the current Gauche
implementation, it is just a <mersenne-twister> object. It may be changed in the future
implementation.

[Function]random-source? obj
[SRFI-27] {srfi-27} Returns #t if obj is a random source object.

[Function]random-source-state-ref s
[Function]random-source-state-set! s state

[SRFI-27] {srfi-27} Gets and sets the "snapshot" of the state of the random source s. State
is an opaque object whose content depends on the backbone generator.

[Function]random-source-randomize! s
[SRFI-27] {srfi-27} Makes an effort to set the state of the random source s to a truly
random state. The current implementation uses the current time and the process ID to set
the random seed.

[Function]random-source-pseudo-randomize! s i j
[SRFI-27] {srfi-27} Changes the state of the random source s into the initial state of the (i,
j)-th independent random source, where i and j are non-negative integers. This procedure can
be used to reuse a random source s as large number of independent random source, indexed
by two non-negative integers. Note that this procedure is entirely deterministic.

[Function]random-source-make-integers s
[SRFI-27] {srfi-27} Returns a procedure, that takes one integer argument n and returns a
random integer between 0 and n-1 inclusive for every invocation, from the random source s.

[Function]random-source-make-reals s :optional unit
[SRFI-27] {srfi-27} Returns a procedure, that takes no argument and returns a random
real between 0 and 1 exclusive for every invocation, from the random source s. If unit is
given, the random real the returned procedure generates will be quantized by the given unit,
where 0 < unit < 1.

11.9 srfi-29 - Localization

[Module]srfi-29
This module implements the message localization mechanism defined in SRFI-29.

In fact, this module consists of two submodules, srfi-29.bundle and srfi-29.format. The
module srfi-29 extends both submodules. It is because srfi-29’s definition of the format

procedure is incompatible to Gauche’s native format (thus Common Lisp’s format) in the
handling of ~@* directive.

So I splitted the module into two, srfi-29.format which contains srfi-29’s format, and
srfi-29.bundle which contains the rest ("bundle" API). If a program wishes a complete
compatibility of srfi-29, use srfi-29 module, which overrides Gauche’s native format. If
a program just wants srfi-29’s "bundle" API, but wants to keep Gauche’s format, use
srfi-29.bundle.

A localization feature is also provided by text.gettext module (see Section 12.52 [Localized
messages], page 720), which is a preferable way of message localization in Gauche. This
module is provided mainly for porting code that uses srfi-29 features.

Chapter 11: Library modules - SRFIs 534

Bundle specifier

A bundle specifier is an arbitrary list of symbols, but typically it takes the form like:

(package language country details ...)

Where package specifies the software package, language and country specifies language and
country code, and details gives other informations like encoding.

The values for the default bundle specifier can be obtained by the following parameters.

[Parameter]current-language
[Parameter]current-country
[Parameter]current-locale-details

[SRFI-29] {srfi-29} The current-language and current-country parameters keep the
ISO 639-1 language code and ISO 3166-1 country code respectively, both as symbols. The
current-locale-details keeps a list of auxiliary local informations, such as encodings.

These parameters are initialized if LANG environment variable is set in the form of lang_
country.encoding format. For example, if the LANG setting is ja_JP.eucJP, those parame-
ters are ja, jp, and (eucjp), respectively. If LANG is C or undefined, the default values are
en, us, and (), respectively.

Bundle preparation

[Function]declare-bundle! bundle-speci↓er association-list
[SRFI-29] {srfi-29} Put the association list of template key (symbol) and the locale-specific
message (string) into the bundle database, with bundle-speci↓er as the key.

Gauche currently supports only in-memory bundle database. That is, you have to call
declare-bundle! within the application in order to lookup the localized messages.

[Function]save-bundle! bundle-speci↓er
[Function]load-bundle! bundle-speci↓er

[SRFI-29] {srfi-29} Since Gauche doesn’t support persistent bundle database yet, these
procedures does nothing and returns #f. (It is still conforming behavior of srfi-29).

Retrieving localized message

[Function]localized-template package-name message-template-name
[SRFI-29] {srfi-29} Retrieves localized message, associated with a symbol message-
template-name in the package package-name.

Extended format procedure

[Function]format format-string args
[SRFI-29] {srfi-29} SRFI-29 extends SRFI-28’s format procedure spec (which supports ~a,
~s, ~% and ~~ directives), in order to support argument repositioning.

A directive ~N@*, where N is an integer or can be omitted, causes the next directive to retrieve
a value from N -th optional argument. The referenced value isn’t consumed, and won’t affect
the processing of subsequent directives.

Although SRFI-28 spec is compatible to Gauche’s native format (see Section 6.22.8 [Out-
put], page 217), this SRFI-29 extention isn’t. Specifically, the ~N@* directive of Gauche’s
format changes the argument pointer to points N -th optional argument, thus it affects all
the subsequent arguments.

Because of this incompatibility, this function is defined in a separate module,
srfi-29.format. If you use srfi-29, which extends srfi-29.bundle and
srfi-29.format, the format procedure will be overridden by srfi-29’s format in your
module. If you want to keep Gauche’s native format, use srfi-29.bundle only.

Chapter 11: Library modules - SRFIs 535

11.10 srfi-37 - args-fold: a program argument processor

[Module]srfi-37
This module implements args-fold, yet another procedure to process command-line argu-
ments, defined in SRFI-37 ([SRFI-37], page 764).

Unlike gauche.parseopt (see Section 9.22 [Parsing command-line options], page 385),
args-fold provides functional interface, i.e. the user’s states are explicitly passed via parser’s
argument and return values, and also follows POSIX and GNU getopt guidelines, including
long options.

[Function]args-fold args options unrecognized-proc operand-proc :rest seeds
{srfi-37} Processes program options args from left to right, according to given option
specification options, and two procedures unrecognized-proc and operand-proc.

Options is a list of option objects, explained below. Each option object keeps the name(s) of
the option, a flag to specify whether the option takes an argument or not, and a procedure
to process that option (we’ll call it option procedure).

Args-fold recognizes both single-character options (short options) and long options. A short
option must begin with single hyphen (e.g. -a), while long option must begin with double
hyphens (e.g. --help). Short options can be concatenated, e.g. -abc or -a -b -c. Both
a short option and a long option can take required or optional arguments. Required short-
option argument can appear with or without space after the option, e.g. -afoo or -a foo.
Long-option argument can appear after character ’=’ or space, e.g. --long=foo or --long

foo.

When args-fold encounters a command-line argument that cannot be an option argument,
and doesn’t begin with hyphen, the argument is treated as an operand. Args-fold allows
operands and options to be interleaved. However, if args-fold encounters ’--’, the rest of
arguments are treated as operands, regardless of beginning with hyphen or not.

When the given option matches one of option object in options, the option procedure is called
as follows:

(option-proc option name arg seed ...)

where option is the matched option object, name is the string actually used to specify the
option, arg is the option argument (or #f if there’s none), and seed . . . is the user’s state
information. Option-proc must return as many arguments as seeds.

When args-fold encounters an option that doesn’t match any of the option objects, it creates
a new option object for the option and calls unrecognized-proc with the same arguments as
option-proc.

When args-fold finds an operand, operand-proc is called as follows:

(operand-proc operand seed ...)

Operand-proc must return as many arguments as seeds.

The caller’s state should be explicitly passed around seed arguments and return values. The
initial seed values are seeds given to args-fold. The values returned from option procedure,
unrecognized-proc and operand-proc are used as the seed arguments of next invocation of
those procedures. The values returned from the last call to the procedures are returned from
args-fold.

[Function]option names require-arg? optional-arg? processor
{srfi-37} Creates an option object with the passed properties.

Names is a list of characters and/or strings. A character is used for a short option, and a
string is used for a long option.

Chapter 11: Library modules - SRFIs 536

Two flags, require-arg? and optional-arg? indicates whether the option should take an option
argument, or may take an option argument.

Processor is the option processor procedure.

Note that, if an option argument is passed using ’=’ character, it is passed to the option
procedure even if the option has #f in both require-arg? and optional-arg?. It is up to the
option procedure to deal with the argument.

It should also be noted that the optional option argument for a short option is only recognized
if it is given without whitespace after the short option. That is, if a short option ’d’ is marked
to take optional option argument, then ’-dfoo’ is interpreted as ’-d’ with argument ’foo’,
but ’-d foo’ is interpreted as ’-d’ without argument and an operand foo. If ’d’ is marked to
take required option argument, however, both are interpreted as ’-d’ with argument ’foo’.

[Function]option? obj
{srfi-37} Returns #t if obj is an option object, #f otherwise.

[Function]option-names option
[Function]option-required-arg? option
[Function]option-optional-arg? option
[Function]option-processor

{srfi-37} Returns the properties of an option object option.

A simple example:

(use srfi-37)

(define options

(list (option ’(#\d "debug") #f #t

(lambda (option name arg debug batch paths files)

(values (or arg "2") batch paths files)))

(option ’(#\b "batch") #f #f

(lambda (option name arg debug batch paths files)

(values debug #t paths files)))

(option ’(#\I "include") #t #f

(lambda (option name arg debug batch paths files)

(values debug batch (cons arg paths) files)))))

(define (main args)

(receive (debug-level batch-mode include-paths files)

(args-fold (cdr args)

options

(lambda (option name arg . seeds) ; unrecognized

(error "Unrecognized option:" name))

(lambda (operand debug batch paths files) ; operand

(values debug batch paths (cons operand files)))

0 ; default value of debug level

#f ; default value of batch mode

’() ; initial value of include paths

’() ; initial value of files

)

(print "debug level = " debug-level)

(print "batch mode = " batch-mode)

(print "include paths = " (reverse include-paths))

(print "files = " (reverse files))

0))

Chapter 11: Library modules - SRFIs 537

11.11 srfi-42 - Eager comprehensions

[Module]srfi-42
This module provides a generic comprehension mechanism, which some other languages (e.g.
Haskell and Python) offer as a built-in mechanism. It provides a rich set of operators so it
can be used not only as a list generator but as a generic loop construct (actually, some may
say it is as powerful/evil as Common Lisp’s loop macro).

It runs eagerly as the name suggests, that is, if it generates a list, it creates the entire list when
evaluated, instead of generate the elements on demand. Thus it can’t represent an infinite
sequence, which Haskell’s comprehension naturally does. Gauche offers a few alternatives to
deal with lazy, possibly infinite, sequences: See Section 6.19.2 [Lazy sequences], page 185,
Section 9.10 [Generators], page 344, and Section 12.69 [Stream library], page 746.

Eager comprehension examples

Let’s begin with some examples.

Generate a list of squares for the first five integers:

(list-ec (: i 5) (* i i)) ⇒ (0 1 4 9 16)

list-ec is a comprehension macro that generates a list. The first form (: i 5) is called a
quali↓er, which specifies a set of values to repeat over (here it is each integer from 0 below 5).
The last form (* i i) is called a body, which is ordinary Scheme expression evaluated for each
values specified by the quali↓er.

A comprehension can have more than one qualifiers. Next example generate set of pair of
numbers (x y), where x is between 2 (inclusive) and 5 (exclusive), and y is between 1 (inclusive)
and x (exclusive).

(list-ec (: x 2 5) (: y 1 x) (list x y))

⇒ ((2 1) (3 1) (3 2) (4 1) (4 2) (4 3))

The qualifiers works as nested ; that is, (: x 2 5) specifies to repeat the rest of the clauses—(:

y 1 x) and (list x y).

The above two examples can be written in Haskell as the followings:

[i*i | i <- [0..4]]

[(x,y) | x <- [2..4], y <- [1..x-1]]

Note the differences: (1) In Haskell, the body expression to yield the elements comes first,
followed by qualifiers (selectors). In srfi-42, the body expression comes last. (2) In srfi-42, range
operator’s lower bound is inclusive but its upper bound is exclusive.

List a set of numbers (a b c d), where a^3+b^3 = c^3+d^3:

(define (taxi-number n)

(list-ec (: a 1 n)

(: b (+ a 1) n)

(: c (+ a 1) b)

(: d (+ c 1) b)

(if (= (+ (expt a 3) (expt b 3))

(+ (expt c 3) (expt d 3))))

(list a b c d)))

If you want to change values of more than one variable simultaneously, instead of nesting,
you can bundle the qualifiers like this:

(list-ec (:parallel (: x ’(a b c d)) (: y ’(1 2 3 4)))

(list x y))

⇒ ((a 1) (b 2) (c 3) (d 4))

Chapter 11: Library modules - SRFIs 538

You can generate not only a list, but other sequences:

(vector-ec (: i 5) i) ⇒ #(0 1 2 3 4)

(string-ec (: i 5) (integer->char (+ i 65))) ⇒ "ABCDE"

Or apply folding operations:

(sum-ec (: i 1 100) i)

⇒ 4950 ;; sum of integers from 1 below 100.

(product-ec (: i 1 10) i)

⇒ 362880 ;; ... and product of them.

Comprehension macros

Each comprehension takes the following form.

(comprehension-macro qualifier ... body)

It evaluates body repeatedly as specified by quali↓er Depending on the type of compre-
hension, the results of body may be either collected to create an aggregate (list, vector, string,
...), folded by some operator (sum, product, min, max, ...), or simply discarded.

Each quali↓er specifies how to repeat the following quali↓ers and body. A quali↓er can be a
generational qualifier that yields a set of values to loop over, or a control qualifier that specify
a condition to exclude some values. See the Qualifiers heading below.

A few comprehensions takes extra values before quali↓ers or after body.

[Macro]do-ec quali↓er . . . body
[SRFI-42] {srfi-42} Repeats body. The results of body is discarded. This is for side-
effecting operations.

[Macro]list-ec quali↓er . . . body
[SRFI-42] {srfi-42} Repeats body and collects the results into a list.

[Macro]append-ec quali↓er . . . body
[SRFI-42] {srfi-42} Repeats body, which must yield a list. Returns a list which is the
concatenation of all lists returned by body.

[Macro]string-ec quali↓er . . . body
[Macro]string-append-ec quali↓er . . . body

[SRFI-42] {srfi-42} Repeats body, which must yield a character (in string-ec) or a string
(in string-append-ec). Returns a string that consists of the results of body.

[Macro]vector-ec quali↓er . . . body
[SRFI-42] {srfi-42} Repeats body and collects the results into a vector.

[Macro]vector-of-length-ec k quali↓er . . . body
[SRFI-42] {srfi-42} This is like vector-ec, except that the length of the result vector is
known to be k. It can be more efficient than vector-ec. Unless the comprehension repeats
exactly k times, an error is signaled.

[Macro]sum-ec quali↓er . . . body
[Macro]product-ec quali↓er . . . body

[SRFI-42] {srfi-42} body must yield a numeric value. Returns sum of and product of the
results, respectively.

[Macro]min-ec quali↓er . . . body
[Macro]max-ec quali↓er . . . body

[SRFI-42] {srfi-42} body must yield a numeric value. Returns maximum and minimum
value of the results, respectively. body must be evaluated at least once, or an error is signaled.

Chapter 11: Library modules - SRFIs 539

[Macro]any?-ec quali↓er . . . test
[Macro]every?-ec quali↓er . . . test

[SRFI-42] {srfi-42} Evaluates test for each iteration, and returns #t as soon as it yields
non-#f (for any-ec?), or returns #f as soon as it yields #f (for every?-ec). Unlink the
comprehensions introduced above, these stop evaluating test as soon as the condition meets.
If the qualifiers makes no iteration, #f and #t are returned, respectively.

[Macro]first-ec default quali↓er . . . body
[Macro]last-ec default quali↓er . . . body

[SRFI-42] {srfi-42} First initializes the result by the value of the expression default, then
start iteration, and returns the value of the first and last evaluation of body, respectively. In
fact, first-ec only evaluates body at most once.

These procedures are most useful when used with control qualifiers. For example, the follow-
ing first-ec returns the first set of distinct integers (x, y, z), where x*x+y*y+z*z becomes
a square of another integer w.

(first-ec #f (:integers w) (: z 1 w) (: y 1 z) (: x 1 y)

(if (= (* w w) (+ (* x x) (* y y) (* z z))))

(list x y z w))

Note that the first qualifier, (:integers w), generates infinite number of integers; if you use
list-ec instead of first-ec it won’t stop.

[Macro]fold-ec seed quali↓er . . . expr proc
[Macro]fold3-ec seed quali↓er . . . expr init proc

[SRFI-42] {srfi-42} Reduces the values produced by expr.

Suppose expr produces a sequence of values x0, x1, . . . , xN. Fold-ec calculates the following
value:

(proc xN (...(proc x1 (proc x0 seed))...))

It’s similar to fold, except that proc is evaluated within the scope of quali↓er . . . so you can
refer to the variables introduced by them. On the other hand, seed is outside of the scope of
quali↓ers.

Fold-ec3 is almost the same but the initial value calculation. In fold-ec3, seed is only used
when quali↓ers makes no iteration. Otherwise it calculates the following value:

(proc xN (...(proc x1 (init x0))...))

Qualifiers

Generational qualifiers

This type of qualifiers generates (possibly infinite) values over which the rest of clauses iterate.

In the following descriptions, vars refers to either a single identifier, or a series of identifier
and a form (index identifier2). The single identifier in the former case and the first identifier
in the latter case name the variable to which each generated value is bound. The identi↓er2
in the latter case names a variable to which a series of integers, increasing with each generated
element, is bound. See the following example:

(list-ec (: x ’(a b c)) x)

⇒ (a b c)

(list-ec (: x (index y) ’(a b c)) (cons x y))

⇒ ((a . 0) (b . 1) (c . 2))

[EC Qualifier]: vars arg1 args . . .
A generic dispatcher of generational qualifiers. An appropriate generational qualifier is se-
lected based on the types of arg1 args

Chapter 11: Library modules - SRFIs 540

[EC Qualifier]:list vars arg1 args . . .
[EC Qualifier]:vector vars arg1 args . . .
[EC Qualifier]:string vars arg1 args . . .

Arg1 args . . . should be all lists, vectors, or strings, respectively. Repeats the subsequent
clauses while binding each element from those args bound to vars.

(list-ec (:string c "ab" "cd") c) ⇒ (#\a #\b #\c #\d)

If the arguments given to the generic qualifier : are all lists, vectors or strings, then these
qualifiers are used.

[EC Qualifier]:integers vars
Generates infinite series of increasing integers, starting from 0.

[EC Qualifier]:range vars stop
[EC Qualifier]:range vars start stop
[EC Qualifier]:range vars start stop step

Generates a series of exact integers, starting from start (defaults to 0) and stops below stop,
stepping by step (defaults to 1). Giving a negative integer to step makes a decreasing series.

(list-ec (:range v 5) v) ⇒ (0 1 2 3 4)

(list-ec (:range v 3 8) v) ⇒ (3 4 5 6 7)

(list-ec (:range v 1 8 2) v) ⇒ (1 3 5 7)

(list-ec (:range v 8 1 -2) v) ⇒ (8 6 4 2)

If one, two or three exact integer(s) is/are given to the generic qualifier :, this qualifier is
used.

[EC Qualifier]:real-range vars stop
[EC Qualifier]:real-range vars start stop
[EC Qualifier]:real-range vars start stop step

Generates a series of real numbers, starting from start (defaults to 0) and stops below stop,
stepping by step (defaults to 1). If all the arguments are exact numbers, the result consists
of exact numbers; if any of the arguments are inexact, the result consists of inexact numbers.

(list-ec (:real-range v 5.0) v)

⇒ (0.0 1.0 2.0 3.0 4.0)

(list-ec (:real-range v 1 4 1/3) v)

⇒ (1 4/3 5/3 2 7/3 8/3 3 10/3 11/3)

(list-ec (:real-range v 1 5.0 1/2) v)

⇒ (1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5)

If one, two or three real numbers is/are given to the generic qualifier :, and any one of them
isn’t an exact integer, then this qualifier is used.

[EC Qualifier]:char-range vars min max
Generates a series of characters, starting from min and ending at max (inclusive). The
characters are enumerated in the order defined by char<=? (see Section 6.10 [Characters],
page 133).

(list-ec (:char-range v #\a #\e) v)

⇒ (#\a #\b #\c #\d #\e)

If two characters are given to the generic qualifier :, this qualifier is used.

[EC Qualifier]:port vars port
[EC Qualifier]:port vars port read-proc

Generates a series of values read from an input port port, by the procedure read-proc (defaults
to read). The series terminates when EOF is read.

(call-with-input-string "a \"b\" :c"

Chapter 11: Library modules - SRFIs 541

(^p (list-ec (:port v p) v)))

⇒ (a "b" :c)

If one or two arguments are given to the generic qualifier : and the first one is an input port,
then this qualifier is used.

[EC Qualifier]:generator vars gen
This is Gauche’s extension and not defined in SRFI-42. gen must be a procedure with zero
arguments. This qualifier repeats until gen returns EOF.

Gauche has a set of utilities to create and operate on such procedures; see Section 9.10
[Generators], page 344.

(use gauche.generator)

(list-ec (:generator v (grange 1 8)) v)

⇒ (1 2 3 4 5 6 7)

If one argument is given to the generic qualifier : and it is applicable without arguments,
then this qualifier is used.

[EC Qualifier]:parallel generator . . .
This is used to run through mutiple generators in parallel. It terminates when any one of
generator is exhausted.

(list-ec (:parallel (: x ’(a b c))

(: y "defg"))

(cons x y))

⇒ ((a . #\d) (b . #\e) (c . #\f))

;; Compare with this:

(list-ec (: x ’(a b c))

(: y "defg")

(cons x y))

⇒ ((a . #\d) (a . #\e) (a . #\f) (a . #\g)

(b . #\d) (b . #\e) (b . #\f) (b . #\g)

(c . #\d) (c . #\e) (c . #\f) (c . #\g))

[EC Qualifier]:let vars expr

[EC Qualifier]:while generator expr

[EC Qualifier]:until generator expr

[EC Qualifier]:dispatched vars dispatch arg1 args . . .

[EC Qualifier]:do (lb . . .) ne1? (ls . . .)
[EC Qualifier]:do (let (ob . . .) oc . . .) (lb . . .) ne1? (let (ib . . .) ic . . .) ne2? (ls

. . .)

Control qualifiers

[EC Qualifier]if test

[EC Qualifier]not test
[EC Qualifier]and test . . .
[EC Qualifier]or test . . .

[EC Qualifier]begin command . . . expr

[EC Qualifier]nested quali↓er . . .

Chapter 11: Library modules - SRFIs 542

11.12 srfi-43 - Vector library (legacy)

[Module]srfi-43
This module is effectively superseded by R7RS and srfi-133. There are a few procedures
that are not compatbile with R7RS and srfi-133, and this module remains to support legacy
code that depends on them.

See Section 6.14 [Vectors], page 160, and see Section 11.28 [Vector library], page 559, for the
“modern” versions of vector library. New code should use them.

The following procedures in srfi-43 are built-in. See Section 6.14 [Vectors], page 160, for the
description.

make-vector vector vector? vector-ref

vector-set! vector-length vector-fill! vector-copy

vector-copy! vector-append vector->list list->vector

reverse-list->vector

The following procedures in srfi-43 are supported by srfi-133. See Section 11.28 [Vector
library], page 559, for the description.

vector-unfold vector-unfold-right vector-reverse-copy

vector-reverse-copy! vector-concatenate vector-empty?

vector= vector-index vector-index-right

vector-skip vector-skip-right vector-binary-search

vector-any vector-every vector-swap!

reverse-vector->list

We explain the procedures that are not listed above.

[Function]vector-fold kons knil vec1 vec2 . . .
[Function]vector-fold-right kons knil vec1 vec2 . . .

[SRFI-43] {srfi-43} Like vector-fold and vector-fold-right in srfi-133, but kons
takes an extra argument, the current index, as its first argument. So kons must accept
n+2 arguments, where n is the number of given vectors. It is called as (kons <index>

<cumulated-value> <elt1> <elt2> ...).

Gauche has fold-with-index (see Section 9.28.3 [Mapping over sequences], page 414) that
can be used to fold vectors with index, but the argument order of kons is slightly different:
It passes the index, each element from argument vectors, then cumulated values.

(use srfi-43)

(vector-fold list ’() ’#(a b c) ’#(d e f))

⇒ (2 (1 (0 () a d) b e) c f)

(use gauche.sequence)

(fold-with-index list ’() ’#(a b c) ’#(d e f))

⇒ (2 c f (1 b e (0 a d ())))

[Function]vector-map f vec1 vec2 . . .
[Function]vector-map! f vec1 vec2 . . .
[Function]vector-for-each f vec1 vec2 . . .
[Function]vector-count f vec1 vec2 . . .

[SRFI-43] {srfi-43} Like vector-map and vector-for-each of R7RS, and vector-map!

and vector-count in srfi-133, except f takes an extra argument, the current index, as its
first argument.

Gauche provides vector-map-with-index, vector-map-with-index! and vector-for-

each-with-index which are the same as srfi-43’s vector-map, vector-map! and
vector-for-each, respectively. See Section 6.14 [Vectors], page 160.

Chapter 11: Library modules - SRFIs 543

(vector-map list ’#(a b c))

⇒ #((0 a) (1 b) (2 c))

(vector-map list ’#(a b c) ’#(d e f g))

⇒ #((0 a d) (1 b e) (2 c f))

(vector-count = ’#(0 2 2 4 4))

⇒ 3

(Note: The vector-count example calls = with two arguments, the current index and the
element, for each element of the input vector. So it counts the number of occasions when the
element is equal to the index.)

The generic map and for-each in gauche.collection can be used on vectors, but the
mapped procedure is called without index, and the result is returned as a list. (vector-map f

vec1 vec2 ...) is operationally equivalent to (map-to-with-index <vector> f vec1 vec2

...). See Section 9.5 [Collection framework], page 322, and Section 9.28 [Sequence frame-
work], page 412.

11.13 srfi-55 - Requiring extensions

[Module]srfi-55
This module defines require-extension macro, a yet another way to write portable scripts.
See Section 4.12 [Feature conditional], page 64, and Section 11.4 [Feature-based program
configuration language], page 517, for other means of ensuring specific features.

This module is autoloaded when you use require-extension, so you don’t need explicitly
say (use srfi-55); for portable scripts, you shouldn’t.

[Macro]require-extension clause . . .
{srfi-55} Make extension(s) specified by clauses available in the rest of the program.

A clause takes the following form:

(extension-id extension-arg ...)

Currently, only srfi is supported as extension-id, and its arguments are SRFI numbers.

For example, the following form:

(require-extension (srfi 1 13 14))

Roughly corresponds to Gauche’s use forms:

(use srfi-1)

(use srfi-13)

(use srfi-14)

11.14 srfi-60 - Integers as bits

[Module]srfi-60
This srfi provides bit operations on integers, regarding them as 2’s complement representation.
It is compatible to SLIB’s logical module.

The newer srfi-151 (see Section 11.32 [Bitwise operations], page 572) provides the same func-
tionality and more, with more consistent naming. We recommend new code to use srfi-151,
while we keep srfi-60 for the backward compatibility.

The following procedures are Gauche built-in. See Section 6.3.6 [Basic bitwise operations],
page 112, for the description.

lognot logand logior logxor

logtest logcount integer-length logbit?

copy-bit bit-field copy-bit-field ash

Chapter 11: Library modules - SRFIs 544

The following procedures are defined in srfi-151. See Section 11.32 [Bitwise operations],
page 572, for the description.

bitwise-not bitwise-and bitwise-ior bitwise-xor

arithmetic-shift bit-count bitwise-if bit-set?

copy-bit first-set-bit

We describe procedures that are unique in srfi-60 below.

[Function]bitwise-merge mask n0 n1
[SRFI-60] {srfi-60} Same as bitwise-if (see Section 11.32 [Bitwise operations], page 572).

[Function]any-bits-set? mask n
[SRFI-60] {srfi-60} Same as builtin logtest (see Section 6.3.6 [Basic bitwise operations],
page 112). It is also called any-bit-set? in srfi-151 (see Section 11.32 [Bitwise operations],
page 572).

[Function]log2-binary-factors n
[SRFI-60] {srfi-60} It is also called as first-set-bit in this srfi, which is also in srfi-151
(see Section 11.32 [Bitwise operations], page 572). This is equivalent to Gauche’s built-in
twos-exponent-factor (see Section 6.3.6 [Basic bitwise operations], page 112).

[Function]rotate-bit-field n count start end
[SRFI-60] {srfi-60} This is equivalent to bit-field-rotate in srfi-151 (see Section 11.32
[Bitwise operations], page 572).

[Function]reverse-bit-field n start end
[SRFI-60] {srfi-60} This is equivalent to bit-field-reverse in srfi-151 (see Section 11.32
[Bitwise operations], page 572).

[Function]integer->list n :optional len
[SRFI-60] {srfi-60} Breaks n to each bits, representing 1 as #t and 0 as #f, LSB last, and
returns a list of them. If a nonnegative integer len is given, it specifies the length of the
result. If it is omitted, (integer-length n) is used.

(integer->list 10) ⇒ (#t #f #t #f)

(integer->list 10 6) ⇒ (#f #f #t #f #t #f)

Srfi-151 has similar procedure bits->list, with a reversed bit order (LSB first) (see
Section 11.32 [Bitwise operations], page 572).

[Function]list->integer lis
[SRFI-60] {srfi-60} Takes a list of boolean values, replaces the true value for 1 and the false
value for 0, and compose an integer regarding each value as a binary digit. If n is nonnegative
integer, (eqv? (list->integer (integer->list n)) n) is true.

(list->integer ’(#f #t #f #t #f)) ⇒ 10

Srfi-151 has similar procedure list->bits, with a reversed bit order (LSB first) (see
Section 11.32 [Bitwise operations], page 572).

[Function]booleans->integer bool . . .
[SRFI-60] {srfi-60} ≡ (list->integer (list bool ...))

Srfi-151 has similar procedure bits, with a reversed bit order (LSB first) (see Section 11.32
[Bitwise operations], page 572).

Chapter 11: Library modules - SRFIs 545

11.15 srfi-66 - Octet vectors

[Module]srfi-66
This module defines procedures to deal with u8vectors; they are almost a subset of srfi-4
and gauche.uvector (see Section 9.35 [Uniform vectors], page 447, except one procedure,
u8vector-copy!, which has different argument orders (unfortunate historical artifacts).

The following procedures are the same as gauche.uvector:

u8vector? make-u8vector u8vector

u8vector->list list->u8vector

u8vector-length u8vector-ref u8vector-set!

u8vector=? u8vector-compare u8vector-copy

[Function]u8vector-copy! src sstart target tstart n
[SRFI-66] {srfi-66} Copy the content of an u8vector src, starting from sstart for n octets,
into an u8vector target beginning from tstart. The target u8vector must be mutable.

Note that gauche.uvector has also u8vector-copy!, but its argument order is as follows,
where send is (+ sstart n):

(u8vector-copy! target tstart src sstart send)

Gauche’s argument order is consistent with vector-copy! of R7RS, srfi-43 and srfi-133.

We recommend to use srfi-66 only for porting third-party libraries to avoid confusion.

11.16 srfi-69 - Basic hash tables

[Module]srfi-69
This module has been superseded by R7RS scheme.hash-table (see Section 10.3.6 [R7RS
hash tables], page 505). New code should use it instead.

This is a thin adaptor on Gauche’s built-in hashtables (see Section 6.15 [Hashtables],
page 163). This is provided for the compatibility to the portable libraries; the hashtable
object created by this module’s make-hash-table is the same as the one created by Gauche’s
built-in, and you can pass the table to both APIs.

Here’s a summary of difference between srfi-69 and Gauche’s built-in hash table API:

• The constructor make-hash-table, as well as alist->hash-table, takes equality predicate
and hash function, instead of a single comparator argument.

• The hash function passed to srfi-69’s make-hash-table takes two arguments, an object
to calculate a hash value, and a positive integer that limits the range of the hash value.

• Srfi-69’s primary hash table accessor is hash-table-ref, which takes a thunk to be called
when the table doesn’t have an entry for the given key, while Gauche’s hash-table-get

takes a fallback value for that. Srfi-69 also has hash-table-ref/default, which takes a
fallback value like Gauche’s hash-table-get, but the default value can’t be omitted.

• The basic iterator of srfi-69 is called hash-table-walk, which is Gauche’s hash-table-
for-each. The srfi name is chosen to avoid conflict with existing Scheme implementations.

The following procedures are the same as Gauche’s built-in ones. See Section 6.15 [Hashta-
bles], page 163, for the details.

hash-table? hash-table-delete! hash-table-exists?

hash-table-keys hash-table-values hash-table-fold

hash-table->alist hash-table-copy

Chapter 11: Library modules - SRFIs 546

[Function]make-hash-table :optional eq-pred hash-proc :rest args
[SRFI-69] {srfi-69} Creates a new hashtable and returns it. This is the same name as
Gauche’s built-in procedure, but the arguments are different.

The eq-pred argument is an equality predicate; it takes two arguments and returns #t if two
are the same, and #f if not. When omitted, equal? is used.

The hash-proc argument is a hash function. It takes two arguments: an object to hash,
and a positive integer to limit the range of the hash value. (Note that Gauche’s native hash
functions takes only one argument.) When omitted, Gauche tries to choose appropriate hash
function if eq-pred is known one (eq?, eqv?, equal?, string=? or string-ci=?). Otherwise
we use Gauche’s hash procedure, but there’s no guarantee that it works appropriately; you
should give suitable hash-proc if you pass custom eq-pred.

The returned hash table is an instance of Gauche’s native hash table. You can pass it to
Gauche’s builtin procedures.

Srfi-69 allows implementation-specific arguments args to be passed to make-hash-table.
At this moment, Gauche ignores them.

[Function]alist->hash-table alist :optional eq-pred hash-fn :rest args
[SRFI-69] {srfi-69} Like Gauche’s builtin alist->hash-table, but takes eq-pred and hash-
fn separately, instead of a single comparator.

The alist argument is a list of pairs. The car of each pair is used for a key, and the cdr for
its value.

See make-hash-table above for the description of eq-pred, hash-fn and args.

[Function]hash-table-equivalence-function ht
[Function]hash-table-hash-function ht

[SRFI-69] {srfi-69} Returns equivalence function and hash function of the hashtable ht.

The hash function returned from hash-table-hash-function takes two arguments, an object
to hash and bound, a positive exact integer. Note that the function returned by hash-table-

hash-function may not be eq? to the one you gave to make-hash-table.

[Function]hash-table-ref ht key :optional thunk
[SRFI-69] {srfi-69} Looks up the value corresponding to key in a hash table ht. If there’s
no entry for key, thunk is called without arguments. The default of thunk is to signal an
error.

[Function]hash-table-ref/default ht key default
[SRFI-69] {srfi-69} Looks up the value corresponding to key in a hash table ht. This is
like Gauche’s hash-table-get, but default can’t be omitted.

[Function]hash-table-set! ht key val
[SRFI-69] {srfi-69} This is the same as Gauche’s hash-table-put!.

[Function]hash-table-update! ht key proc :optional thunk
[Function]hash-table-update!/default ht key proc default

[SRFI-69] {srfi-69}

[Function]hash-table-size ht
[SRFI-69] {srfi-69} Returns the number of entries in a hash table ht. The same as Gauche’s
hash-table-num-entries.

[Function]hash-table-walk ht proc
[SRFI-69] {srfi-69} For each entry in a hash table ht, calls proc with two arguments, a key
and its value. It’s the same as Gauche’s hash-table-for-each.

Chapter 11: Library modules - SRFIs 547

[Function]hash-table-merge! ht1 ht2
[SRFI-69] {srfi-69} Add all entries in a hash table ht2 into a hash table ht1, and returns
ht1.

[Function]hash obj :optional bound
[SRFI-69] {srfi-69} Like Gauche’s hash, except this one can take bound argument; if pro-
vided, it must be a positive integer, and the return value is limited between 0 and (- bound

1), inclusive.

[Function]string-hash obj :optional bound
[Function]string-ci-hash obj :optional bound

[SRFI-69] {srfi-69} These are like srfi-13’s (see Section 11.5 [String library], page 518),
except these don’t take start and end argument.

[Function]hash-by-identity obj :optional bound
[SRFI-69] {srfi-69} This is Gauche’s eq-hash, except this one can take bound argument.

11.17 srfi-74 - Octet-addressed binary blocks

[Module]srfi-74
This module provides procedures to deal with blob, or a sequence of octets. In Gauche, a
blob is simply an u8vector.

Most functionalities of this module is available in binary.io module (see Section 12.1 [Binary
I/O], page 581), and in fact this module is a thin wrapper to it. We provide this module for
the compatibility. If you’re writing Gauche-specific code, we recommend to use binary.io

directly.

[Macro]endianness e
[SRFI-74] {srfi-74} The argument e must be either big, little, or native. It expands
to the implementation-specific endianness designator. In Gauche, the result is one of the
symbols; see Section 6.3.7 [Endianness], page 114, for the details.

[Function]make-blob size
[SRFI-74] {srfi-74} Returns a freshly created blob that can hold size octets. In Gauche,
this is the same as (make-u8vector size).

[Function]blob? obj
[SRFI-74] {srfi-74} Returns #t if obj is a blob, #f otherwise. In Gauche, this is the same
as (u8vector? obj).

[Function]blob-length blob
[SRFI-74] {srfi-74} Returns the size of the blob, in octets. In Gauche, this is the same as
(u8vector-length blob).

[Function]blob-uint-ref size endian blob pos
[Function]blob-sint-ref size endian blob pos

[SRFI-74] {srfi-74} Read an unsigned or signed integer of size octets beginning at the
position of pos from blob, respectively.

These are wrappers of (get-uint size blob pos endian) and (get-sint size blob pos

endian) in binary.io module (see Section 12.1 [Binary I/O], page 581), except that
blob-uint-ref/blob-sint-ref only accept u8vector as blob.

Chapter 11: Library modules - SRFIs 548

[Function]blob-uint-set! size endian blob pos val
[Function]blob-sint-set! size endian blob pos val

[SRFI-74] {srfi-74} Store an unsigned or signed integer val of size octets into blob starting
at the position of pos, respectively.

These are wrappers of (put-uint! size blob pos val endian) and (put-sint! size blob

pos val endian) in binary.io module (see Section 12.1 [Binary I/O], page 581), except that
blob-uint-set!/blob-sint-set! only accept u8vector as blob.

[Function]blob-u8-ref blob pos
[Function]blob-u8-set! blob pos val
[Function]blob-s8-ref blob pos
[Function]blob-s8-set! blob pos val

[SRFI-74] {srfi-74} Get/set an unsigned or signed integer as a octet at pos from/to blob.

These are wrappers of get-u8, put-u8!, get-s8 and put-s8! in binary.io, respectively.

[Function]blob-u16-ref endian blob pos
[Function]blob-u16-set! endian blob pos val
[Function]blob-s16-ref endian blob pos
[Function]blob-s16-set! endian blob pos val
[Function]blob-u32-ref endian blob pos
[Function]blob-u32-set! endian blob pos val
[Function]blob-s32-ref endian blob pos
[Function]blob-s32-set! endian blob pos val
[Function]blob-u64-ref endian blob pos
[Function]blob-u64-set! endian blob pos val
[Function]blob-s64-ref endian blob pos
[Function]blob-s64-set! endian blob pos val

[SRFI-74] {srfi-74} Get/set an unsigned or signed integer of the indicated length at pos
from/to blob, using the specified endian.

These are wrappers of corresponding get-XX and put-XX! in binary.io; note that the ar-
gument orders differ, though.

[Function]blob-u16-native-ref blob pos
[Function]blob-u16-native-set! blob pos val
[Function]blob-s16-native-ref blob pos
[Function]blob-s16-native-set! blob pos val
[Function]blob-u32-native-ref blob pos
[Function]blob-u32-native-set! blob pos val
[Function]blob-s32-native-ref blob pos
[Function]blob-s32-native-set! blob pos val
[Function]blob-u64-native-ref blob pos
[Function]blob-u64-native-set! blob pos val
[Function]blob-s64-native-ref blob pos
[Function]blob-s64-native-set! blob pos val

[SRFI-74] {srfi-74} Get/set an unsigned or signed integer of the indicated length at pos
from/to blob, using the native endianness.

These are wrappers of corresponding get-XX and put-XX! in binary.io; note that the ar-
gument orders differ, though.

[Function]blob=? blob1 blob2
[SRFI-74] {srfi-74} This is the same as u8vector=? in gauche.uvector.

Chapter 11: Library modules - SRFIs 549

[Function]blob-copy! src sstart target tstart n
[SRFI-74] {srfi-74} Copy n octets from the source blob src starting from sstart into the
target blob target starting from tstart.

Note that the order of arguments differs from other *-copy! procedures (e.g. R7RS’s
string-copy! and vector-copy!, and gauhce.uvector’s u8vector-copy!)), which have
the following signature: (*-copy! target tstart src sstart send)

[Function]blob-copy blob
[SRFI-74] {srfi-74} Returns a fresh copy of blob. The same as u8vector-copy in
gauche.uvector.

[Function]blob->u8-list blob
[Function]u8-list->blob list

[SRFI-74] {srfi-74} Wrappers of u8vector->list and list->u8vector, except those don’t
take optional start/end arguments.

[Function]blob->uint-list size endian blob
[Function]blob->sint-list size endian blob

[SRFI-74] {srfi-74} Read a sequence of unsigned or signed integers of size octets from blob
with endian, and returns them as a list.

(blob->uint-list 3 (endianness big) ’#u8(0 0 1 0 0 2 0 0 3))

⇒ (1 2 3)

[Function]uint-list->blob size endian list
[Function]sint-list->blob size endian list

[SRFI-74] {srfi-74} Convert a list of unsigned or signed integers to a blob. The resulting
blob has (* size (length list)) octets. Each integer occupies size octets.

(uint-list->blob 3 (endianness little) ’(1 2 3))

⇒ #u8(1 0 0 2 0 0 3 0 0)

11.18 srfi-98 - Accessing environment variables

[Module]srfi-98
This srfi defines a portable way to access the underlying system’s environment vari-
ables. Gauche supports such procedures built-in (see Section 6.25.3 [Environment Inquiry],
page 234), but portable programs may want to use srfi API instead.

[Function]get-environment-variable name
[SRFI-98] {srfi-98} Returns a string value of an environment variable named by a string
name. If the named environment variable doesn’t exist, #f is returned.

This is equivalent to sys-getenv.

(get-environment-variable "PATH")

⇒ "/bin:/usr/sbin:/usr/bin"

[Function]get-environment-variables
[SRFI-98] {srfi-98} Returns an assoc list of the name and the value of each environment
variable.

This is equivalent to sys-environ->alist without the optional argument.

(get-environment-variables)

⇒ (("PATH" . "/bin:/usr/sbin:/usr/bin")

...)

Chapter 11: Library modules - SRFIs 550

11.19 srfi-106 - Basic socket interface

[Module]srfi-106
A portable basic socket interface.

Although comprehensive network API is provided by gauche.net (see Section 9.19 [Network-
ing], page 370), it is Gauche-specific. This srfi provides a small subset of socket operations,
but it offers a portable way to create applications that needs simple networking.

Note that some procedures have the same name as the ones in gauche.net, but the interface
may differ.

A socket object created by this srfi’s API is an instance of Gauche’s <socket>, so it can be
passed to the API in gauche.net and vice versa.

The following procedures are exactly the same as defined in gauche.net. See Section 9.19
[Networking], page 370, for the details.

socket-accept socket-shutdown socket-close

socket-input-port socket-output-port

Socket object

[Function]make-client-socket node service :optional ai-family ai-socktype ai-'ags
ai-protocol

[SRFI-106] {srfi-106} Creates and returns a socket to communicate with the node node
and service. If the socket type is connection-oriented (that is, ai-socktype is *sock-stream*,
which is the default), the returned socket is already connected.

Both node and service must be strings. The node argument is passed to getaddrinfo(3)

to resolve to the server IP address(es). A service name solely consists of decimal digits is
interpreted as a port number.

The default value of optional arguments are as follows: *af-inet* for ai-family,
sock-stream for ai-socktype, (socket-merge-flags *ai-v4mapped* *ai-addrconfig*)

for ai-'ags, and *ipproto-ip* for ai-protocol. See below for valid flag values.

This API differs from make-client-socket in gauche.net.

(make-client-socket "127.0.0.1" "80")

⇒ a <socket> connected to port 80 of localhost

[Function]make-server-socket service :optional ai-family ai-socktype ai-protocol
[SRFI-106] {srfi-106} Creates and returns a server socket that binds and listens at the port
specified by service, which must be a string. A service name solely consists of decimal digits
is interpreted as a port number.

The default value of optional arguments are as follows: *af-inet* for ai-family,
sock-stream for ai-socktype, and *ipproto-ip* for ai-protocol. See below for valid flag
values.

This API differs from make-server-socket in gauche.net.

[Function]socket? obj
[SRFI-106] {srfi-106} Equivalent to (is-a? obj <socket>).

Communication

[Function]socket-send socket u8vector :optional 'ags
[SRFI-106] {srfi-106} Almost same as socket-send in gauche.net, except that this pro-
cedure only accepts a u8vector as the message. (The one in gauche.net can take a string as
well.)

Returns the number of octets that are actually sent.

Chapter 11: Library modules - SRFIs 551

[Function]socket-recv socket size :optional 'ags
[SRFI-106] {srfi-106} This is like socket-recv in gauche.net, except that this procedure
returns the received data in u8vector, instead of a string. If the peer has shut down the
connection, this procedure returns an empty u8vector, #u8().

The size argument specifies the maximum size of the receiving data. The returned vector
may be shorter if that much data is received.

Flags

The srfi provides common names for constants of typical socket flags, as well as macros that
map symbolic name(s) to the flags.

[Function]socket-merge-flags 'ag . . .
[SRFI-106] {srfi-106} Merge bitwise flags. This is simply logior in Gauche.

[Function]socket-purge-flags base-'ag 'ag . . .
[SRFI-106] {srfi-106} Drop the bitwise flags in base-'ag that are set in 'ag

Address family

af-inet AF_INET

af-inet6 AF_INET6

af-unspec AF_UNSPEC

[Macro]address-family name
{srfi-106} Name can be either one of symbols inet, inet6, or unspec, and the macro
expands into the value of *af-inet*, *af-inet6* or *af-unspec*, respectively.

If name is other object, an error is signaled.

Socket domain

sock-stream SOCK_STREAM

sock-dgram SOCK_DGRAM

[Macro]socket-domain name
{srfi-106} Name can be either one of symbols stream or datagram, and the macro expands
into the value of *sock-stream* and *sock-dgram*, respectively.

If name is other object, an error is signaled.

Address info

ai-canonname AI_CANONNAME

ai-numerichost AI_NUMERICHOST

ai-v4mapped AI_V4MAPPED

ai-all AI_ALL

ai-addrconfig AI_ADDRCONFIG

[Macro]address-info name . . .
{srfi-106} Maps combination of names canoname, numerichost, v4mapped, all and
addrconfig to the combination of corresponding flags.

An error is signaled if other symbols are passed. (Note: canoname for *ai-canonname*).

Chapter 11: Library modules - SRFIs 552

Protocol

ipproto-ip IPPROTO_IP

ipproto-tcp IPPROTO_TCP

ipproto-udp IPPROTO_UDP

[Macro]ip-protocol name
{srfi-106} Maps one of names ip, tcp, and udp to the corresponding flag value. An error
is signaled if other symbol is passed.

Message type

msg-none 0
msg-peek MSG_PEEK

msg-oob MSG_OOB

msg-waitall MSG_WAITALL

[Macro]message-type name . . .
{srfi-106} Maps combination of names none, peek, oob and wait-all to the combination
of corresponding flags.

An error is signaled if other symbols are passed. (Note: wait-all for *msg-waitall*).

Shutdown method

shut-rd SHUT_RD

shut-wr SHUT_WR

shut-rdwr SHUT_RDWR

[Macro]shutdown-method name . . .
{srfi-106}Maps combination of names read and write to the combination of corresponding
flags.

An error is signaled if other symbols are passed.

11.20 srfi-111 - Boxes

[Module]srfi-111
SRFI-111 has become a part of R7RS large. See Section 10.3.10 [R7RS boxes], page 513.

11.21 srfi-112 - Environment inquiry

[Module]srfi-112
This srfi provides a portable way to obtain runtime information.

[Function]implementation-name
[SRFI-112] {srfi-112} Returns a string "Gauche".

[Function]implementation-version
[SRFI-112] {srfi-112} Returns a string of Gauche’s version. The same as gauche-version
(see Section 6.25.3 [Environment Inquiry], page 234).

[Function]cpu-architecture
[SRFI-112] {srfi-112} Returns a string of CPU architecture info, such as "x86_64". Same
as the machine field of the return value of sys-uname (see Section 6.25.8 [System inquiry],
page 251).

Chapter 11: Library modules - SRFIs 553

[Function]machine-name
[SRFI-112] {srfi-112} Returns the host name. Same as the nodename field of the return
value of sys-uname. (see Section 6.25.8 [System inquiry], page 251).

[Function]os-name
[SRFI-112] {srfi-112} Returns the OS name. Same as the sysname field of the return value
of sys-uname.

[Function]os-version
[SRFI-112] {srfi-112} Returns the OS version. Same as the release field of the return
value of sys-uname.

Here’s an example of output:

gosh> (implementation-name)

"Gauche"

gosh> (implementation-version)

"0.9.5"

gosh> (cpu-architecture)

"x86_64"

gosh> (machine-name)

"scherzo"

gosh> (os-name)

"Linux"

gosh> (os-version)

"3.2.0-89-generic"

11.22 srfi-113 - Sets and bags

[Module]srfi-113
SRFI-113 has become a part of R7RS large. See Section 10.3.4 [R7RS sets], page 494.

11.23 srfi-114 - Comparators

[Module]srfi-114
This module is provided for the compatibility of code using srfi-114. The new code should
use srfi-128, which is fully built-in.

The following procedures are built-in. See Section 6.2.4 [Basic comparators], page 95, for the
detailed documentation. Those are also exported from srfi-114 for the compatibility.

Predicates comparator?,

Standard comparators
boolean-comparator, char-comparator, char-ci-comparator,
string-comparator, string-ci-comparator, symbol-comparator,
exact-integer-comparator, integer-comparator, rational-comparator,
real-comparator, complex-comparator, number-comparator, pair-comparator,
list-comparator, vector-comparator, bytevector-comparator,
uvector-comparator

The default comparator
default-comparator

Wrapped equality predicates
eq-comparator, eqv-comparator, equal-comparator

Chapter 11: Library modules - SRFIs 554

Accessors comparator-equality-predicate, comparator-comparison-procedure,
comparator-hash-function

Primitive applicators
comparator-test-type, comparator-check-type, comparator-compare,
comparator-hash

Comparison predicates
=?, <?, <=?, >?, >=?

Basic comparator interface

[Function]make-comparator type-test equal compare hash :optional name
[SRFI-114+] {srfi-114} This is SRFI-114 style comparator constructor. The optional name
argument is Gauche’s extension.

This is the same as built-in make-comparator/compare. See Section 6.2.4 [Basic compara-
tors], page 95, for the details.

Do not confuse this with built-in (SRFI-128) make-comparator; if you (use srfi-114), this
one shadows the built-in one.

Note that a comparator works for both SRFI-114 and SRFI-128 procedures, regardless of
how it is constructed.

[Function]comparator-comparison-procedure? c
[Function]comparator-hash-function? c

[SRFI-114] {srfi-114} Returns true iff a comparator c can be used to order objects
or to hash them, respectively. These are aliases of built-in comparator-ordered? and
comparator-hashable?.

[Function]comparator-type-test-procedure c
[SRFI-114] {srfi-114} Returns type test predicate of a comparator c. This is an alias of
bulit-in comparator-type-test-predicate.

[Function]comparator-equal? c a b
[SRFI-114] {srfi-114} Checks equality of a and b using the equality predicate of a com-
parator c. This can be also written in =?, which is bulit-in (see Section 6.2.4.2 [Comparator
predicates and accessors], page 96).

(=? c a b)

Auxiliary comparator constructors

[Function]make-inexact-real-comparator epsilon rounding nan-handling
[SRFI-114] {srfi-114} Returns a comparator for inexact real numbers, taking into account
of errors and NaNs.

The basic idea is that we compare two finite real numbers after rounding them to epsilon
interval, which must be a nonnegative real number. (Note that it’s not to compare two
numbers “close enough”, as often being done to compare inexact numbers. “Close enough”
scheme won’t be transitive.)

The rounding mode is specified by the rounding argument. It can be either one of the symbols
round, ceiling, floor or truncate, or a procedure that takes two arguments, a real number
and an epsilon, and returns the rounded result of the first argument according to the given
epsilon.

Chapter 11: Library modules - SRFIs 555

The nan-handling argument determines how to handle the case to compare NaN and non-
NaN numbers. (If both are NaNs, this comparator regards them as equal). It can be either
one of the followings:

min If it’s a symbol min, NaN is compared as smaller than all other real numbers,
even than -inf.0.

max If it’s a symbol min, NaN is compared as greater than all other real numbers,
even than +inf.0.

error If it’s a symbol error, an error is signaled.

a procedure taking one argument
The procedure is invoked with the real number which is not NaN. If it ever
returns, it must return eithr 1, 0 or -1, for it’s used as the result of the comparison
procedure of the comparator. However, since the procedure doesn’t know which
argument is non-NaN, it’s hard to have consistent semantics; the best bet is to
throw a custom error.

(define c (make-inexact-real-comparator 0.1 ’round ’error))

(comparator-compare c 0.112 0.098) ⇒ 0

(comparator-compare c 0.131 0.172) ⇒ -1

Note: Rounding to the nearest epsilon interval would involve scaling inexact numbers, and
that may reveal small difference between the actual number and its notation. For example, an
inexact real number denoted as 0.15 is actually slightly smaller than 15/100, and rounding
with epsilon 0.1 would result 0.1, not 0.2.

[Function]make-car-comparator cmpr
[Function]make-cdr-comparator cmpr

[SRFI-114] {srfi-114} Returns comparators that accept pairs, and compare them with their
car or cdr by cmpr, respectively.

Using make-key-comparator, these cam be written as follows (see Section 6.2.4.4 [Combining
comparators], page 100, for make-key-comparator).

(define (make-car-comparator cmpr)

(make-key-comparator cmpr pair? car))

(define (make-cdr-comparator cmpr)

(make-key-comparator cmpr pair? cdr))

[Function]make-list-comparator element-comparator
[Function]make-vector-comparator element-comparator
[Function]make-bytevector-comparator element-comparator

{srfi-114} [SRFI-114] Returns a new comparator that compares lists, vectors and bytevec-
tors element-wise using element-comparator, respectively. These are more general ver-
sions of list-comparator, vector-comparator and bytevector-comparator, which use
default-comparator as element-comparator.

For a list comparator, it is an error to pass improper lists.

Note that comparing sequences of different lenghts is slightly different between lists and
vector/bytevectors. List comparator uses “dictionary” order, so (1 3) comes after (1 2 3),
assuming elements are compared numerically. For vectors and bytevectors, shorter one always
precedes the other, so #(1 3) comes before #(1 2 3).

Chapter 11: Library modules - SRFIs 556

[Function]make-listwise-comparator type-test element-comparator empty? head
tail

[SRFI-114] {srfi-114} More general version of make-list-comparator. Returns a com-
parator that compares structures which can be traversed using three procedures, empty?,
head and tail. Each of those procedure receives a structure to be compared, and empty?
must return #t iff the structure is empty, head must return the first element in the structure,
and tail must return the same type of structure containing all the elements but the head.
The type-test predicate checks if the arguments passed to the comparator to be a suitable
structure.

That is, make-list-comparator can be written in make-listwise-comparator as follows.

(make-list-compartator element-comparator)

≡
(make-listwise-comparator list? element-compartor null? car cdr)

This can be used to compare list-like structures. For example, the following call returns a
comparator that compares elements of two lazy streams (see Section 12.69 [Stream library],
page 746).

(make-listwise-comparator stream?

element-comparator

stream-null?

stream-car

stream-cdr)

[Function]make-vectorwise-comparator type-test element-comparator length ref
[SRFI-114] {srfi-114} More general version of make-vector-comparator. Returns a com-
parator that compares structures which can be traversed using two procedures, length and
ref. The length procedure must return the number of elements in the structure. The ref
procedure receives a structure and a nonnegative exact integer index k, and must return k-th
element of the structure.

That is, the following equivalence holds:

(make-vector-comparator element-comparator)

≡
(make-vectorwise-comparator vector? element-comparator

vector-length vector-ref)

(make-bytevector-comparator element-comparator)

≡
(make-vectorwise-comparator u8vector? element-comparator

u8vector-length u8vector-ref)

[Function]make-pair-comparator car-comparator cdr-comparator
[SRFI-114] {srfi-114} Creates a comparator that compares pairs, with their cars by car-
comparator and their cdrs by cdr-comparator.

[Function]make-improper-list-comparator element-comparator
[SRFI-114] {srfi-114} This may be understood as recursive pair comparator; if objects to
be compared are pairs, we recurse their cars then their cdrs. If objects to be compared are
not pairs, we use element-comparator to compare them.

[Function]make-selecting-comparator comparator1 comparator2 . . .
[SRFI-114] {srfi-114} This creates a comparator that works any one of the given compara-
tors; the objects to be compared are type-tested with each of the comparators in order, and
the first comparator that accepts all objects will be used.

Chapter 11: Library modules - SRFIs 557

[Function]make-refining-comparator comparator1 comparator2 . . .
[SRFI-114] {srfi-114} This is similar to make-selecting-comparator, except that if the
first comparator that accepts given objects to compare finds they are equal (or 0 by the
comparison procedure), it tries other comparators down the list, if any.

[Function]make-reverse-comparator comparator
[SRFI-114] {srfi-114} Returns a comparator that just reverses the comparison order of
comparator.

[Function]make-debug-comparator comparator
[SRFI-114] {srfi-114}

Comparison procedure constructors

[Function]make-comparison< lt-pred
[Function]make-comparison> gt-pred
[Function]make-comparison<= le-pred
[Function]make-comparison>= ge-pred
[Function]make-comparison=/< eq-pred lt-pred
[Function]make-comparison=/> eq-pred gt-pred

[SRFI-114] {srfi-114} Utility procedures to create a comparison procedure (the one returns
-1, 0, or 1) from the given predicate. For example, make-comparison< can be defined as
follows:

(define (make-comparison< pred)

(^[a b] (cond [(pred a b) -1]

[(pred b a) 1]

[else 0])))

Comparison syntax

[Macro]if3 expr less equal greater
[SRFI-114] {srfi-114} Three-way if: Evaluates expr, and then evaluates either one of less,
equal, or greater, depending on the value of expr is either less than zero, equal to zero, or
greater than zero, respectively.

[Macro]if=? expr consequent :optional alternate
[Macro]if<? expr consequent :optional alternate
[Macro]if>? expr consequent :optional alternate
[Macro]if<=? expr consequent :optional alternate
[Macro]if>=? expr consequent :optional alternate
[Macro]if-not=? expr consequent :optional alternate

[SRFI-114] {srfi-114} Conditional evaluation according to comparison expression expr; that
is, ifOP? evaluates consequent if (OP expr 0) is true, otherwise it evaluates alternate when
provided.

(if<? (compare 10 20) ’yes) ⇒ yes

(if>=? (compare 10 20) ’yes ’no) ⇒ no

Comparison predicate constructors

[Function]make=? comparator
[Function]make<? comparator
[Function]make>? comparator
[Function]make<=? comparator

Chapter 11: Library modules - SRFIs 558

[Function]make>=? comparator
[SRFI-114] {srfi-114}

((make=? comparator) obj1 obj2 obj3 ...)

≡ (=? comparator obj1 obj2 obj3 ...)

Interval comparison predicates

[Function]in-open-interval? [comparator] obj1 obj2 obj3
[Function]in-closed-interval? [comparator] obj1 obj2 obj3
[Function]in-open-closed-interval? [comparator] obj1 obj2 obj3
[Function]in-closed-open-interval? [comparator] obj1 obj2 obj3

[SRFI-114] {srfi-114} Check if obj1, obj2 and obj3 has the following relationships:

(and (op1 obj1 obj2) (op2 obj2 obj3))

Where each of op1 and op2 can be (make<? comparator) (if that end is open), or (make<=?
comparator) (if that end is closed).

When comparator is omitted, the default comparator is used.

(use srfi-42)

(list-ec (: x 0 5) (list x (in-closed-open-interval? 1 x 3)))

⇒ ((0 #f) (1 #t) (2 #t) (3 #f) (4 #f))

Min/max comparison procedures

[Function]comparator-min comparator obj1 obj2 . . .
[Function]comparator-max comparator obj1 obj2 . . .

[SRFI-114] {srfi-114} Find the object in obj1 obj2 . . . that is minimum or maximum
compared by comparator.

(comparator-min list-comparator ’(a c b) ’(a d) ’(a c))

⇒ (a c)

11.24 srfi-117 - Queues based on lists

[Module]srfi-117
SRFI-117 has become a part of R7RS large. See Section 10.3.11 [R7RS list queues], page 513.

11.25 srfi-118 - Simple adjustable-size strings

[Module]srfi-118
This SRFI defines two string mutating operations that can change the length of the string:
string-append! and string-replace!.

Note that, in Gauche, the body of strings is immutable; when you mutate a string, Gauche
creates a fresh new string body and just switch a pointer in the original string to point the
new string body. So it is not a problem to implement this SRFI in Gauche, but it also
means you won’t get any performance benefit by using these operations. Using immutable
counterparts (string-append and string-replace) gives you the same performance. (Be
aware that the interface is slightly different from the immutable versions.)

We provide this module only for the compatibility. Gauche-specific programs should stay
away from this module. Particulary, avoid code like the example in SRFI-118 document
(build a string by append!-ing small chunks at a time)—they’re quadratic on Gauche.

Chapter 11: Library modules - SRFIs 559

[Function]string-append! string values . . .
[SRFI-118] {srfi-118} The string argument must be a mutable string. Modify string by
appending values, each of which is either a character or a string.

(rlet1 a (string-copy "abc")

(string-append! a #\X "YZ"))

⇒ "abcXYZ"

[Function]string-replace! dst dst-start dst-end src :optional src-start src-end
[SRFI-118] {srfi-118} The dst argument must be a mutable string. Replace dst between
dst-start (inclusive) and dst-end (exclusive) with a string src. The optional arguments src-
start and src-end limits the region of src to be used.

Be aware that the order of arguments differ from SRFI-13’s string-replace (see
Section 11.5.12 [SRFI-13 other string operations], page 526); string-replace! resembles to
string-copy! (also in SRFI-13), rather than string-replace.

(rlet1 a (string-copy "abc")

(string-replace! a 1 2 "XYZ"))

⇒ "aXYZc"

11.26 srfi-127 - Lazy sequence (srfi)

[Module]srfi-127
SRFI-127 has become a part of R7RS large. See Section 10.3.9 [R7RS lazy sequences],
page 511.

11.27 srfi-132 - Sort library

[Module]srfi-132
SRFI-132 has become a part of R7RS large. See Section 10.3.3 [R7RS sort], page 491.

11.28 srfi-133 - Vector library

[Module]srfi-133
SRFI-133 has become a part of R7RS large. See Section 10.3.2 [R7RS vectors], page 486.

11.29 srfi-141 - Integer division

[Module]srfi-141
This module provides a comprehensive set of integer division operators.

Quotient and remainder in integer divisions can be defined in multiple ways, when you con-
sider the choice of sign of the result with regard to the operands. Gauche has builtin proce-
dures in several flavors: R5RS quotient, remadiner and modulo, R6RS div, mod, div0
and mod0, and R7RS floor-quotient, floor-remainder, floor/, truncate-quotinet,
truncate-remainder, truncate/.

This module complements R7RS procedures, by adding ceiling, round, euclidean and
balanced variants.

The following procedures are in srfi-141 but built-in in Gauche (see Section 6.3.4 [Arithmetics],
page 103).

floor-quotient floor-remainder floor/

truncate-quotient truncate-remainder truncate/

Chapter 11: Library modules - SRFIs 560

[Function]ceiling-quotient n d
[Function]ceiling-remainder n d
[Function]ceiling/ n d

[SRFI-141] {srfi-141}

ceiling-quotient = ceiling(n / d)

ceiling-remainder = n - d * ceiling-quotient

ceiling/ = values(ceiling-quotient, ceiling-remainder)

[Function]round-quotient n d
[Function]round-remainder n d
[Function]round/ n d

[SRFI-141] {srfi-141}

round-quotient = round(n/d)

round-remainder = n - d * round-quotient

round/ = values(round-quotient, round-remainder)

[Function]euclidean-quotient n d
[Function]euclidean-remainder n d
[Function]euclidean/ n d

[SRFI-141] {srfi-141}

euclidean-quotient = floor(n / d) if d > 0

ceiling(n / d) if d < 0

euclidean-remainder = n - d * euclidean-quotient

euclidean/ = values(euclidean-quotient, euclidean-remainder)

The Eclidean variant satisfies a property 0 <= remainder < abs(d). These are the same as
R6RS’s div, mod, and div-and-mod, except that they accept non-integers (see Section 6.3.4
[Arithmetics], page 103)

[Function]balanced-quotient n d
[Function]balanced-remainder n d
[Function]balanced/ n d

[SRFI-141] {srfi-141}

balanced-quotient = roundup(n / d)

balanced-remainder = n - d * balanced-quotient

balanced/ = values(balanced-quotient, balanced-remainder)

where roundup(x) is ceiling(x) if x - floor(x) <= 0.5

and floor(x) if x - floor(x) > 0.5

The balanced variant satisfies a property -abs(d/2) <= remainder < abs(d/2). These are
the same as R6RS’s div0, mod0, and div0-and-mod0, except that they accept non-integers
(see Section 6.3.4 [Arithmetics], page 103).

11.30 srfi-143 - Fixnums

[Module]srfi-143
This module provides a set of fixnum-specific operations.

A fixnum is a small exact integer that can be handled very efficiently. In Gauche, fixnum is
62bit wide on 64bit platforms, and 30bit wide on 32bit platforms.

Note that these procedures are defined only to work on fixnums, but it is not enforced. If
you pass non-fixnum arguments, or the result falls out of range of fixnums, what happens is
up to the implementation. Consider these procedures as the way to tell your intentions to
the compiler for potential optimizations.

Chapter 11: Library modules - SRFIs 561

In the current Gauche architecture, generic numeric operators are just as efficient, so most
procedures provided in this module are aliases to corresponding operators. However, we
might employ some optimizations in future versions.

The procedure fixnum? is built-in, and not explaned here. See Section 6.3.2 [Numerical
predicates], page 101.

[Variable]fx-width
[SRFI-143] {srfi-143} A variable bound to an exact positive integer w, where w is the
greatest number such that exact integers between 2^(w-1) - 1 and -2^(w-1) are all fixnums.
This value is the same as the built-in procedure fixnum-width returns (see Section 6.3.4
[Arithmetics], page 103).

In Gauche, it is usually 30 for 32bit platforms, and 62 for 64bit platforms.

[Variable]fx-greatest
[Variable]fx-least

[SRFI-143] {srfi-143} Variables bound to the greatest fixnum and the least fixnum. They
are the same as the built-in procedures greatest-fixnum and least-fixnum return, respec-
tively (see Section 6.3.4 [Arithmetics], page 103).

The following table shows the typical values on Gauche:

Platform fx-greatest fx-least

32bit 536,870,911 -536,870,912
64bit 2,305,843,009,213,693,951 -2,305,843,009,213,693,952

[Function]fx=? i . . .
[Function]fx<? i . . .
[Function]fx<=? i . . .
[Function]fx>? i . . .
[Function]fx>=? i . . .

[SRFI-143] {srfi-143} These are equivalent to built-in =, <, <=, > and >=, except that you
should use these only for fixnums.

[Function]fxzero? i
[Function]fxpositive? i
[Function]fxnegative? i
[Function]fxodd? i
[Function]fxeven? i

[SRFI-143] {srfi-143} These are equivalent to built-in zero?, positive?, negative?, odd?
and even?, except that you should use these only for fixnums.

[Function]fxmax i j . . .
[Function]fxmin i j . . .

[SRFI-143] {srfi-143} These are equivalent to built-in max and min, except that you should
use these only for fixnums.

[Function]fx+ i j
[Function]fx- i j
[Function]fx* i j

[SRFI-143] {srfi-143} These are equivalent to built-in +, - and *, except that these take
exactly two arguments, and you should use these only for fixnums and when the result fits
within fixnum range.

Chapter 11: Library modules - SRFIs 562

[Function]fxneg i
[SRFI-143] {srfi-143} This is equivalent to single-argument -, except that you should use
this only for fixnums and when the result fits within fixnum range.

[Function]fxquotient i j
[Function]fxremainder i j
[Function]fxabs i
[Function]fxsquare i

[SRFI-143] {srfi-143} These are equivalent to built-in quotient, remainder, abs and
square, except that you should use these only for fixnums and when the result fits within
fixnum range.

[Function]fxsqrt i
[SRFI-143] {srfi-143} This is equivalent to exact-integer-sqrt (not sqrt), except that
you should use it only for fixnums. See Section 6.3.4 [Arithmetics], page 103.

[Function]fx+/carry i j k
[Function]fx-/carry i j k
[Function]fx*/carry i j k

[SRFI-143] {srfi-143} These calculates (+ i j k), (- i j k) and (+ (* i j) k), respec-
tively, then split the result to the remainder value R in the fixnum range, and spilled value
Q, and return those values. That is, (+ (* Q (expt 2 fx-width)) R) is the result of above
calculations. Both Q and R fits in the fixnum range, and - 2^(w-1) <= R < 2^(w-1), where w
is fx-width.

(fx*/carry 1845917459 19475917581 4735374)

⇒ -942551854601421179 and 8

(+ (* 8 (expt 2 fx-width)) -942551854601421179)

⇒ 35950936292817682053

(+ (* 1845917459 19475917581) 4735374)

⇒ 35950936292817682053

These are primitives to implement extended-precision integer arithmetic on top of fixnum
operations. In Gauche, however, you can just use built-in bignums. We provide these for the
compatibility.

[Function]fxnot i
[Function]fxand i . . .
[Function]fxior i . . .
[Function]fxxor i . . .
[Function]fxarithmetic-shift i count
[Function]fxlength i
[Function]fxbit-count i
[Function]fxcopy-bit index i boolean
[Function]fxbit-set? index i
[Function]fxbit-field i start end
[Function]fxfirst-set-bit i

[SRFI-143] {srfi-143} These are equivalent to lognot, logand, logior, logxor, ash,
integer-length, logcount, copy-bit, logbit?, bit-field, and twos-exponent-factor

respectively, except that you should use these only for fixnums. See Section 6.3.6 [Basic
bitwise operations], page 112.

[Function]fxif mask i j
[Function]fxbit-field-rotate i start end

Chapter 11: Library modules - SRFIs 563

[Function]fxbit-field-rotate i start end
[SRFI-143] {srfi-143} These are equivalent to srfi-60’s bitwise-if, rotate-bit-field and
reverse-bit-field, except that you should use these only for fixnums. See Section 11.14
[Integers as bits], page 543.

11.31 srfi-146 - Mappings and hashmaps

SRFI-146 defines a mapping data structure, which is a conceptually immutable collection of
associations of key and value. Mappings are assumed to be built on top of treemaps (and indeed,
Gauche uses built-in <tree-map> as mappings) but the API abstracts the implementation.

SRFI-146 also defines a submodlue (srfi-146 hash) which provides hashmaps, whose API
is functionally almost identical to mappings but it assumes to be built on top of hashtables.

“Conceptually immutable” means that the mappings should be used as if they are immutable,
but under a certain circumstance the APIs are allowed to mutate the mapping. Such circum-
stance is marked as

11.31.1 Mappings

[Module]srfi-146
This module provides treemap-based mappings API. On Gauche, an instance of mapping is
just an instance of built-in <tree-map> (see Section 6.16 [Treemaps], page 168). However,
the API assumes a mapping to be treated as immutable data structure, except the “linear
update” APIs, which is allowed to mutate the mappings passed to the arguments, under
assumption that the argument won’t be used afterwards.

See Section 11.31.2 [Hashmaps], page 568, which is a sibling of mappings but based on
hashtables.

[Class]<mapping>
{srfi-146} On Gauche, this is just an alias of <tree-map>.

Constructors

[Function]mapping comparator key value . . .
[SRFI-146] {srfi-146} Creates a new mapping with the given comparator, whose initial
content is provided by key value

The comparator argument must be a comparator (see Section 6.2.4 [Basic comparators],
page 95).

The key value . . . arguments must be even length, alternating keys and values.

(define m (mapping default-comparator ’a 1 ’b 2))

(mapping-ref m ’a) ⇒ 1

(mapping-ref m ’b) ⇒ 2

[Function]mapping-unfold p f g seed comparator
[SRFI-146] {srfi-146} Creates a new mapping, whose content is populated by three proce-
dures, p, f and g, and a seed value seed, as follows.

In each iteration, we have a current seed value, whose initial value is seed.

First, p, a stop predicate, is applied to the current seed value. If it returns true, we stop
iteration and returns the new mapping.

Next, f is applied to the current seed value. It must return two values. The first one is for a
key and the second one for the value. We add this pair to the mapping.

Chapter 11: Library modules - SRFIs 564

Then, g is applied to the current seed value. The result becomes the seed value of the next
iteration. And we iterate.

The following example creates a mapping that maps ASCII characters to their character
codes:

(mapping-unfold (cut >= <> 128)

(^c (values (integer->char c) c))

(cut + <> 1)

0

default-comparator)

[Function]mapping/ordered comparator key value . . .
[SRFI-146] {srfi-146} Similar to mapping, but keys are given in the ascending order w.r.t.
the comparator. An implementation may use more efficient algorithm than mapping. In
Gauche, this is the same as mapping at this moment.

[Function]mapping-unfold/ordered p f g seed comparator
[SRFI-146] {srfi-146} Similar to mapping-unfold, but keys are generated in the ascendnig
order w.r.t. the comparator. An implementation may use more efficient algorithm than
mapping-unfold. In Gauche, this is the same as mapping-unfold at this moment.

Predicates

[Function]mapping? obj
[SRFI-146] {srfi-146} Returns #t iff obj is a mapping object.

[Function]mapping-empty? m
[SRFI-146] {srfi-146} M must be a mapping. Returns #t if m is empty, #f otherwise. In
Gauche, this is same as tree-map-empty? (see Section 6.16 [Treemaps], page 168).

[Function]mapping-contains? m key
[SRFI-146] {srfi-146} M must be a mapping. Returns #t if m has an entry with key,
#f otherwise. In Gauche, this is same as tree-map-exists? (see Section 6.16 [Treemaps],
page 168).

[Function]mapping-disjoint? m1 m2
[SRFI-146] {srfi-146} Returns #t iff two mappings m1 and m2 have no keys in common.
In other words, there’s no such key K that satisfy both (mapping-contains? m1 K) and
(mapping-contains? m2 K).

Accessors

[Function]mapping-ref m key :optional failure success
[SRFI-146] {srfi-146} Get the value from a mapping m associated with key, and calls
success on the value, and returns its result. If m doesn’t have key, failure is invoked with no
arguments and its result is returned. Both success and failure is called in tail context.

When failure is omitted and key is not found, an error is signaled. When success is omitted,
identity is assumed.

[Function]mapping-ref/default m key default
[SRFI-146] {srfi-146} Returns the value associated to key from a mapping m. If m doesn’t
have key, default is returned.

[Function]mapping-key-comparator m
[SRFI-146] {srfi-146} Returns a comparator used to compare keys in a mapping m. See
Section 6.2.4 [Basic comparators], page 95, for the details of comparators.

Chapter 11: Library modules - SRFIs 565

Updaters

Note that the basic premise of mappings srfi is to treat mappings as immutable. Each updating
operation comes with a purely functional version (without bang) and a linear update version
(with bang), but the linear update version may not require to destructively modiy the passed
mapping; it’s merely a hint that it may reuse the argument for the efficiency. You always need
to use the returned mapping as the result of update. If you use linear update versions, you
shouldn’t use the passed mapping afterwards, for there’s no guarantee how the state of the
passed mapping is.

[Function]mapping-adjoin m arg . . .
[Function]mapping-adjoin! m arg . . .

[SRFI-146] {srfi-146}

[Function]mapping-set m arg . . .
[Function]mapping-set! m arg . . .

[SRFI-146] {srfi-146}

[Function]mapping-replace m key value
[Function]mapping-replace! m key value

[SRFI-146] {srfi-146}

[Function]mapping-delete m key . . .
[Function]mapping-delete! m key . . .

[SRFI-146] {srfi-146}

[Function]mapping-delete-all m key-list
[Function]mapping-delete-all! m key-list

[SRFI-146] {srfi-146}

[Function]mapping-intern m key failure
[Function]mapping-intern! m key failure

[SRFI-146] {srfi-146}

[Function]mapping-update m key updater :optional failure success
[Function]mapping-update! m key updater :optional failure success

[SRFI-146] {srfi-146}

[Function]mapping-update/default m key updater default
[Function]mapping-update!/default m key updater default

[SRFI-146] {srfi-146}

[Function]mapping-pop m :optional failure
[Function]mapping-pop! m :optional failure

[SRFI-146] {srfi-146}

[Function]mapping-search m k failure success
[Function]mapping-search! m k failure success

[SRFI-146] {srfi-146}

The whole mapping

[Function]mapping-size m
[SRFI-146] {srfi-146}

[Function]mapping-find pred m failure
[SRFI-146] {srfi-146}

Chapter 11: Library modules - SRFIs 566

[Function]mapping-count pred m
[SRFI-146] {srfi-146}

[Function]mapping-any? pred m
[Function]mapping-every? pred m

[SRFI-146] {srfi-146}

[Function]mapping-keys m
[Function]mapping-values m

[SRFI-146] {srfi-146}

[Function]mapping-entries m
[SRFI-146] {srfi-146}

11.31.1.1 Mapping and folding

[Function]mapping-map proc comparator m
[SRFI-146] {srfi-146}

[Function]mapping-map/monotone proc comparator m
[Function]mapping-map/monotone! proc comparator m

[SRFI-146] {srfi-146}

[Function]mapping-for-each proc m
[SRFI-146] {srfi-146}

[Function]mapping-fold kons knil m
[SRFI-146] {srfi-146}

[Function]mapping-fold/reverse kons knil m
[SRFI-146] {srfi-146}

[Function]mapping-map->list proc m
[SRFI-146] {srfi-146}

[Function]mapping-filter pred m
[Function]mapping-filter! pred m

[SRFI-146] {srfi-146}

[Function]mapping-remove pred m
[Function]mapping-remove! pred m

[SRFI-146] {srfi-146}

[Function]mapping-partition pred m
[Function]mapping-partition! pred m

[SRFI-146] {srfi-146}

Copying and conversion

[Function]mapping-copy m
[SRFI-146] {srfi-146}

[Function]mapping->alist m
[SRFI-146] {srfi-146}

[Function]alist->mapping comparator alist
[SRFI-146] {srfi-146}

Chapter 11: Library modules - SRFIs 567

[Function]alist->mapping! m alist
[SRFI-146] {srfi-146}

[Function]alist->mapping/ordered comparator alist
[Function]alist->mapping/ordered! m alist

[SRFI-146] {srfi-146}

Submappings

[Function]mapping=? comparator m1 m2 . . .
[SRFI-146] {srfi-146}

[Function]mapping<? comparator m1 m2 . . .
[Function]mapping<=? comparator m1 m2 . . .
[Function]mapping>? comparator m1 m2 . . .
[Function]mapping>=? comparator m1 m2 . . .

[SRFI-146] {srfi-146}

Set operations

[Function]mapping-union m1 m2 . . .
[Function]mapping-union! m1 m2 . . .

[SRFI-146] {srfi-146}

[Function]mapping-intersection m1 m2 . . .
[Function]mapping-intersection! m1 m2 . . .

[SRFI-146] {srfi-146}

[Function]mapping-difference m1 m2 . . .
[Function]mapping-difference! m1 m2 . . .

[SRFI-146] {srfi-146}

[Function]mapping-xor m1 m2 . . .
[Function]mapping-xor! m1 m2 . . .

[SRFI-146] {srfi-146}

Mappings with ordered keys

[Function]mapping-min-key m
[Function]mapping-max-key m

[SRFI-146] {srfi-146}

[Function]mapping-min-value m
[Function]mapping-max-value m

[SRFI-146] {srfi-146}

[Function]mapping-min-entry m
[Function]mapping-max-entry m

[SRFI-146] {srfi-146}

[Function]mapping-key-predecessor m obj failure
[Function]mapping-key-successor m obj failure

[SRFI-146] {srfi-146}

Chapter 11: Library modules - SRFIs 568

[Function]mapping-range= m obj
[Function]mapping-range< m obj
[Function]mapping-range<= m obj
[Function]mapping-range> m obj
[Function]mapping-range>= m obj

[SRFI-146] {srfi-146}

[Function]mapping-range=! m obj
[Function]mapping-range<! m obj
[Function]mapping-range<=! m obj
[Function]mapping-range>! m obj
[Function]mapping-range>=! m obj

[SRFI-146] {srfi-146}

[Function]mapping-split m obj
[Function]mapping-split! m obj

[SRFI-146] {srfi-146}

[Function]mapping-catenate comparator m1 key value m2
[Function]mapping-catenate! m1 key value m2

[SRFI-146] {srfi-146}

Comparators

[Function]make-mapping-comparator comparator
[SRFI-146] {srfi-146}

[Variable]mapping-comparator
[SRFI-146] {srfi-146}

11.31.2 Hashmaps

[Module]srfi-146.hash
This module provides hashtable-based hashmap API. On Gauche, an instance of hashmap
is just an instance of built-in <hash-table>. However, the API assumes a hashmap to be
treated as immutable data structure, except the “linear update” APIs, which is allowed to
mutate the hashmaps passed to the arguments, under assumption that the argument won’t
be used afterwards.

See Section 11.31.1 [Mappings], page 563, which is a sibling of hashmaps but based on
treemaps.

Constructors

[Function]hashmap comparator key value . . .
[SRFI-146] {srfi-146.hash} Creates a new hashmap with the given comparator, whose
initial content is provided by key value

The comparator argument must be a comparator (see Section 6.2.4 [Basic comparators],
page 95).

The key value . . . arguments must be even length, alternating keys and values.

(define m (hashmap default-comparator ’a 1 ’b 2))

(hashmap-ref m ’a) ⇒ 1

(hashmap-ref m ’b) ⇒ 2

Chapter 11: Library modules - SRFIs 569

[Function]hashmap-unfold p f g seed comparator
[SRFI-146] {srfi-146.hash} Creates a new hashmap, whose content is populated by three
procedures, p, f and g, and a seed value seed, as follows.

In each iteration, we have a current seed value, whose initial value is seed.

First, p, a stop predicate, is applied to the current seed value. If it returns true, we stop
iteration and returns the new hashmap.

Next, f is applied to the current seed value. It must return two values. The first one is for a
key and the second one for the value. We add this pair to the hashmap.

Then, g is applied to the current seed value. The result becomes the seed value of the next
iteration. And we iterate.

The following example creates a hashmap that maps ASCII characters to their character
codes:

(hashmap-unfold (cut >= <> 128)

(^c (values (integer->char c) c))

(cut + <> 1)

0

default-comparator)

Predicates

[Function]hashmap? obj
[SRFI-146] {srfi-146.hash} Returns #t iff obj is a hashmap object.

[Function]hashmap-empty? m
[SRFI-146] {srfi-146.hash} M must be a hashmap. Returns #t if m is empty, #f otherwise.
In Gauche, this is same as tree-map-empty? (see Section 6.16 [Treemaps], page 168).

[Function]hashmap-contains? m key
[SRFI-146] {srfi-146.hash} M must be a hashmap. Returns #t if m has an entry with key,
#f otherwise. In Gauche, this is same as tree-map-exists? (see Section 6.16 [Treemaps],
page 168).

[Function]hashmap-disjoint? m1 m2
[SRFI-146] {srfi-146.hash} Returns #t iff two hashmaps m1 and m2 have no keys in
common. In other words, there’s no such key K that satisfy both (hashmap-contains? m1

K) and (hashmap-contains? m2 K).

Accessors

[Function]hashmap-ref m key :optional failure success
[SRFI-146] {srfi-146.hash} Get the value from a hashmap m associated with key, and calls
success on the value, and returns its result. If m doesn’t have key, failure is invoked with no
arguments and its result is returned. Both success and failure is called in tail context.

When failure is omitted and key is not found, an error is signaled. When success is omitted,
identity is assumed.

[Function]hashmap-ref/default m key default
[SRFI-146] {srfi-146.hash} Returns the value associated to key from a hashmap m. If m
doesn’t have key, default is returned.

[Function]hashmap-key-comparator m
[SRFI-146] {srfi-146.hash} Returns a comparator used to compare keys in a hashmap m.
See Section 6.2.4 [Basic comparators], page 95, for the details of comparators.

Chapter 11: Library modules - SRFIs 570

Updaters

Note that the basic premise of hashmaps srfi is to treat hashmaps as immutable. Each updating
operation comes with a purely functional version (without bang) and a linear update version
(with bang), but the linear update version may not require to destructively modiy the passed
hashmap; it’s merely a hint that it may reuse the argument for the efficiency. You always need
to use the returned hashmap as the result of update. If you use linear update versions, you
shouldn’t use the passed hashmap afterwards, for there’s no guarantee how the state of the
passed hashmap is.

[Function]hashmap-adjoin m arg . . .
[Function]hashmap-adjoin! m arg . . .

[SRFI-146] {srfi-146.hash}

[Function]hashmap-set m arg . . .
[Function]hashmap-set! m arg . . .

[SRFI-146] {srfi-146.hash}

[Function]hashmap-replace m key value
[Function]hashmap-replace! m key value

[SRFI-146] {srfi-146.hash}

[Function]hashmap-delete m key . . .
[Function]hashmap-delete! m key . . .

[SRFI-146] {srfi-146.hash}

[Function]hashmap-delete-all m key-list
[Function]hashmap-delete-all! m key-list

[SRFI-146] {srfi-146.hash}

[Function]hashmap-intern m key failure
[Function]hashmap-intern! m key failure

[SRFI-146] {srfi-146.hash}

[Function]hashmap-update m key updater :optional failure success
[Function]hashmap-update! m key updater :optional failure success

[SRFI-146] {srfi-146.hash}

[Function]hashmap-update/default m key updater default
[Function]hashmap-update!/default m key updater default

[SRFI-146] {srfi-146.hash}

[Function]hashmap-pop m :optional failure
[Function]hashmap-pop! m :optional failure

[SRFI-146] {srfi-146.hash}

[Function]hashmap-search m k failure success
[Function]hashmap-search! m k failure success

[SRFI-146] {srfi-146.hash}

The whole hashmap

[Function]hashmap-size m
[SRFI-146] {srfi-146.hash}

[Function]hashmap-find pred m failure
[SRFI-146] {srfi-146.hash}

Chapter 11: Library modules - SRFIs 571

[Function]hashmap-count pred m
[SRFI-146] {srfi-146.hash}

[Function]hashmap-any? pred m
[Function]hashmap-every? pred m

[SRFI-146] {srfi-146.hash}

[Function]hashmap-keys m
[Function]hashmap-values m

[SRFI-146] {srfi-146.hash}

[Function]hashmap-entries m
[SRFI-146] {srfi-146.hash}

11.31.2.1 Mapping and folding

[Function]hashmap-map proc comparator m
[SRFI-146] {srfi-146.hash}

[Function]hashmap-for-each proc m
[SRFI-146] {srfi-146.hash}

[Function]hashmap-fold kons knil m
[SRFI-146] {srfi-146.hash}

[Function]hashmap-map->list proc m
[SRFI-146] {srfi-146.hash}

[Function]hashmap-filter pred m
[Function]hashmap-filter! pred m

[SRFI-146] {srfi-146.hash}

[Function]hashmap-remove pred m
[Function]hashmap-remove! pred m

[SRFI-146] {srfi-146.hash}

[Function]hashmap-partition pred m
[Function]hashmap-partition! pred m

[SRFI-146] {srfi-146.hash}

Copying and conversion

[Function]hashmap-copy m
[SRFI-146] {srfi-146.hash}

[Function]hashmap->alist m
[SRFI-146] {srfi-146.hash}

[Function]alist->hashmap comparator alist
[SRFI-146] {srfi-146.hash}

[Function]alist->hashmap! m alist
[SRFI-146] {srfi-146.hash}

Chapter 11: Library modules - SRFIs 572

Subhashmaps

[Function]hashmap=? comparator m1 m2 . . .
[SRFI-146] {srfi-146.hash}

[Function]hashmap<? comparator m1 m2 . . .
[Function]hashmap<=? comparator m1 m2 . . .
[Function]hashmap>? comparator m1 m2 . . .
[Function]hashmap>=? comparator m1 m2 . . .

[SRFI-146] {srfi-146.hash}

Set operations

[Function]hashmap-union m1 m2 . . .
[Function]hashmap-union! m1 m2 . . .

[SRFI-146] {srfi-146.hash}

[Function]hashmap-intersection m1 m2 . . .
[Function]hashmap-intersection! m1 m2 . . .

[SRFI-146] {srfi-146.hash}

[Function]hashmap-difference m1 m2 . . .
[Function]hashmap-difference! m1 m2 . . .

[SRFI-146] {srfi-146.hash}

[Function]hashmap-xor m1 m2 . . .
[Function]hashmap-xor! m1 m2 . . .

[SRFI-146] {srfi-146.hash}

Comparators

[Function]make-hashmap-comparator comparator
[SRFI-146] {srfi-146.hash}

[Variable]hashmap-comparator
[SRFI-146] {srfi-146.hash}

11.32 srfi-151 - Bitwise operations

[Module]srfi-151
This module provides comprehensive bitwise operations. It is mostly a superset of srfi-60,
with some change of names for the consistency and the compatibility (see Section 11.14
[Integers as bits], page 543). We keep srfi-60 for legacy code, while recommend this module
to be used in the new code.

The following procedures are Gauche built-in. See Section 6.3.6 [Basic bitwise operations],
page 112, for the description.

integer-length copy-bit bit-field

Basic operations

[Function]bitwise-not n
[SRFI-151] {srfi-151} Returns the bitwise complement of n. Same as builtin lognot (see
Section 6.3.6 [Basic bitwise operations], page 112).

Chapter 11: Library modules - SRFIs 573

[Function]bitwise-and n . . .
[Function]bitwise-ior n . . .
[Function]bitwise-xor n . . .
[Function]bitwise-eqv n . . .

[SRFI-151] {srfi-151} When no arguments are given, these procedures returns -1, 0, 0
and -1, respectively. With one arguments, they return the argument as is. With two argu-
ments, they return bitwise and, ior, xor, and eqv (complement of xor). With three or more
arguments, they apply binary operations associaively, that is,

(bitwise-xor a b c)

≡ (bitwise-xor a (bitwise-xor b c))

≡ (bitwise-xor (bitwise-xor a b) c)

Be careful that multi-argument bitwise-eqv does not produce bit 1 everywhere that all the
argument’s bit agree.

The first three procedures are the same as built-in logand, logior and logxor, respectively
(see Section 6.3.6 [Basic bitwise operations], page 112).

[Function]bitwise-nand n0 n1
[Function]bitwise-nor n0 n1
[Function]bitwise-andc1 n0 n1
[Function]bitwise-andc2 n0 n1
[Function]bitwise-orc1 n0 n1
[Function]bitwise-orc2 n0 n1

[SRFI-151] {srfi-151} These operations are not associative.

nand n0 n1 ≡ (NOT (AND n0 n1))

nor n0 n1 ≡ (NOT (OR n0 n1))

andc1 n0 n1 ≡ (AND (NOT n0) n1)

andc2 n0 n1 ≡ (AND n0 (NOT n1))

orc1 n0 n1 ≡ (OR (NOT n0) n1)

orc2 n0 n1 ≡ (OR n0 (NOT n1))

Integer operations

[Function]arithmetic-shift n count
[SRFI-151] {srfi-151} Shift n for count bits to left; if count is negative, it shifts n to right
for -count bits.

Same as builtin ash (see Section 6.3.6 [Basic bitwise operations], page 112).

[Function]bit-count n
[SRFI-151] {srfi-151} If n is positive, returns the number of 1’s in n. If n is negative,
returns the number of 0’s in n.

Same as builtin logcount (see Section 6.3.6 [Basic bitwise operations], page 112).

[Function]bitwise-if mask n0 n1
[SRFI-151] {srfi-151} Returns integer, whose n-th bit is taken as follows: If the n-th bit of
mask is 1, the n-th bit of n0; otherwise, the n-th bit of n1.

(bitwise-if #b10101100 #b00110101 #b11001010)

⇒ #b01100110

Single-bit operations

[Function]bit-set? index n
[SRFI-151] {srfi-151} Returns #t or #f if index-th bit (counted from LSB) of n is 1 or 0,
respectively.

Chapter 11: Library modules - SRFIs 574

Same as built-in logbit? (see Section 6.3.6 [Basic bitwise operations], page 112).

[Function]bit-swap index1 index2 n
[SRFI-151] {srfi-151} Returns an integer with index1-th bit and index2-th bit are swapped.
Index is counted from LSB.

[Function]any-bit-set? mask n
[Function]every-bit-set? mask n

[SRFI-151] {srfi-151} Returns #t iff any/all bits set in mask are also set in n.

any-bit-set? is the same as built-in logtest, except logtest accepts one or more arguments
(see Section 6.3.6 [Basic bitwise operations], page 112).

[Function]first-set-bit n
[SRFI-151] {srfi-151} Returns the number of factors of two of integer n; that is, returns a
maximum k such that (expt 2 k) divides n without a remainder. It is the same as the index
of the least significant 1 in n, hence the alias first-set-bit.

(first-set-bit 0) ⇒ -1 ; edge case
(first-set-bit 1) ⇒ 0

(first-set-bit 2) ⇒ 1

(first-set-bit 15) ⇒ 0

(first-set-bit 16) ⇒ 4

This is equivalent to Gauche’s built-in twos-exponent-factor (see Section 6.3.6 [Basic bit-
wise operations], page 112).

Bit field operations

[Function]bit-field-any? n start end
[Function]bit-field-every? n start end

[SRFI-151] {srfi-151} Returns #t iff any/all bits of n from start (inclusive) to end (exclusive)
are set.

[Function]bit-field-clear n start end
[Function]bit-field-set n start end

[SRFI-151] {srfi-151} Returns n with the bits from start (inclusive) to end (exclusive) are
set to all 0’s/1’s.

[Function]bit-field-replace dst src start end
[SRFI-151] {srfi-151} Returns dst with the bitfield from start to end are replaced with the
least-significant (end-start) bits of src.

(bit-field-replace #b101010 #b010 1 4) ⇒ #b100100

Same as built-in copy-bit-field (see Section 6.3.6 [Basic bitwise operations], page 112).

[Function]bit-field-replace-same dst src start end
[SRFI-151] {srfi-151} Returns dst with the bitfield from start to end are replaced with the
src’s bitfield from start to end.

(bit-field-replace-same #b111111 #b100100 1 4) ⇒ #b110101

[Function]bit-field-rotate n count start end
[SRFI-151] {srfi-151} Rotate the region of n between start-th bit (inclusive) and end-th
bit (exclusive) by count bits to the left. If count is negative, it rotates to the right by -count
bits.

(bit-field-rotate #b110100100010000 -1 5 9)

⇒ 26768 ;#b110100010010000

Chapter 11: Library modules - SRFIs 575

(bit-field-rotate #b110100100010000 1 5 9)

⇒ 26672 ;#b110100000110000

[Function]bit-field-reverse n start end
[SRFI-151] {srfi-151} Reverse the order of bits of n between start-th bit (inclusive) and
end-th bit (exclusive).

(bit-field-reverse #b10100111 0 8)

⇒ 229 ; #b11100101

Bits conversion

[Function]bits->list n :optional len
[Function]bits->vector n :optional len

[SRFI-151] {srfi-151} Returns a list/vector of booleans of length len, corresponding to each
bit in non-negative integer n, LSB-first. When len is omitted, (integer-length n) is used.

(bits->vector #b101101110)

⇒ #(#f #t #t #t #f #t #t #f #t)

Note: Srfi-60 has a similar integer->list, but the order of bits is reversed.

[Function]list->bits bool-list
[Function]vector->bits bool-vector

[SRFI-151] {srfi-151} Returns an exact integer formed from boolean values in given
list/vector, LSB first. The result will never be negative.

(list->bits ’(#f #t #t #t #f #t #t #f #t))

⇒ #b101101110

Note: Srfi-60 has a similar list->integer, but the order of bits is reversed.

[Function]bits bool . . .
[SRFI-151] {srfi-151} Returns the integer coded by bools, LSB first. The result will never
be negative.

(bits #f #t #t #t #f #t #t #f #t)

⇒ #b101101110

Note: Srfi-60 has a similar booleans->integer, but the order of bits is reversed.

Fold, unfold and generate

[Function]bitwise-fold kons knil n
[SRFI-151] {srfi-151} Traverse bits in integer n from LSB to the (integer-length n) bit,
applying kons on the bit as boolean and the seed value, whose initial value is given by knil.
Returns the last result of kons.

(bitwise-fold cons ’() #b10110111)

⇒ (#t #f #t #t #f #t #t #t)

[Function]bitwise-for-each proc n
[SRFI-151] {srfi-151} Applies proc to the bit as boolean in n, from LSB to the
(integer-length n) bit. The result is discarded.

[Function]bitwise-unfold p f g seed
[SRFI-151] {srfi-151} Generates a non-negative integer bit by bit, from LSB to MSB. The
seed gives the initial state value. For each iteration, p is applied to the current state value,
and if it returns a true value, the iteration ends and bitwise-unfold returns the accumulated

Chapter 11: Library modules - SRFIs 576

bits as an integer. Otherwise, f is applied to the current state value, and its result, coerced
to a boolean value, determines the bit value. Then g is applied to the current state value to
produce the next state value of the next iteration.

The following expression produces a bitfield of width 100, where n-th bit indicates whether
n is prime or not:

(use math.prime)

(bitwise-unfold (cut = 100 <>)

small-prime?

(cut + 1 <>)

0)

[Function]make-bitwise-generator n
[SRFI-151] {srfi-151} Returns a generator that generates boolean values corresponding to
the bits in n, LSB-first. The returned generator is infinite.

This is similar to bits->generator in gauche.generator, except that the generator created
by it stops at the integer length of n (see Section 9.10 [Generators], page 344).

11.33 srfi-152 - String library (reduced)

[Module]srfi-152
This is an improved version of srfi-13. The spec is actually smaller than srfi-13 (hence
’reduced’ in the title) by removing bells and whistles. The consistency with R7RS and recent
srfis are also considered.

The following are built-in. See Section 6.12 [Strings], page 139, for the details.

string? make-string string string-length

string->vector string->list vector->string list->string

string-ref string-set! substring string-copy

string=? string<? string<=? string>?

string>=? string-append string-join string-split

read-string write-string string-fill!

The following procedures are defined to use Unicode string case folding, and gauche.unicode

module provides them. See Section 9.34.3 [Full string case conversion], page 446, for the
details. Note that Gauche’s built-in versions uses character-wise case folding, which differs
from string case folding on some characters (German eszett, for example).

string-ci=? string-ci<? string-ci<=? string-ci>? string-ci>=?

The following procedures are defined in srfi-13. See Section 11.5 [String library], page 518,
for the details. Note: Some of those procedures in srfi-13 that require predicate allows a char-
set or a character to be passed instead (e.g. string-filter). In srfi-152, only predicate is
allowed. Our srfi-152 implementation shares the same procedure with srfi-13, so they accept
the same arguments as srfi-13’s, but such code won’t be portable as srfi-152.

string-null? string-any string-every string-tabulate

string-unfold string-unfold-right reverse-list->string

string-take string-drop string-take-right string-drop-right

string-pad string-pad-right string-trim string-trim-right

string-trim-both string-replace string-prefix-length string-suffix-length

string-prefix? string-suffix? string-innex string-index-right

string-skip string-skip-right string-contains string-concatenate

string-concatenate-reverse string-fold string-fold-right

string-count string-filter string-copy!

Chapter 11: Library modules - SRFIs 577

The following procedures are the same with the ones in R7RS scheme.base module (see
Section 10.2.2 [R7RS base library], page 473). Note that srfi-13 defines different procedures
with the same name.

string-map string-for-each

We describe procedures unique to this module below.

[Function]string-remove pred string :optional start end
[SRFI-152] {srfi-152} Returns a substring of string between start and end, except characters
that satisfy pred. In other words, it is (string-filter (complement pred) string start

end).

This is called string-delete in srfi-13. Being changed to take only a predicate (but not a
character), it is renamed for the consistency of other srfi (e.g. filter, remove and delete

in srfi-1.)

(string-remove char-whitespace?

"Quick fox jumps over the lazy dog"

3 22)

⇒ "ckfoxjumpsovert"

[Function]string-replicate string from to :optional start end
[SRFI-152] {srfi-152} Extended substring. It is called xsubstring in srfi-13, but renamed
for the consistency.

Extract a substring of string between start and end, and conceptually create a bidirectional
infinite string by repeating the substring to both direction. For example, suppose string is
"abcde", start is 1, and end is 4. So we repeat the substring "bcd", with one b falling on
the index zero:

... b c d b c d b c d b c d b ...

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Then we extract a substring between from and to out of this infinite string.

(string-replicate "abcde" 2 10 1 4)

⇒ "dbcdbcdb"

(string-replicate "abcde" -5 -3 1 4)

⇒ "cdbcdbcd"

[Function]string-segment string k
[SRFI-152] {srfi-152} Splits string by every k characters and returns a list of those strings.
The last string may be shorter than k.

(string-segment "abcdefghijklmn" 3)

⇒ ("abc" "def" "ghi" "jkl" "mn")

We have a similar procedure on lists, slices (see Section 6.6.4 [List accessors and modifiers],
page 118).

[Function]string-contains-right string1 string2 :optional start1 end1 start2 end2
[SRFI-152] {srfi-152} Like string-contains, looks for a needle string2 from a haystack
string1, but if it is found, returns the start index of the last match, instead of the first match.
The returned index is in string1. The optional arguments limit the range of a needle and a
haystack. If a needle isn’t found, #f is returned.

An edge case: If a needle is empty (e.g. string2 is empty, or start2 = end2), it always matches
right after the haystack, so end1 is returned.

(string-contains-right "Little Lisper" "Li")

⇒ 7

Chapter 11: Library modules - SRFIs 578

[Function]string-take-while string pred :optional start end
[Function]string-take-while-right string pred :optional start end

[SRFI-152] {srfi-152} Returns the longest prefix or suffix of string in which all characters
satisfy pred.

Note: The order of pred and the source object is different from other take-while-style
procedures, such as take-while (Section 10.3.1 [R7RS lists], page 482), ideque-take-while
(Section 10.3.7 [R7RS immutable deques], page 508), and lseq-take-while (Section 10.3.9
[R7RS lazy sequences], page 511).

[Function]string-drop-while string pred :optional start end
[Function]string-drop-while-right string pred :optional start end

[SRFI-152] {srfi-152} Returns the longest prefix or suffix of string in which all characters
does not satisfy pred.

Note: The order of pred and the source object is different from other drop-while-style
procedures, such as drop-while (Section 10.3.1 [R7RS lists], page 482), ideque-drop-while
(Section 10.3.7 [R7RS immutable deques], page 508), and lseq-drop-while (Section 10.3.9
[R7RS lazy sequences], page 511).

[Function]string-span string pred :optional start end
[Function]string-break string pred :optional start end

[SRFI-152] {srfi-152} Find the longest prefix of string between start and end in which all
characters satisy / do not satisfy pred, and returns the prefix and the rest of substring as
two values.

(string-break "foo@example.com" (cut eqv? <> #\@))

⇒ "foo" and "@example.com"

(string-break "foo@example.com" (cut eqv? <> #\@) 1 10)

⇒ "oo" "@exampl"

;; This is Gauche specific - a char-set can work as a predicate:

(string-span "VAR_1 = $VAR_2" #[\w])

⇒ "VAR_1" and " = $VAR_2"

Note: The order of pred and the source object is different from span and break in
scheme.list (see Section 10.3.1 [R7RS lists], page 482).

11.34 srfi-158 - Generators and accumulators

[Module]srfi-158
This is an enhanced (and upward compatible) version of srfi-121 Generators. In Gauche,
all generator procedures are the same as provided in gauche.generator (see Section 9.10
[Generators], page 344).

generator circular-generator make-iota-generator

make-range-generator make-coroutine-generator

list->generator vector->generator reverse-vector->generator

string->generator bytevector->generator

make-for-each-generator make-unfold-generator

gcons* gappend gflatten

ggroup gmerge gmap

gcombine gfilter gremove

gstate-filter ggroup generator-map->list

gtake gdrop gtake-while

Chapter 11: Library modules - SRFIs 579

gdrop-while gdelete gdelete-neighbor-dups

gindex gselect generator->list

generator->reverse-list generator-map->list generator->vector

generator->vector! generator->string generator-fold

generator-for-each generator-find generator-count

generator-any generator-every generator-unfold

Accumulators are opposite of generators. They are procedures that work as consumers. An
accumulator takes one argument. When non-eof value is given, the value is stored, and when
EOF is given, the accumulated value is returned. How the values are accumulated depends
on the accumulator.

Once EOF is given, the accumulator is “finalized”. Subsequent EOF makes it return the
same accumulated value. It is undefined if other values are passed after EOF is passed.

The accumulator can be used to parameterize procedures that yield aggregate objects. Con-
sider the following procedure, which takes items from two generators and accumulate them
alternatively. (Note that glet* is Gauche’s procedure but not in srfi-158).

(define (intertwine acc gen1 gen2)

(let loop ()

(glet* ([a (gen1)]

[b (gen2)])

(acc a)

(acc b)

(loop)))

(acc (eof-object)))

The procedure can return various type of collections, without knowing the actual type—the
passed accumulator determines it.

(intertwine (list-accumulator) (giota 5) (giota 5 100))

⇒ (0 100 1 101 2 102 3 103 4 104)

(intertwine (vector-accumulator) (giota 5) (giota 5 100))

⇒ #(0 100 1 101 2 102 3 103 4 104)

(intertwine (bytevector-accumulator) (giota 5) (giota 5 100))

⇒ #u8(0 100 1 101 2 102 3 103 4 104)

Note: In Gauche, you can also use classes to parameterize returned container types (e.g.
map-to), for many collection classes support builder protocol. See Section 9.5 [Collection
framework], page 322, for the details. Accumulator has the flexibility that you can provide
more than one ways to construct return value on the same type (e.g. forward and reverse
list).

[Function]make-accumulator kons knil ↓nalizer
[SRFI-158] {srfi-158} Creates and returns an accumulator with a state, whose initial value
is knil. When non-EOF value v is passed to the accumulator, kons is called as (kons v

state), and its result becomes the new state value. When EOF value is passed, (finalizer
state) is called and its result becomes the result of accumulator.

[Function]list-accumulator
[Function]reverse-list-accumulator

[SRFI-158] {srfi-158} Creates and returns accumulators that return accumulated value as
a list, in the accumulated order (list-accumulator) or the reverse order (reverse-list-
accumulator).

[Function]vector-accumulator
[Function]reverse-vector-accumulator

580

[Function]bytevector-accumulator
[SRFI-158] {srfi-158} Returns accumulators that return accumulated value as a
fresh vector or bytevector (u8vector), in the accumulated order (vector-accumulator,
bytevector-accumulator) or the reverse order (reverse-vector-accumulator). There’s
no reverse-bytevector-accumulator.

[Function]vector-accumulator! vec at
[Function]bytevector-accumulator! bvec at

[SRFI-158] {srfi-158} The vec or bvec argument is a mutable vector or bytevector
(u8vector), and is used as a buffer.

Returns an accumlator that stores the accumulated values in the buffer, starting from the
index at. It is an error if the accumulator gets more values after the buffer reaches at the
end.

Once EOF is passed to the accumulator, vec or bvec is returned, respectively.

[Function]string-accumulator
[SRFI-158] {srfi-158} Returns an accumulator that accepts characters and accumulates
them to a string.

[Function]sum-accumulator
[Function]product-accumulator
[Function]count-accumulator

[SRFI-158] {srfi-158} Returns accumulators that yield a scalar value.

The accumulator created by sum-accumulator and product-accumulator accepts numbers,
and keep adding or multiplying it with the accumulated value (the default value is 0 and 1,
respectively).

The accumulator created by count-accumulator accepts any objects and just counting it.

581

12 Library modules - Utilities

12.1 binary.io - Binary I/O

[Module]binary.io
This module provides basic procedures to perform binary I/O of numeric data. Each datum
can be read from or written to a port, and got from or put to a uniform vector (see Section 9.35
[Uniform vectors], page 447). For structured binary data I/O, more convenient pack utility
is implemented on top of this module (see Section 12.2 [Packing Binary Data], page 584).
You might want to use this module directly if you need speed or want a flexible control of
endianness.

See also Section 9.35 [Uniform vectors], page 447, which provides binary block I/O.

Endianness

Most procedures of this module take an optional endian argument, specifying the byte or-
der of the binary input. It must be either one of symbols big-endian, little-endian, or
arm-little-endian. If the endian argument is omitted, the current value of the builtin pa-
rameter default-endian is used (see Section 6.3.7 [Endianness], page 114). (For 8-bit I/O
procedures like read-u8 the endian argument has no effect, but is accepted for consistency).

I/O using port

[Function]read-u8 :optional port endian
[Function]read-u16 :optional port endian
[Function]read-u32 :optional port endian
[Function]read-u64 :optional port endian

{binary.io} Reads 8, 16, 32 or 64 bit unsigned integer from port with specified endian,
respectively. If port is omitted, current input port is used. If port reaches EOF before a
complete integer is read, EOF is returned.

[Function]read-s8 :optional port endian
[Function]read-s16 :optional port endian
[Function]read-s32 :optional port endian
[Function]read-s64 :optional port endian

{binary.io} Reads 8, 16, 32 or 64 bit 2’s complement signed integer from port with specified
endian, respectively. If port is omitted, current input port is used. If port reaches EOF before
a complete integer is read, EOF is returned.

[Function]read-uint size :optional port endian
[Function]read-sint size :optional port endian

{binary.io} More flexible version. Reads size-octet unsigned or signed integer from port
with specified endian. If port reaches EOF before a complete integer is read, EOF is returned.

[Function]read-ber-integer :optional port
{binary.io} Reads BER compressed integer a la X.209. A BER compressed integer is an
unsigned integer in base 128, most significant digit first, where the high bit is set on all but
the final (least significant) byte.

[Function]write-u8 val :optional port endian
[Function]write-u16 val :optional port endian
[Function]write-u32 val :optional port endian

Chapter 12: Library modules - Utilities 582

[Function]write-u64 val :optional port endian
{binary.io} Writes a nonnegative integer val as 8, 16, 32 or 64 bit unsigned integer to port
with specified endian, respectively. Val must be within the range of integers representable by
the specified bits. When port is omitted, current output port is used.

[Function]write-s8 val :optional port endian
[Function]write-s16 val :optional port endian
[Function]write-s32 val :optional port endian
[Function]write-s64 val :optional port endian

{binary.io} Writes an integer val as 8, 16, 32 or 64 bit as 2’s complement signed integer to
port with specified endian, respectively. Val must be within the range of integers representable
by the specified bits. When port is omitted, current output port is used.

[Function]write-uint size val :optional port endian
[Function]write-sint size val :optional port endian

{binary.io} More flexible version. Writes an integer val as unsigned or signed integer of
size bytes to port with specified endian. When port is omitted, current output port is used.

[Function]write-ber-integer val :optional port
{binary.io} Writes a nonnegative integer val in BER compressed integer to port. See
read-ber-integer above for BER format.

[Function]read-f16 :optional port endian
[Function]read-f32 :optional port endian
[Function]read-f64 :optional port endian

{binary.io} Reads 16, 32, or 64-bit floating point numbers, respectively. 32bit is IEEE754
single-precision, and 64bit is IEEE754 double-precision numbers. 16-bit floating point number
consists of 1-bit sign, 5-bit exponent and 10-bit mantissa, as used in some HDR image format.

If port is omitted, current input port is used. If port reaches EOF before a complete number
is read, EOF is returned.

[Function]write-f16 val :optional port endian
[Function]write-f32 val :optional port endian
[Function]write-f64 val :optional port endian

{binary.io} Writes a real number val to port in 16, 32, or 64-bit floating point number,
respectively. If port is omitted, current output port is used.

I/O using uniform vectors

In the following routines, the argument uv can be any type of uniform vector; if it is not a
u8vector, it is treated as if (uvector-alias <u8vector> uv) is called—that is, it reads directly
from the memory image that holds the uvector’s content. The pos argument specifies the byte
position from the beginning of the memory area (it is always byte position, regardless of the
uniform vector’s element size).

[Function]get-u8 uv pos :optional endian
[Function]get-u16 uv pos :optional endian
[Function]get-u32 uv pos :optional endian
[Function]get-u64 uv pos :optional endian
[Function]get-s8 uv pos :optional endian
[Function]get-s16 uv pos :optional endian
[Function]get-s32 uv pos :optional endian
[Function]get-s64 uv pos :optional endian
[Function]get-f16 uv pos :optional endian

Chapter 12: Library modules - Utilities 583

[Function]get-f32 uv pos :optional endian
[Function]get-f64 uv pos :optional endian

{binary.io} Reads a number of a specific format from a uniform vector uv, starting at a
byte position pos. An error is signaled if the specified position makes reference outside of the
uniform vector’s content. Returns the read number.

[Function]get-u16be uv pos
[Function]get-u16le uv pos
[Function]get-u32be uv pos
[Function]get-u32le uv pos
[Function]get-u64be uv pos
[Function]get-u64le uv pos
[Function]get-s16be uv pos
[Function]get-s16le uv pos
[Function]get-s32be uv pos
[Function]get-s32le uv pos
[Function]get-s64be uv pos
[Function]get-s64le uv pos
[Function]get-f16be uv pos
[Function]get-f16le uv pos
[Function]get-f32be uv pos
[Function]get-f32le uv pos
[Function]get-f64be uv pos
[Function]get-f64le uv pos

{binary.io} These are big-endian (be) or little-endian (le) specific versions of get-* pro-
cedures. In speed-sensitive code, you might want to use these to avoid the overhead of
optional-argument handling.

[Function]get-uint size uv pos :optional endian
[Function]get-sint size uv pos :optional endian

{binary.io} Read size octets from uvector uv, starting from pos-th octet, as an unsigned
or signed integer, respectively.

(get-uint 3 ’#u8(1 2 3 4) 1 ’big-endian)

⇒ 131884 ; #x020304

(get-sint 3 ’#u9(1 2 3 #xff) 1 ’little-endian)

⇒ -64766 ; sign extended #xff0302

[Function]put-u8! uv pos val :optional endian
[Function]put-u16! uv pos val :optional endian
[Function]put-u32! uv pos val :optional endian
[Function]put-u64! uv pos val :optional endian
[Function]put-s8! uv pos val :optional endian
[Function]put-s16! uv pos val :optional endian
[Function]put-s32! uv pos val :optional endian
[Function]put-s64! uv pos val :optional endian
[Function]put-f16! uv pos val :optional endian
[Function]put-f32! uv pos val :optional endian
[Function]put-f64! uv pos val :optional endian

{binary.io} Writes a number val into a uniform vector uv in a specific format, starting at
a byte position pos. An error is signaled if the specified position makes reference outside of
the uniform vector’s content.

Chapter 12: Library modules - Utilities 584

[Function]put-u16be! uv pos val
[Function]put-u16le! uv pos val
[Function]put-u32be! uv pos val
[Function]put-u32le! uv pos val
[Function]put-u64be! uv pos val
[Function]put-u64le! uv pos val
[Function]put-s16be! uv pos val
[Function]put-s16le! uv pos val
[Function]put-s32be! uv pos val
[Function]put-s32le! uv pos val
[Function]put-s64be! uv pos val
[Function]put-s64le! uv pos val
[Function]put-f16be! uv pos val
[Function]put-f16le! uv pos val
[Function]put-f32be! uv pos val
[Function]put-f32le! uv pos val
[Function]put-f64be! uv pos val
[Function]put-f64le! uv pos val

{binary.io} These are big-endian (be) or little-endian (le) specific versions of put-* pro-
cedures. In speed-sensitive code, you might want to use these to avoid the overhead of
optional-argument handling.

[Function]put-uint! size uv pos val :optional endian
[Function]put-sint! size uv pos val :optional endian

{binary.io} Write an unsigned or signed integer val into an uvector uv starting from pos-th
octet, for size octets, respectively.

Compatibility notes

read-u8 etc. were called read-binary-uint8 etc., and read-f32 and read-f64 were called
read-binary-float and read-binary-double, respectively. These old names are still sup-
ported for the backward compatibility but their use is deprecated. The reason of the changes is
for brevity and for consistency with the uniform vectors.

12.2 binary.pack - Packing Binary Data

[Module]binary.pack
This module provides an interface for packing and unpacking (writing and reading) binary
data with templates. The functionality was inspired largely by the Perl pack/unpack func-
tions, with comparison of similar features from other languages, however an effort was made
to make it more general and more efficient, to be usable for database-like processing. To that
end, the most notable differences are that any packable value is unpackable (and vice versa),
and the default behavior is to pack and unpack using port I/O, so you can seek in a large file
and unpack from it. Also, templates may be stored as dispatch closures to pack, unpack or
even skip over values without re-parsing the template.

[Function]pack template list :key output to-string?
{binary.pack} Writes the values in list to the current output port, according to the format
specified by the string template. The template string is a series of single character codes,
optionally followed by a numeric count (which defaults to 1). The format characters can
generally be divided into string types, which interpret the count as a string byte size, and
object types, which treat the count as a repetition indicator. The count may be specified
as the character *, which means to use the full size of the string for string types, and use

Chapter 12: Library modules - Utilities 585

all remaining values for object types. Counts may also be specified as a template enclosed
in brackets, which means the count is the byte size of the enclosed template. For example,
x[L] skips a long. The special format character / may be used to indicate a structure where
the packed data contains a dynamic count followed by the value itself. The template is
written as <count-item>/<value-item>, where <count-item> is any template character to
be interpreted as a numeric count, and <value-item> is any other template character to use
this count. If a normal count is given after <value-item> it is ignored. The format character
@ may be used with a count to pad to an absolute position since the start of the template.
Sub-templates may be grouped inside parentheses. If angle-brackets are used, then they also
behave as group operators but recursively operate on nested lists. The string types:

a An arbitrary incomplete string, null padded.

A A text string, space padded.

Z A null terminated (ASCIZ) string, null padded.

b A bit string (ascending bit order inside each byte).

B A bit string (descending bit order inside each byte).

h A hex string (low nybble first).

H A hex string (high nybble first).

The object types:

c A signed 8bit integer.

C An unsigned 8bit integer.

s A signed short (16 bit) value.

S An unsigned short (16 bit) value.

i A signed integer (>= 32 bit) value.

I An unsigned integer (>= 32 bit) value.

l A signed long (32 bit) value.

L An unsigned long (32 bit) value.

n, n! An unsigned and signed short (16 bit) in "network" (big-endian) order.

N, N! An unsigned and signed long (32 bit) in "network" (big-endian) order.

v, v! An unsigned and signed short (16 bit) in "VAX" (little-endian) order.

V, V! An unsigned and signed long (32 bit) in "VAX" (little-endian) order.

q A signed quad (64 bit) value.

Q An unsigned quad (64 bit) value.

f A single-precision float in the native format.

d A double-precision float in the native format.

w A BER compressed integer. An unsigned integer in base 128, most significant
digit first, where the high bit is set on all but the final (least significant) byte.
Thus any size integer can be encoded, but the encoding is efficient and small
integers don’t take up any more space than they would in normal char/short/int
encodings.

x A null byte.

Chapter 12: Library modules - Utilities 586

o An sexp, handled with read and write.

If the optional keyword :output is given that port is used instead of the current output port.
If :to-string? is given and true, then pack accumulates and returns the output as a string.

Note that the returned string may be an incomplete string if the packed string contains a
byte sequence invalid as a character sequence.

(pack "CCCC" ’(65 66 67 68) :to-string? #t)

⇒ "ABCD"

(pack "C/a*" ’("hello") :to-string? #t)

⇒ "\x05hello"

[Function]unpack template :key :input :from-string
{binary.pack} The complement of pack, unpack reads values from the current input port
assuming they’ve been packed according to the string template and returns the values as a
list. unpack accepts the same format strings as pack. Further, the following tautology holds:

(equal? x (unpack fmt :from-string (pack fmt x :to-string? #t)))

for any list x and format string fmt. The only exceptions to this are when the template
includes a * and when the o template is used, since Scheme numeric literals cannot be
reliably delimited (though future versions of pack may circumvent this by registering a new
read syntax).

If the optional keyword :input is given that port is used instead of the current input port. If
:from-string is given, then pack reads input from that string.

(unpack "CCCC" :from-string "ABCD")

⇒ ’(65 66 67 68)

(unpack "C/a*" :from-string "\x05hello")

⇒ ’("hello")

Note: in the current version, @ in unpack template has a bug and does not work as supposed.
It will be fixed in the future version.

[Function]unpack-skip template :key :input
{binary.pack} unpack-skip is the same as unpack except it does not return the values. In
some cases, particularly with fixed-size templates, this can be much more efficient when you
just want to skip over a value.

[Function]make-packer template
{binary.pack} The low-level interface. This function returns a dispatch closure that can be
used to pack, unpack and skip over the same cached template. The dispatch closure accepts
symbol methods as follows:

’pack list

pack the items in list to the current output port.

’unpack unpack items from the current input port.

’skip skip items from the current input port.

’packer return the cached ’pack closure

’unpacker

return the cached ’unpack closure.

’skipper return the cached ’skip closure.

’length return the known fixed length of the template.

Chapter 12: Library modules - Utilities 587

’variable-length?

return #t if the template has variable length elements.

12.3 compat.norational - Rational-less arithmetic

[Module]compat.norational
Until release 0.8.7, Gauche didn’t have exact rational numbers. It was able to read the rational
number literals such as 2/3, but they are immediately coerced to inexact real numbers (except
when it represents a whole integer). And if you divided an exact integer by another exact
integer, the result could be coerced to an inexact real if the result wasn’t a whole integer.

As of 0.8.8, this is not the case anymore. Exact division always yields exact result, except
when the divisor is zero.

(/ 2 3) ⇒ 2/3

(/ 5) ⇒ 1/5

(/ 4 2) ⇒ 2

This is more precise, but has one drawback: exact rational arithmetic is much slower than
the integer and inexact real arithmetic. If you inadvertently produce a rational number in
the early stage of calculation, and continue to apply exact arithmetic, performance would be
degraded miserably.

The proper way to solve this is to insert exact->inexact to appropriate places. However, to
ease the transition, you can just import this module and the division / behaves in the way it
used to.

(use compat.norational)

(/ 2 3) ⇒ 0.6666666666666666

(/ 5) ⇒ 0.2

(/ 4 2) ⇒ 2

The effect is not global, but only to the modules you explicitly import compat.norational.

This module only redefines /. So if your code has exact rational literals, they are treated as
exact rationals rather than coerced to inexact reals. You should prefix rational literals with
#i to force Gauche to coerce them to inexact reals:

gosh> 1/3

1/3

gosh> #i1/3

0.3333333333333333

12.4 control.job - A common job descriptor for control
modules

[Module]control.job
This module provides a job record type, a lightweight structure to be used in the control
flow subsystems (control.* modules). Currently the only user is control.thread-pool,
but some other modules are planned to use job records.

A job record may be returned to an application by other control.* modules so that the
application can keep track of the job. It’s not meant for general use, however. An application
isn’t supposed to create a new job, or to modify its content; it can just query the job’s
properties.

In this section we only describe procedures an application needs to know. The interface for
control subsystems is still fluid and may be changed as more subsystems are developed.

Chapter 12: Library modules - Utilities 588

Different control flow subsystems may use job structure differently. This section only describes
the common properties. Check the individual control flow module to know how to handle
returned job objects.

[Record type]job
{control.job} A record type denotes the job. Applications should treat it as an opaque
structure.

[Function]job? obj
{control.job} Returns #t iff obj is a job record, #f otherwise.

[Function]job-status job
{control.job} Returns the status of the job. It may be either one of the followings.

#f Newborn or orphaned job. Usually an application won’t see a job in this status.

acknowledged

A job is recognized by a control flow library, but haven’t yet been run.

running A job is being processed.

done A job is finished. An application can retrieve its result by job-result.

error A job is terminated by an error. An application can retrieve the error causing
condition by job-result.

killed A job is killed by external force. An application can retrieve the reason of kill
(which is specific to a particular control flow subsystem) by job-result.

[Function]job-result job
{control.job} If the job is in done status, it returns the result of the job. If the job is in
error status, it returns the condition object that describes the error. If the job is in killed

status, it returns an object describing the reason of kill. The details of the object depends
on a particular control flow library. Calling job-result on a job in any other status may
return anything; you can’t rely on the result.

[Function]job-wait job :optional timeout timeout-val
{control.job} Suspends the calling thread until the job becomes either done, error or
killed status. If the job is already in one of those status, it returns immediately. Returns
job’s status.

If timeout is given and not #f, it must be a valid timeout spec (a <time> object that represents
an absolute time point, or a real number that represents a relative time in seconds.) The
meaning of timeout is the same as in mutex-unlock! (see Section 9.32.3 [Synchronization
primitives], page 433). Once the timeout reaches, job-wait returns no matter how the job’s
status is, and returns the value specified to timeout-val, which defaults to #f.

Depending on the control flow subsystem, jobs created by it may not be waitable; check out
each subsystem’s documentation for the details.

[Function]job-acknowledge-time job
[Function]job-start-time job
[Function]job-finish-time job

{control.job} If the control flow subsystem keeps track of timestamps, these procedure
returns the time (in <time> objects) when the job is acknowledged, started and finished
(either normally, or abnormally by an error or by being killed). If the job hasn’t reached to
certain status, #f is returned instead.

If the subsystem does not track timestamps, these procedures always returns #f.

Chapter 12: Library modules - Utilities 589

12.5 control.thread-pool - Thread pools

[Module]control.thread-pool
Provides thread pools. Only available when Gauche is compiled with pthreads support.

[Class]<thread-pool>
{control.thread-pool} A class for thread pool objects. It maintains a set of worker threads,
and let them work on the jobs you ask to do asynchronously.

Currently the size of pool (number of threads) is fixed and you have to specify it when
creating a pool. In future we might add a feature to grow or shrink the pool.

You can also set maximum backlog of the job queue. You cannot put a job when the queue
already reaches the max length (see add-job! below).

[Condition type]<thread-pool-shut-down>
{control.thread-pool} A condition indicating that a thread pool is already shut down by
terminate-all! and no longer accepting new jobs. Inherits <error>. The following slot is
provided.

[Instance Variable of <thread-pool-shut-down>]pool
The thread pool object that caused the condition.

[Function]make-thread-pool size :key (max-backlog 0)
{control.thread-pool} Creates a new thread pool of size size (the number of worker
threads). Optionally you can give a nonnegative integer to the maximum backlog; 0 means
unlimited.

[Function]thread-pool-results pool
{control.thread-pool} When you put a job to a thread pool, you can specify whether you
need to check its result or not. If you say you need a result, the terminated job is queued to
a result queue, an <mt-queue> object, in the pool. This procedure returns the pool’s result
queue. See Section 12.11 [Queue], page 599, for the details of <mt-queue>.

[Function]thread-pool-shut-down? pool
{control.thread-pool} Returns #t if the thread pool is shut down and no longer accepting
new jobs, or #f otherwise.

[Function]add-job! pool thunk :optional (need-result #f) (timeout #f)
{control.thread-pool} Add a thunk to be executed in the thread pool pool. Returns a
job record (see Section 12.4 [A common job descriptor for control modules], page 587).

The returned job record is not waitable; if you need to track its result, you have to give
a true value to need-result argument. Then when the job is terminated (either normally or
abnormally) the job is queued to the result-queue of the pool, and you can check the queue.
If you don’t pass a true value to need-result, the job won’t be queued to result-queue even
it is terminated.

The returned job is timestamped. You can examine acknowledged time, start time and finish
time of the job (if the job hasn’t been started and/or finished, the corresponding timestamp
fields are #f.) It’s sometimes handy to find out how long the job was waiting in the queue
and how long it took to run.

If the pool has positive max-backlog value, and it already has that many jobs to be waiting,
then add-job! blocks until some jobs are start being executed. You can give a real number
in seconds, or a <time> object as an absolute point of time, to the timeout argument to set
the time limit of blocking. If timeout is reached, add-job! returns #f without creating any
job. Omitting timeout or giving #f to it sets no timeout.

Chapter 12: Library modules - Utilities 590

(Note: This behavior is different from 0.9.1, in which add-job! didn’t take the timeout
argument and always behaved as if zero timeout value was given. To achieve the same
behavior, you have to give 0 to the timeout argument explicitly.)

If the thread pool is shut down, this procedure raises <thread-pool-shut-down> condition.

[Function]wait-all pool :optional (timeout #f) (check-interval #e5e8)
{control.thread-pool} Wait for the job queue to be empty and all worker threads to finish.
It is done by polling the pool’s status in every check-interval nanoseconds. Returns #t if all
jobs are finished.

You can give a real number in seconds, or a <time> object as an absolute point of time, in
timeout optional argument. When timeout is reached, wait-all returns #f.

[Function]terminate-all! pool :key (force-timeout #f) (cancel-queued-jobs #f)
{control.thread-pool} Wait for all the queued jobs to be finished, then ask all threads
to terminate. After calling this procedure, the pool no longer accepts new jobs. Calling
add-job! on this module would raise a <thread-pool-shut-down> condition. This is in-
tended to be called when shutting down the application.

By default, this procedure first waits for all queued jobs to be handled, then tries to terminate
threads gracefully.

Giving a true value to the cancel-queued-jobs argument immediately cancels queued but not
started jobs; the status of such jobs is set killed. It does not cancels already started jobs,
though.

If you want to cancel already started jobs, you can give a timeout value (either <time> object
to specify absolute point of time, or a real number indicating relative time in seconds) to the
force-timeout argument. Once timeout is reached, it forcefully terminates the threads and
the jobs handled at that time are also killed.

Forcing termination of threads is an extreme measure; the terminated thread may not have a
chance to clean up properly. So it is usually better to give some time for the thread to finish
the executing jobs.

12.6 crypt.bcrypt - Password hashing

[Module]crypt.bcrypt
This module implements a password hashing algorithm using blowfish, and compatible to
OpenBSD’s bcrypt algorithm (version 2a, 2b).

Don’t use version “2a” for new code. It’s vulnerable. Use version “2b”.

The typical usage of this module is simple enough. To get a new password hash value (e.g.
for a new user), pass the password string to bcrypt-hashpw as the only argument:

(bcrypt-hashpw password)

⇒ hashed-string

The routine automatically adds a salt value. The returned hash string can be stored in the
user database. To check if the given password matches the stored one, pass the hashed string
as the second argument of bcrypt-hashpw to check the password.

(bcrypt-hashpw password hashed-string)

⇒ hashed-string

If the given password is correct, the returned value should exactly matches hash-string.

[Function]bcrypt-hashpw password :optional setting
{crypt.bcrypt} Calculates a hash value of password, using the salt value and parameters
included in setting. If setting is omitted, a suitable default settings and random salt value is
chosen automatically.

Chapter 12: Library modules - Utilities 591

The returned hash value contains the salt value and parameters, and can be used as setting.
So, to check the password against existing hash value, just pass the hash value to setting ; if
the password is correct, the returned hash value should match the one you passed in.

The bcrypt algorithm supports up to 72 octets for the password.

To tweak parameters when you calculate a new hash value, use bcrypt-gensalt below to
get the initial setting value.

[Function]bcrypt-gensalt :key pre↓x count entropy-source
{crypt.bcrypt} Returns a string that contains given parameters and suitable to pass to the
setting argument of bcrypt-hashpw.

The pre↓x argument specifies the version/scheme of password hashing. Currently $2a$ and
$2b$ are supported, which means the blowfish algorithm compatible to bcrypt. But $2a$ is
vulnerable. Use $2b$ for new code. If you omit pre↓x, use $2b$ for default value.

The count arugment specifies the amount of iterations; the larger the value is, the more time
is required to calculate the hash value. Note that for the password hashing, taking more time
is actually a good thing, for it works against the dictionary attack. For normal password
checking you need to run the hash routine only once per login, so it doesn’t matter if the
calculation takes a fraction of second. The bcrypt algorithm iterates (expt 2 count) times.

The entropy-source argument is a u8vector to feed a random bytes. For bcrypt algorithm
it must be at least 16 octet long.

12.7 data.cache - Cache

[Module]data.cache
A cache works similarly as a dictionary, associating keys to values, but its entries may dissa-
pear according to the policy of the cache algorithm. This module defines a common protocol
for cache datatypes, and also provides several typical cache implementations.

Examples

Let’s start from simple examples to get the idea.

Suppose you want to read given files and you want to cache the frequently read ones. The
following code defines a cached version of file->string:

(use data.cache)

(use file.util)

(define file->string/cached

(let1 file-cache (make-lru-cache 10 :comparator string-comparator)

(^[path] (cache-through! file-cache path file->string))))

The procedure closes a variable file-cache, which is an LRU (least recently used) cache
that associates string pathnames to the file contents. The actual logic is in cache-through!,
which first consults the cache if it has an entry for the path. If the cache has the entry, its
value (the file content) is returned. If not, it calls file->string with the path to fetch the
file content, register it to the cache, and return it. The capacity of cache is set to 10 (the first
argument of make-lru-cache), so when the 11th file is read, the least recently used file will be
purged from the cache.

The effect of cache isn’t very visible in the above example. You can insert some print stubs
to see the cache is actually in action, as the following example. Try read various files using
file->string/cached.

(define file->string/cached

(let1 file-cache (make-lru-cache 10 :comparator string-comparator)

Chapter 12: Library modules - Utilities 592

(^[path]

(print #"file->string/cached called on ~path")

(cache-through! file-cache path

(^[path]

(print #"cache miss. fetching ~path")

(file->string path))))))

Caveat: A cache itself isn’t MT-safe. If you are using it in multithreaded programs, you have
to wrap it with an atom (see Section 9.32.3 [Synchronization primitives], page 433):

(use data.cache)

(use file.util)

(use gauche.threads)

(define file->string/cached

(let1 file-cache (atom (make-lru-cache 10 :comparator string-comparator))

(^[path]

(atomic file-cache (cut cache-through! <> path file->string)))))

Common properties of caches

A cache of any kind has a comparator and a storage. The comparator is used to compare keys; in
the example above, we use string-comparator to compare string pathnames (see Section 6.2.4
[Basic comparators], page 95, for more about comparators).

The storage is a dictionary that maps keys to internal structures of the cache. By default, a
hashtable is created automatically using the given comparator (or, if a comparator is omitted,
using default-comparator). The comparator must have hash function.

Alternatively, you can give a pre-filled dictionary (copied from another instance of the same
kind of cache) to start cache with some data already in it. Note that what the cache keeps in the
dictionary totally depends on the cache algorithm, so you can’t just pass a random dictionary;
it has to be created by the same kind of cache. If you pass in the storage, the comparator is
taken from it.

Thus, the cache constructors uniformly take keyword arguments comparator and storage;
you can specify either one, or omit both to use the defaults.

Predefined caches

For the storage and comparator keyword arguments, see above.

[Function]make-fifo-cache capacity :key storage comparator
{data.cache} Creates and returns a FIFO (first-in, first-out) cache that can hold up to
capacity entries. If the number of entries exceeds capacity, the oldest entry is removed.

[Function]make-lru-cache capacity :key storage comparator
{data.cache} Creates and returns an LRU (least recently used) cache that can hold up to
capacity entries. If the number of entries exceeds capacity, the least recently used entry is
removed.

[Function]make-ttl-cache timeout :key storage comparator timestamper
{data.cache} Creates and returns a TTL (time to live) cache with the timeout value timeout.
Each entry is timestamped when it’s inserted, and it is removed when the current time
passes timeout unit from the timestamp. The actual entry removal is done when the cache
is accessed.

By default, the Unix system time (seconds from Epoch) is used as a timestamp, and timeout
is in seconds. It may not be fine-grained enough if you add multiple entries in shorter intervals

Chapter 12: Library modules - Utilities 593

than seconds. You can customize it by giving a thunk to timestamper; the thunk is called
to obtain a timestamp, which can be any monotonically increasing real number (it doesn’t
need to be associated with physical time). If you give timestamper, the unit of timeout value
should be the same as whatever timestamper returns.

[Function]make-ttlr-cache timeout :key storage comparator timestamper
{data.cache} A variation of TTL cache, but the entry’s timestamp is updated (refreshed)
whenever the entry is read. Hence we call it TTL with refresh (TTLR). But you can also
think it as a variation of LRU cache with timeout.

The unit of timeout, and the role of timestamper argument, are the same as make-ttl-cache.

Common operations of caches

The following APIs are for the users of a cache.

[Function]cache-lookup! cache key :optional default
{data.cache} Look for an entry with key in cache, and returns its value if it exists. If there’s
no entry, the procedure returns default if it is provided, or throws an error otherwise.

Some types of cache algorithms update cache by this operation, hence the bang is in the
name.

[Function]cache-through! cache key value-fn
{data.cache} Look for an entry with key in cache, and returns its value if it exists. If
there’s no entry, a procedure value-fn is called with key as the argument, and its return value
is inserted into cache and also returned.

[Generic function]cache-write! cache key value
{data.cache} This inserts association of key and value into cache. If there’s already an
entry with key, it is overwritten. Otherwise a new entry is created.

The same effect can be achieved by calling cache-evict! then cache-through!, but cache
algorithms may provide efficient way through this method.

[Generic function]cache-evict! cache key
{data.cache} Removes an entry with key from cache, if it exists.

[Generic function]cache-clear! cache
{data.cache} Removes all entries from cache.

Implementing a cache algorithm

Each cache algorithm must define a class inheriting <cache>, and implement the following two
essential methods. The higher-level API calls them.

[Generic function]cache-check! cache key
{data.cache} Looks for an entry with key in cache. If it exists, returns a pair of key and
the associated value. Otherwise, returns #f. It may update the cache, for example, the
timestamp of the entry for being read.

[Generic function]cache-register! cache key value
{data.cache} Add an entry with key and associated value into cache. This is called after
key is confirmed not being in cache.

Additionally, the implementation should consider the following points.

• The initialize method must call next-method first, which sets up the comparator and
storage slots. You should check if storage has pre-filled entries, and if so, set up other
internal structures appropriately.

Chapter 12: Library modules - Utilities 594

• The default methods of cache-evict! and cache-clear! only takes care of the storage of
the cache. You should implement them if your auxiliary structure needs to be taken care
of.

• The default method of cache-write! is just cache-evict! followed by cache-register!.
You may provide alternative method if you can do it more efficiently, which is often the
case.

There are several procedures that help implementing cache subclasses:

[Function]cache-comparator cache
[Function]cache-storage cache

{data.cache} Returns the comparator and the storage of the cache, respectively.

Typical caches may be constructed with a storage (dictionary) and a queue, where the storage
maps keys to (<n> . <value>), and queues holds (<key> . <n>), <n> being a number (time-
stamp, counter, etc.) Here are some common operations work on this queue-and-dictionary
scheme:

[Function]cache-populate-queue! queue storage
{data.cache} You can call this in the initialize method to set up the queue. This proce-
dure walks storage to construct (<key> . <n>) pairs, sorts it in increasing order of <n>, and
pushes them into the queue.

[Function]cache-compact-queue! queue storage
{data.cache} The queue may contain multiple pairs with the same key. Sometimes the queue
gets to have too many duplicated entries (e.g. the same entry is read repeatedly). This scans
the queue and removes duplicated entries but the up-to-date one. After this operation, the
length of the queue and the number of entries in the storage should match.

[Function]cache-renumber-entries! queue storage
{data.cache} This procedure renumbers <n>s in the queue and the storage starting from 0,
without changing their order, and returns the maximum <n>. The duplicated entries in the
queue is removed as in cache-compact-queue!.

When you’re using monotonically increasing counter for <n> and you don’t want <n> to get
too big (i.e. bignums), you can call this procedure occasionally to keep <n>’s in reasonable
range.

12.8 data.heap - Heap

[Module]data.heap
A heap is a data container that allows efficient retrieval of the minimum or maximum entry.
Unlike a <tree-map> (see Section 6.16 [Treemaps], page 168), which always keeps all entries in
order, a heap only cares the minimum or the maximum of the current set; the other entries are
only partially ordered, and reordered when the minimu/maximum entry is removed. Hence it
is more efficient than a treemap if all you need is minimum/maximum value. Besides binary
heaps can store entries in packed, memory-efficient way.

[Class]<binary-heap>
{data.heap} An implementation of a binary heap. Internally it uses min-max heap, so that
you can find both minimum and maximum value in O(1). Pushing a new value and popping
the minimum/maximum value are both O(log n).

It also stores its values in a flat vector, a lot more compact than a general tree structure that
needs a few pointers per node. By default it uses a sparse vector for the backing storage,

Chapter 12: Library modules - Utilities 595

allowing virtually unlimited capacity (see Section 12.14.1 [Sparse vectors], page 610). But
you can use an ordinal vector or a uniform vector as a backing storage instead.

A binary heap isn’t MT-safe structure; you must put it in atom or use mutexes if multiple
threads can access to it (see Section 9.32.3 [Synchronization primitives], page 433).

[Function]make-binary-heap :key comparator storage key
{data.heap} Creates and returns a new binary heap.

The comparator keyword argument specifies how to compare the entries. It must have
comparison procedure or ordering predicate. The default is default-comparator. See
Section 6.2.4 [Basic comparators], page 95, for the details of comparators.

The storage keyword argument gives alternative backing storage. It must be either a vector,
a uniform vector, or an instance of a sparse vector (see Section 12.14.1 [Sparse vectors],
page 610). The default is an instance of <sparse-vector>. If you pass a vector or a uniform
vector, it determines the maximum number of elements the heap can hold. The heap won’t
be extend the storage once it gets full.

The key keyword argument must be a procedure; it is applied on each entry before compar-
ison. Using key procedure allows you to store auxiliary data other than the actual value to
be compared. The following example shows the entries are compared by their car’s:

(define *heap* (make-binary-heap :key car))

(binary-heap-push! *heap* (cons 1 ’a))

(binary-heap-push! *heap* (cons 3 ’b))

(binary-heap-push! *heap* (cons 1 ’c))

(binary-heap-find-min *heap*) ⇒ (1 . c)

(binary-heap-find-max *heap*) ⇒ (3 . b)

[Function]build-binary-heap storage :key comparator key num-entries
{data.heap} Create a heap from the data in storage, and returns it. (Sometimes this oper-
ation is called heapify.) This allows you to create a heap without allocating a new storage.
The comparator and key arguments are the same as make-binary-heap.

Storage must be either a vector, a uniform vector, or an instance of a sparse vector. The
storage is modified to satisfy the heap property, and will be used as the backing storage of
the created heap. Since the storage will be owned by the heap, you shouldn’t modify the
storage later.

The storage supposed to have keys from index 0 below num-entries. If num-entries is omitted
or #f, entire vector or uniform vector, or up to sparse-vector-num-entries on the sparse
vector, is heapified.

[Function]binary-heap-copy heap
{data.heap} Copy the heap. The backing storage is also copied.

[Function]binary-heap-clear! heap
{data.heap} Empty the heap.

[Function]binary-heap-num-entries heap
{data.heap} Returns the current number of entries in the heap.

[Function]binary-heap-empty? heap
{data.heap} Returns #t if the heap is empty, #f otherwise.

[Function]binary-heap-push! heap item
{data.heap} Insert item into the heap. This is O(log n) operation. If the heap is already
full, an error is raised.

Chapter 12: Library modules - Utilities 596

[Function]binary-heap-find-min heap :optional fallback
[Function]binary-heap-find-max heap :optional fallback

{data.heap} Returns the minimum and maximum entry of the heap, respectively. The heap
will be unmodified. This is O(1) operation.

If the heap is empty, fallback is returned when it is provided, or an error is signaled.

[Function]binary-heap-pop-min! heap
[Function]binary-heap-pop-max! heap

{data.heap} Removes the minimum and maximum entry of the heap and returns it, respec-
tively. O(log n) operation. If the heap is empty, an error is signaled.

The following procedures are not heap operations, but provided for the convenience.

[Function]binary-heap-swap-min! heap item
[Function]binary-heap-swap-max! heap item

{data.heap} These are operationally equivalent to the followings, respectively:

(begin0 (binary-heap-pop-min! heap)

(binary-heap-push! heap item))

(begin0 (binary-heap-pop-max! heap)

(binary-heap-push! heap item))

However, those procedures are slightly efficient, using heap property maintaining procedure
only once per function call.

[Function]binary-heap-find heap pred
{data.heap} Returns an item in the heap that satisfies pred. If there are more than one item
that satisfy pred, any one of them can be returned. If no item satisfy pred, #f is returned.
This is O(n) operation.

[Function]binary-heap-remove! heap pred
{data.heap} Remove all items in the heap that satisfy pred. This is O(n) operation.

[Function]binary-heap-delete! heap item
{data.heap} Delete all items in the heap that are equal to item, in terms of the heap’s
comparator and key procedure. This is O(n) operation.

Note that the key procedure is applied to item as well before comparison.

12.9 data.ideque - Immutable deques

[Module]data.ideque
This module provides a functional double-ended queue (deque, pronounced as “deck”).

Almost all procedures in this module are now a part of R7RS large. See Section 10.3.7 [R7RS
immutable deques], page 508, for description of the following procedures:

ideque ideque-unfold ideque-unfold-right

ideque-tabulate ideque? ideque-empty?

ideque-add-front ideque-add-back

ideque-remove-front ideque-remove-back

ideque-front ideque-back

ideque-reverse ideque= ideque-ref

ideque-take ideque-drop

ideque-take-right ideque-drop-right

ideque-split-at ideque-append ideque-zip

Chapter 12: Library modules - Utilities 597

ideque-map ideque-for-each ideque-for-each-right

ideque-fold ideque-fold-right ideque-append-map

ideque-filter ideque-remove

ideque-find ideque-find-right

ideque-take-while ideque-take-while-right

ideque-drop-while ideque-drop-while-right

ideque-span ideque-break

ideque-any ideque-every

ideque->list list->ideque

ideque->generator generator->ideque

[Function]make-ideque n :optional init
{data.ideque} Creates an ideque of length n with all the elements being init. If init is
omitted, #f is used.

This is provided just for the symmetry with other container data structures; it’s not in
srfi-134, and the portable code can use ideque-tabulate.

12.10 data.imap - Immutable map

[Module]data.imap
This module provides a immutable data structure with O(log n) access and update opera-
tions (here, update means to return a new structure with requested changes). The current
implementation is based on the functional red-black tree.

Although lists and alists are useful for stack-like immutable operations, where you can add
and remove items to the head of existing data without modifying them, they require O(n)
access time and sometimes you need better one. The <imap> object provides O(log n) access,
in exchange of O(log n) insertion and deletion.

[Class]<imap-meta>
{data.imap} Metaclass of <imap>.

[Class]<imap>
{data.imap} Immutable map class. An instance of <imap-meta>.

Inherits <ordered-dictionary>, conforms dictionary protocol except mutating operators
(see Section 9.8 [Dictionary framework], page 338). As a sequence, you can access key-value
pairs in increasing order of keys.

[Function]make-imap
[Function]make-imap comparator
[Function]make-imap key=? key<?

{data.imap} Creates a new empty immutable map. Without arguments,
default-comparator is used to compare keys. To give a specific comparator, use
the second form; the comparator argument should have comparison procedure. For the
details of comparators, see Section 6.2.4 [Basic comparators], page 95. The third form
creates a key comparator from a equality predicate key=? and less-than predicate key<?,
both must accept two keys. This interface is consistent with tree-map (see Section 6.16
[Treemaps], page 168).

[Function]alist->imap alist
[Function]alist->imap alist comparator
[Function]alist->imap alist key=? key<?

{data.imap} Creates a new empty immutable map, populates it with key-value association
list alist, and returns it. This may be a bit more efficient than creating an empty map with
make-imap and populates it with imap-put one by one.

Chapter 12: Library modules - Utilities 598

The comparator argument specifies how to compare the keys. It must have comparison
procedure. If omitted, default-comparator is used. See Section 6.2.4 [Basic comparators],
page 95, for the details.

The third form creates a key comparator from a equality predicate key=? and less-than
predicate key<=?, both must accept two keys.

(define m (alist->imap ’((a . 1) (b . 2))))

(imap-get m ’a) ⇒ 1

(imap-get m ’b) ⇒ 2

[Function]tree-map->imap tree-map
{data.imap} Returns a new immutable map with the same content (and the same compara-
tor) as tree-map.

[Function]imap? obj
{data.imap} Returns #t if obj is an immutable map, #f otherwise.

[Function]imap-empty? immap
{data.imap} Returns #t if an immutable map immap is empty, #f otherwise.

[Function]imap-exists? immap key
{data.imap} Returns #t if key exists in an immutable map immap.

[Function]imap-get immap key :optional default
{data.imap} Returns the value associated with key in an immutable map immap. If immap
doesn’t have key, default is returned when provided, otherwise an error is signalled.

[Function]imap-put immap key val
{data.imap} Returns a new immutable map where association of key to val is added to (or
replaced in) an immutable map immap. This operation is O(log n).

(define m1 (alist->imap ’((a . 1) (b . 2))))

(define m2 (imap-put m1 ’a 3))

(imap-get m2 ’a) ⇒ 3

(imap-get m1 ’a) ⇒ 1 ; not affected

[Function]imap-delete immap key
{data.imap} Returns a new immutable map where key is removed from immap. If immap
doesn’t have key, returned map has the same content as immap.

(define m1 (alist->imap ’((a . 1) (b . 2))))

(define m2 (imap-delete m1 ’a))

(imap-get m2 ’a #f) ⇒ #f

(imap-get m1 ’a) ⇒ 1 ; not affected

[Function]imap-min immap
[Function]imap-max immap

{data.imap} Returns a pair of key and value with the minimum or maximum key in immap,
respectively. If immap is empty, #f is returned.

Chapter 12: Library modules - Utilities 599

12.11 data.queue - Queue

[Module]data.queue
Provides a queue (FIFO). You can create a simple queue, which is lightweight but not thread-
safe, or an MTqueue, a thread-safe queue. Basic queue operations work on both type of
queues. When an mtqueue is passed to the procedures listed in this section, each operation
is done in atomic way, unless otherwise noted.

There are also a set of procedures for mtqueues that can be used for thread synchronization;
for example, you can let the consumer thread block if an mtqueue is empty, and/or the
producer thread block if the number of items in the mtqueue reaches a specified limit. Using
these procedures allows the program to use an mtqueue as a channel.

The simple queue API is a superset of SLIB’s queue implementation, which supports not only
enqueue! (add item to the end of the sequence) and dequeue! (take item from the front of
the sequence), but also queue-push! (add item to the front of the sequence), so that it can
be used as a stack as well.

If you also want to take item from the end of the sequence in O(1), you need a deque (double-
ended queue). See Section 12.13 [Ring buffer], page 607, which works as an efficient (both
speed and space) dequeue on top of vectors. Or you can use immutable deques provided by
data.ideque (see Section 12.9 [Immutable deques], page 596).

See also SRFI-117 (Section 11.24 [Queues based on lists], page 558), which defines a portable
API for list-based queue.

[Class]<queue>
{data.queue} A class of simple queue.

[Instance Variable of <queue>]length
A read-only slot that returns the number of items in the queue.

[Class]<mtqueue>
{data.queue} A class of mtqueue. Inherits <queue>.

[Instance Variable of <mtqueue>]max-length
The upper bound of the number of items in the queue.

If this slot is zero, the queue cannot hold any items, but works as a synchronization device.
A writer will block until a reader appears to take the item; a reader will block until a writer
appears to give the item.

[Function]make-queue
{data.queue} Creates and returns an empty simple queue.

[Function]make-mtqueue :key max-length
{data.queue} Creates and returns an empty mtqueue. When an integer is given to the
keyword argument max-length, it is used to initialize the max-length slot.

[Function]queue? obj
{data.queue} Returns #t if obj is a queue (either a simple queue or an mtqueue).

[Function]mtqueue? obj
{data.queue} Returns #t if obj is an mtqueue.

[Function]queue-empty? queue
{data.queue} Returns #t if obj is an empty queue.

[Function]queue-length queue
{data.queue} Returns the number of the items in the queue.

Chapter 12: Library modules - Utilities 600

[Function]mtqueue-max-length mtqueue
{data.queue} Returns the maximum number of items the mtqueue can hold. If the queue
doesn’t have a limit, #f is returned.

[Function]mtqueue-room mtqueue
{data.queue} Returns the number of elements the mtqueue can accept at this moment before
it hits its maximum length. For example, if the queue already has the maximum number of
elements, 0 is returned. If the queue doesn’t have the limit, +inf.0 is returned.

Note that even if this returns a non-zero finite value, subsequent enqueue! may throw an
error because of the queue being full. It’s because another thread may put an item to the
queue between this procedure call and enqueue!. To avoid this situation, use enqueue/wait!
to insert item to mtqueue with finite max-length.

[Function]mtqueue-num-waiting-readers mtqueue
{data.queue} Returns the number of threads waiting on the mtqueue to read at this moment.
The return value is always a nonnegative exact integer.

Note that the value might change between this procedure’s returning the value and your
checking it, if some other thread inserts an element into the queue. To use the value reliably,
you need another mutex to restrict putting items in the queue.

(define q (make-mtqueue))

(thread-start! (make-thread (^[] (dequeue/wait! q))))

(mtqueue-num-waiting-readers q) ⇒ 1

(enqueue! q ’a)

(mtqueue-num-waiting-readers q) ⇒ 0

[Function]copy-queue queue
{data.queue} Returns a copy of the queue.

[Function]enqueue! queue obj :optional more-objs . . .
{data.queue} Add obj to the end of queue. You may give more than one object, and each
of them are enqueued in order.

If queue is an mtqueue, all the objects are enqueued atomically; no other objects from other
threads can be inserted between the objects given to a single enqueue! call. Besides, if the
value of its max-length slot has a positive finite value, and adding objs makes the number
of elements in queue exceeds max-length, an error is signaled and queue won’t be modified.
(If max-length is zero, this procedure always fail. Use enqueue/wait! below.)

[Function]queue-push! queue obj :optional more-objs . . .
{data.queue} Add obj in front of queue. You may give more than one object, and each of
them are pushed in order.

Like enqueue!, when queue is an mtqueue, all objects are added atomically, and the value
of max-length slot is checked. See enqueue! above for the details.

[Function]enqueue-unique! queue eq-proc obj :optional more-objs . . .
[Function]queue-push-unique! queue eq-proc obj :optional more-objs . . .

{data.queue} Like enqueue! and queue-push!, respectively, except that these don’t modify
queue if it already contains obj (elements are compared by two-argument procedure eq-proc).

When queue is an mtqueue, all objects are added atomically, and the value of max-length
slot is checked. See enqueue! above for the details.

Chapter 12: Library modules - Utilities 601

[Function]dequeue! queue :optional fallback
[Function]queue-pop! queue :optional fallback

{data.queue} Take one object from the front of the queue queue and returns it. Both func-
tion works the same, but queue-pop! may be used to emphasize it works with queue-push!.

If queue is empty, fallback is returned if given, otherwise an error is signaled.

If queue is an mtqueue and its max-length is zero, the queue is always empty. Use
dequeue/wait! to use such a queue as an synchronization device.

[Function]dequeue-all! queue
{data.queue} Returns the whole content of the queue by a list, with emptying queue. If
queue is already empty, returns an empty list. See also queue->list below.

[Function]queue-front queue :optional fallback
[Function]queue-rear queue :optional fallback

{data.queue} Peek the head or the tail of the queue and returns the object, respectively.
The queue itself is not modified. If queue is empty, fallback is returned if it is given, otherwise
an error is signaled.

[Function]list->queue list :optional class :rest initargs
{data.queue} Returns a new queue whose content is the elements in list, in the given order.

By default the created queue is a simple queue, but you can create mtqueue or instances of
other subclasses of <queue> by giving the class to the optional class arguments. The optional
initargs arguments are passed to the constructor of class.

[Function]queue->list queue
{data.queue} Returns a list whose content is the items in the queue in order. Unlike
dequeue-all!, the content of queue remains intact.

In Gauche, queue->list copies the content of the queue to a freshly allocated list, while
dequeue-all! doesn’t copy but directly returns the queue’s internal list. There are some
Scheme systems that has queue->list but doesn’t guarantee the content is copied, so if
you’re planning to share the code among these implementations, it’s better not to rely on the
fact that queue->list copies the content.

[Function]queue-internal-list queue
{data.queue} Like queue->list, returns a list whose content is the items in the queue in
order, but the returned list may share the internal storage of queue. The returned list can
be modified by subsequent operations of queue, and any modification on the list can make
queue inconsistent.

Because of this danger, we don’t allow <mtqueue> to be passed to this procedure; it would
signal an error if you do so.

If you just want to extract the accumulated result in queue without copying, consinder
dequeue-all!, which is safe because it atomically resets the queue. Use this procedure only
when you absolutely need to access the contents of the queue without taking them out.

[Function]find-in-queue pred queue
{data.queue} Returns the first item in queue that satisfies a predicate pred. The order of
arguments follows find (see Section 6.6.6 [Other list procedures], page 125).

[Function]any-in-queue pred queue
{data.queue} Like any in SRFI-1, apply pred on each item in queue until it evaluates true,
and returns that true value (doesn’t necessarily be #t). If no items in the queue satisfies
pred, #f is returned.

Chapter 12: Library modules - Utilities 602

[Function]every-in-queue pred queue
{data.queue} Like every in SRFI-1, apply pred on each item in queue. If pred returns #f,
stops iteration and returns #f immediately. Otherwise, returns the result of the application
of pred on the last item of the queue. If the queue is empty, #t is returned.

[Function]remove-from-queue! pred queue
{data.queue} Removes all items in the queue that satisfies pred. Returns #t if any item is
removed. Otherwise returns #f. The order of arguments follows remove in scheme.list (see
Section 10.3.1 [R7RS lists], page 482).

Note on portability: Scheme48 has delete-from-queue!, which takes object to remove
rather than predicate, and also takes arguments in reversed order (i.e. queue comes first).
Avoid conflicting with that I intentionally left out delete-from-queue!; it’s easy to write one
in either Scheme48 compatible way or consistent to SRFI-1 argument order.

[Function]enqueue/wait! mtqueue obj :optional timeout timeout-val
[Function]queue-push/wait! mtqueue obj :optional timeout timeout-val
[Function]dequeue/wait! mtqueue :optional timeout timeout-val
[Function]queue-pop/wait! mtqueue :optional timeout timeout-val

{data.queue} These synchronizing variants work on an mtqueue and make the caller
thread block when the mtqueue has reached its maximum length (for enqueue/wait! and
queue-push/wait!), or the mtqueue is empty (for dequeue/wait! and queue-pop/wait!).
The blocked caller thread is unblocked either when the blocking condition is resolved, or the
timeout condition is met.

The optional timeout argument specifies the timeout condition. If it is #f, those procedures
wait indefinitely. If it is a real number, they wait at least the given number of seconds. If it
is a <time> object (see Section 6.25.9 [Time], page 254), they wait until the absolute point
of time the argument specifies.

In case the call is blocked then timed out, the value of timeout-val is returned, which defaults
to #f.

When enqueue/wait! and queue-push/wait! succeeds without hitting timeout, they return
#t.

12.12 data.random - Random data generators

[Module]data.random
This module defines a set of generators and generator makers that yield random data of
specific type and distribution.

A naming convention: Procedures that takes parameters and returns a generator is suffixed
by $ (e.g. integer$). Procedures that are generators themselves are not (e.g. fixnums).
Procedures that are combinators, that is, the ones that take one or more generators and returns
a generator, generally ends with a preposition (e.g. list-of).

Global state

All the generators in this module shares a global random state. The random seed is initialized by
a fixed value when the module is loaded. You can get and set the random seed by the following
procedure.

[Function]random-data-seed
[Function](setter random-data-seed) seed-value

{data.random} Calling random-data-seed (without arguments) returns the random seed
value used to initialize the current random state.

Chapter 12: Library modules - Utilities 603

It can be used with generic setter, to reinitialize the random state with seed-value.

Random seed value must be an exact integer. Its lower 32bits are used.

; reinitialize the random state with a new random seed.
(set! (random-data-seed) 1)

(random-data-seed) ⇒ 1

Note: This procedure doesn’t have parameter interface (alter the global value by giving
the new value as an argument), since it doesn’t work like a parameter (see Section 9.21
[Parameters], page 383). You can get the random seed value, but you can’t get the current
random state itself—if you restore the random seed value again, the internal state is reset,
instead of restoring the state at the time you called random-data-seed.

If you want to use different random state temporarily, and ensure to restore original state
afterwards, use with-random-data-seed below.

[Function]with-random-data-seed seed thunk
{data.random} Saves the current global random state, initializes the random state with seed,
then executes thunk. If thunk returns or the control exits out of thunk, the state at the time
with-random-data-seed was called is restored.

Since the default random seed value is fixed, you can get deterministic output when you call
the random data generators below without altering the random seed explicitly.

Generators of primitive data types

Those generators generate uniformly distributed data.

In the following examples, we use generator->list to show some concrete data from the
generators. It is provided in gauche.generatormodule. See Section 9.10 [Generators], page 344,
for more utilities work on generators.

[Function]integers$ size :optional (start 0)
[Function]integers-between$ lower-bound upper-bound

{data.random} Create exact integer generators. The first one, integers$, creates a generator
that generats integers from start (inclusive) below start+size (exclusive) uniformly. The
second one, integers-between$, creates a generator that generates integers between lower-
bound and upper-bound (both inclusive) unformly.

;; A dice roller

(define dice (integers$ 6 1))

;; Roll the dice 10 times

(generator->list dice 10)

⇒ (6 6 2 4 2 5 5 1 2 2)

[Function]fixnums
[Function]int8s
[Function]uint8s
[Function]int16s
[Function]uint16s
[Function]int32s
[Function]uint32s
[Function]int64s
[Function]uint64s

{data.random} Uniform integer generators. Generate integers in fixnum range, and
8/16/32/64bit signed and unsigned integers, respectively.

(generator->list int8s 10)

Chapter 12: Library modules - Utilities 604

⇒ (20 -101 50 -99 -111 -28 -19 -61 39 110)

[Function]booleans
{data.random} Generates boolean values (#f and #t) in equal probability.

(generator->list booleans 10)

⇒ (#f #f #t #f #f #t #f #f #f #f)

[Function]chars$:optional char-set
{data.random} Creates a generator that generates characters in char-set uniformly. The
default char-set is #[A-Za-z0-9].

(define alphanumeric-chars (chars$))

(generator->list alphanumeric-chars 10)

⇒ (#\f #\m #\3 #\S #\z #\m #\x #\S #\l #\y)

[Function]reals$:optional size start
[Function]reals-between$ lower-bound upper-bound

{data.random} Create a generator that generates real numbers uniformly with given range.
The first procedure, reals$, returns reals between start and start+size, inclusively. The
default of size is 1.0 and start is 0.0. The second procedure, reals-between$, returns reals
between lower-bound and upper-bound, inclusively.

(define uniform-100 (reals$ 100))

(generator->list uniform-100 10)

⇒ (81.67965004942268 81.84927577572596 53.02443813660833)

Note that a generator from reals$ can generate the upper-bound value start+size, as opposed
to integers$. If you need to exclude the bound value, just discard the bound value; gfilter
may come handy.

(define generate-from-0-below-1

(gfilter (^r (not (= r 1.0))) (reals$ 1.0 0.0)))

[Function]samples$ collection
{data.random} Creates a generator that returns randomly chosen item in collection at a
time.

Do not confuse this with samples-from below, which is to combine multiple generators for
sampling.

(define coin-toss (samples$ ’(head tail)))

(generator->list coin-toss 5)

⇒ (head tail tail head tail)

[Function]regular-string$ regexp
{data.random} Creates an infinite generator that generates random strings each of which
matches the given regexp. The regexp shouldn’t include conditional patterns and looka-
head/behind assertions.

Note: It is hard to define how the distribution of the generated strings should look like. For
now, we build an NFA from regexp and put the same probability when there are multiple
choices, but that may not be really useful for typical use cases (e.g. generate test data).
Please assume the current implementation strategy a provisional one.

Chapter 12: Library modules - Utilities 605

Nonuniform distributions

[Function]reals-normal$:optional mean deviation
{data.random} Creates a generator that yields real numbers from normal distribution with
mean and deviation. The default of mean is 0.0 and deviation is 1.0.

[Function]reals-exponential$ mean
{data.random} Creates a generator that yields real numbers from exponential distribution
with mean.

[Function]integers-geometric$ p
{data.random} Creates a generator that yields integers from geometric distribution with
success probability p (0 <= p <= 1). The mean is 1/p and variance is (1-p)/p^2.

[Function]integers-poisson$ L
{data.random} Creates a generator that yields integers from poisson distribution with mean
L, variance L.

Aggregate data generators

[Function]samples-from generators
{data.random} Takes a finite sequence of generators (sequence in the sense of
gauche.sequence), and returns a generator. Every time the resulting generator is called, it
picks one of the input generators in equal probability, then calls it to get a value.

(define g (samples-from (list uint8s (chars$ #[a-z]))))

(generator->list g 10)

⇒ (207 107 #\m #\f 199 #\o #\b 57 #\j #\e)

NB: To create a generator that samples from a fixed collection of items, use samples$ de-
scribed above.

[Function]weighted-samples-from weight&gens
{data.random} The argument is a list of pairs of a nonnegative real number and a generator.
The real number determines the weight, or the relative probability that the generator is
chosen. The sum of weight doesn’t need to be 1.0.

The following example chooses the uint8 generator four times frequently than the character
generator.

(define g (weighted-samples-from

‘((4.0 . ,uint8s)

(1.0 . ,(chars$)))))

(generator->list g 10)

⇒ (195 97 #\j #\W #\5 72 49 143 19 164)

[Function]pairs-of car-gen cdr-gen
{data.random} Returns a generator that yields pairs, whose car is generated from car-gen
and whose cdr is generated from cdr-gen.

(define g (pairs-of int8s booleans))

(generator->list g 10)

⇒ ((113 . #t) (101 . #f) (12 . #t) (68 . #f) (-55 . #f))

Chapter 12: Library modules - Utilities 606

[Function]tuples-of gen . . .
{data.random} Returns a generator that yields lists, whose i-th element is generated from
the i-th argument.

(define g (tuples-of int8s booleans (char$)))

(generator->list g 3)

⇒ ((-43 #f #\8) (53 #f #\1) (-114 #f #\i))

[Function]permutations-of seq
{data.random} Returns a generator that yields a random permutations of seq.

The type of seq should be a sequence with a builder (see Section 9.28 [Sequence framework],
page 412). The type of generated objects will be the same as seq.

(generator->list (permutations-of ’(1 2 3)) 3)

⇒ ((1 2 3) (2 3 1) (3 2 1))

(generator->list (permutations-of "abc") 3)

⇒ ("cba" "cba" "cab")

[Function]combinations-of size seq
{data.random} Returns a generator that yields a sequence of size elements randomly picked
from seq.

The type of seq should be a sequence with a builder (see Section 9.28 [Sequence framework],
page 412). The type of generated objects will be the same as seq.

(generator->list (combinations-of 2 ’(a b c)) 5)

⇒ ((a c) (a b) (a c) (b a) (a c))

(generator->list (combinations-of 2 ’#(a b c)) 5)

⇒ (#(a c) #(b c) #(c b) #(b a) #(b c))

The following procedures takes optional sizer argument, which can be either a nonnegative
integer or a generator of nonnegative integers. The value of the sizer determines the length of
the result data.

Unlike most of Gauche procedures, sizer argument comes before the last argument when it is
not omitted. We couldn’t resist the temptation to write something like (lists-of 3 booleans).

If sizer is omitted, the default value is taken from the parameter default-sizer. The default
of default-sizer is (integers-poisson$ 4).

[Function]lists-of item-gen
[Function]lists-of sizer item-gen
[Function]vectors-of item-gen
[Function]vectors-of sizer item-gen
[Function]strings-of
[Function]strings-of item-gen
[Function]strings-of sizer item-gen

{data.random} Creates a generator that generates lists, vectors or strings of values from
item-gen, respectively. The size of each datum is determined by sizer.

You can also omit item-gen for strings-of. In that case, a generator created by (chars$)

is used.

(generator->list (lists-of 3 uint8s) 4)

⇒ ((254 46 0) (77 158 46) (1 134 156) (74 5 110))

Chapter 12: Library modules - Utilities 607

;; using the default sizer

(generator->list (lists-of uint8s) 4)

⇒ ((93 249) (131 97) (98 206 144 247 241) (126 156 31))

;; using a generator for the sizer

(generator->list (strings-of (integers$ 8) (chars$)) 5)

⇒ ("dTJYVhu" "F" "PXkC" "w" "")

[Function]sequences-of class item-gen
[Function]sequences-of class sizer item-gen

{data.random} Creates a generator that yields sequences of class class, whose items are
generated by item-gen. The size of each sequence is determined by sizer, or the value of
default-sizer if omitted; the sizer can be a nonnegative integer, or a generator that yields
nonnegative integers.

The class class must be a subclass of <sequence> and implement the builder interface.

(generator->list (sequences-of <u8vector> 4 uint8s) 3)

⇒ (#u8(95 203 243 46) #u8(187 199 153 152) #u8(39 114 39 25))

[Parameter]default-sizer
{data.random} The sizer used by lists-of, vectors-of and strings-of when sizer argu-
ment is omitted.

The value must be either an nonnegative integer, or a generator of nonnegative integers.

12.13 data.ring-buffer - Ring buffer

[Module]data.ring-buffer
A ring buffer is an array with two fill pointers; in a typical usage, a producer adds new data
to one end while a consumer removes data from the other end; if fill pointer reachers at the
end of the array, it wraps around to the beginning, hence the name.

The ring buffer of this module allows adding and removing elements from both ends, hence
functionally it is a double-ended queue, or deque. It also allows O(1) indexed access to the
contents, and customized handling for the case when the buffer gets full.

You can use an ordinary vector or a uniform vector as the backing storage of a ring buffer.

[Function]make-ring-buffer :optional initial-storage :key over'ow-handler
{data.ring-buffer} Creates a ring buffer. By default, a fresh vector is allocated for the
backing storage. You can pass a vector or a uvector to initial-storage to be used instead. The
passed storage must be mutable, and will be modified by the ring buffer; the caller shouldn’t
modify it, nor make assumption about its content.

The over'ow-handler keyword argument specifies what to do when a new element is about
to be added to the full buffer. It must be a procedure, or a symbol error or overwrite.

If it is a procedure, it will be called with a ring buffer and a backing storage (vector or uvector)
when it is filled. The procedure must either (1) allocate and return a larger vector/uvector
of the same type of the passed backing storage, (2) return a symbol error, or (3) return a
symbol overwrite. If it returns a vector/uvector, it will be used as the new backing storage.
The returned vector doesn’t need to be initialized; the ring buffer routine takes care of it.
If it returns error, an error (“buffer is full”) is thrown. If it returns overwrite, the new
element overwrites the existing element (as if one element from the other end is popped and
discarded.)

Passing a symbol error or overwrite to over'ow-handler is a shorthand of passing a proce-
dure that unconditionally returns error or overwrite, respectively.

Chapter 12: Library modules - Utilities 608

The default behavior on overflow is to double the size of backing storage. You can use
make-overflow-doubler below to create the customized overflow handler easily.

[Function]make-overflow-doubler :key max-increase max-capacity
{data.ring-buffer} Returns a procedure suitable to be passed to the over'ow-handler
keyword argument of make-ring-buffer.

The returned procedure takes a ring buffer and its backing storage, and behaves as follows.

• If the size of current backing storage is equal to or greater than max-capacity, returns
error.

• Otherwise, if the size of current backing storage is equal to or greater than max-increase,
allocates a vector/uvector of the same type of the current backing storage, with the size
(+ max-increase size-of-current-storage).

• Otherwise, allocates a vector/uvector of the same type of the current backing storage
with the size (* 2 size-of-current-storage).

The default value of max-increase and max-capacity is +inf.0.

[Function]ring-buffer-empty? rb
{data.ring-buffer} Returns #t if the ring buffer rb is empty, #f if not.

[Function]ring-buffer-full? rb
{data.ring-buffer} Returns #t if the ring buffer rb is full, #f if not.

[Function]ring-buffer-num-elements rb
{data.ring-buffer} Returns the number of current elements in the ring buffer rb.

[Function]ring-buffer-capacity rb
{data.ring-buffer} Returns the size of the current backing storage of the ring buffer rb.

[Function]ring-buffer-front rb
[Function]ring-buffer-back rb

{data.ring-buffer} Returns the element in the front or back of the ring buffer rb, respec-
tively. If the buffer is empty, an error is signaled.

[Function]ring-buffer-add-front! rb elt
[Function]ring-buffer-add-back! rb elt

{data.ring-buffer} Add an element to the front or back of the ring buffer rb, respectively.
If rb is full, the behavior is determined by the buffer’s overflow handler, as described in
make-ring-buffer.

[Function]ring-buffer-remove-front! rb
[Function]ring-buffer-remove-back! rb

{data.ring-buffer} Remove an element from the front or back of the ring buffer rb, and
returns the removed element, respectively. If the buffer is empty, an error is signaled.

[Function]ring-buffer-ref rb index :optional fallback
{data.ring-buffer} Returns index-th element in the ring buffer rb. The elements are
counted from the front; thus, if a new element is added to the front, the indexes of existing
elements will shift.

If the index out of bounds of the existing content, fallback will be returned; if fallback is not
provided, an error is signaled.

[Function]ring-buffer-set! rb index value
{data.ring-buffer} Sets index-th element of the ring buffer rb to value. The elements are
counted from the front; thus, if a new element is added to the front, the indexes of existing
elements will shift.

An error is signaled if the index is out of bounds.

Chapter 12: Library modules - Utilities 609

12.14 data.sparse - Sparse data containers

[Module]data.sparse
This module provides a sparse vector and sparse matrix, a space efficient data container
indexed by nonnegative integer(s), and a sparse table, a hash table using a sparse vector as
a backing storage.

A sparse vector associates a nonnegative integer index to a value. It has vector in its name
since it is indexed by an integer, but it isn’t like a flat array on contiguous memory; it’s more like
an associative array. (Internally, the current implementation uses compact trie structure.) It is
guaranteed that you can store a value with index at least up to 2^32-1; the actual maximum
bits of indexes can be queried by sparse-vector-max-index-bits. (We have a plan to remove
the maximum bits limitation in future).

Unlike ordinary vectors, you don’t need to specify the size of a sparse vector when you create
one. You can just set a value to any index in the supported range.

(define v (make-sparse-vector))

(sparse-vector-set! v 0 ’a)

(sparse-vector-ref v 0) ⇒ a

(sparse-vector-set! v 100000000 ’b)

(sparse-vector-ref v 100000000) ⇒ b

;; set! also work

(set! (sparse-vector-ref v 100) ’c)

(sparse-vector-ref v 100) ⇒ c

If you try to access an element that hasn’t been set, an error is signaled by default. You can
set a default value for each vector, or give a fallback value to sparse-vector-ref, to suppress
the error.

(sparse-vector-ref v 1) ⇒ error
(sparse-vector-ref v 1 ’noval) ⇒ noval

(let1 w (make-sparse-vector #f :default ’x)

(sparse-vector-ref w 1)) ⇒ x

A sparse matrix is like a sparse vector, except it can be indexed by a pair of integers.

A sparse table works just like a hash table, but it uses a sparse vector to store the values
using hashed number of the keys.

The main reason of these sparse data containers are for memory efficiency. If you want to
store values in a vector but knows you’ll use only some entries sparsely, obviously it is waste to
allocate a large vector and to leave many entries unused. But it is worse than that; Gauche’s GC
doesn’t like a large contiguous region of memory. Using lots of large vectors adds GC overhead
quickly. It becomes especially visible when you store large number of entries (like >100,000) into
hash tables, since Gauche’s builtin hash tables use a flat vector as a backing storage. You’ll see
the heap size grows quickly and GC runs more frequently and longer. On the other hand, sparse
table works pretty stable with large number of entries.

Sparse data containers does have overhead on access speed. They are a bit slower than the
ordinary hash tables, and much slower than ordinary vectors. We should note, however, as the
number of entries grow, access time on ordinary hash tables grows quicker than sparse tables
and eventually two become comparable.

It depends on your application which you should use, and if you’re not sure, you need to
benchmark. As a rule of thumb, if you use more than several hashtables each of which contains

Chapter 12: Library modules - Utilities 610

more than a few tens of thousands of entries, sparse tables may work better. If you see GC
Warnings telling “repeated allocation of large blocks”, you should definitely consider sparse
tables.

12.14.1 Sparse vectors

[Class]<sparse-vector-base>
{data.sparse} An abstract base class of sparse vectors. Inherits <dictionary> and
<collection>. Note that sparse vectors are not <sequence>; even they can be indexable by
integers, they don’t have means of ordered access.

Sparse vector may be a general vector that can contain any Scheme objects (like <vector>),
or a specialized vector that can contain only certain types of numbers (like <s8vector> etc.).

All of these sparse vectors can be accessed by the same API.

Sparse vectors also implements the Collection API (see Section 9.5 [Collection framework],
page 322) and the Dictionary API (see Section 9.8 [Dictionary framework], page 338).

[Class]<sparse-vector>
[Class]<sparse-TAGvector>

{data.sparse} The actual sparse vector classes. Inherits <sparse-vector-base>. An in-
stance of <sparse-vector> can contain any Scheme objects.

TAG either one of s8, u8, s16, u16, s32, u32, s64, u64, f16, f32, or f64. The range of values
an instance of those classes can hold is the same as the corresponding <TAGvector> class in
gauche.uvector (see Section 9.35 [Uniform vectors], page 447). That is, <sparse-u8vector>
can have exact integer values between 0 and 255.

[Function]make-sparse-vector :optional type :key default
{data.sparse} Creates an empty sparse vector. The type argument can be #f (default), one
of subclasses of <sparse-vector-base>, or a symbol of either one of s8, u8, s16, u16, s32,
u32, s64, u64, f16, f32, or f64.

If type is omitted or #f, a <sparse-vector> is created. If it is a class, an instance of the class
is created (It is an error to pass a class that is not a subclass of <sparse-vector-base>.) If
it is a symbol, an instance of corresponding <sparse-TAGvector> is created.

You can specify the default value of the vector by default keyword argument. If given, the
vector behaves as if it is filled with the default value (but the vector iterator only picks the
values explicitly set).

Note that you have to give the optional argument as well to specify the keyword argument.

(define v (make-sparse-vector ’u8 :default 128))

(sparse-vector-ref v 0) ⇒ 128

[Function]sparse-vector-max-index-bits
{data.sparse} Returns maximum number of bits of allowed integer. If this returns 32, the
index up to (expt 2 32) is supported. It is guaranteed that this is at least 32.

In the following entries, the argument sv denotes an instance of sparse vector; an error is
signaled if other object is passed.

[Function]sparse-vector-copy sv
{data.sparse} Returns a copy of a sparse vector sv.

[Function]sparse-vector-ref sv k :optional fallback
{data.sparse} Returns k-th element of a sparse vector sv, where k must an exact integer.

Chapter 12: Library modules - Utilities 611

If the sparse vector doesn’t have a value for k, it behaves as follows:

• If fallback is given, it is returned.

• Otherwise, if the vector has the default value, it is returned.

• Otherwise, an error is signaled.

[Function]sparse-vector-set! sv k value
{data.sparse} Sets value for k-th element of a sparse vector sv. K must be a nonnegative
exact integer, and below the maximum allowed index.

If sv is a numeric sparse vector, value must also be within the allowed range, or an error is
signaled.

[Function]sparse-vector-num-entries sv
{data.sparse} Returns the number of entries in sv.

[Function]sparse-vector-exists? sv k
{data.sparse} Returns #t if sv has an entry for index k, #f otherwise.

[Function]sparse-vector-delete! sv k
{data.sparse} Deletes the k-th entry of sv. If sv had the entry , returns #t. If sv didn’t
have the entry, returns #f.

[Function]sparse-vector-clear! sv
{data.sparse} Empties a sparse vector.

[Function]sparse-vector-inc! sv k delta :optional (fallback 0)
{data.sparse} This is a shortcut of the following. It is especially efficient for numeric sparse
vectors.

(sparse-vector-set! sv k (+ (sparse-vector-ref sv k fallback) delta))

If the result of addition exceeds the allowed value range of sv, an error is signaled. In future
we’ll allow an option to clamp the result value within the range.

[Function]sparse-vector-update! sv k proc :optional fallback
[Function]sparse-vector-push! sv k val
[Function]sparse-vector-pop! sv k :optional fallback

{data.sparse} Convenience routines to fetch-and-update an entry of a sparse vector. Works
just like hash-table-update!, hash-table-push! and hash-table-pop!; (see Section 6.15
[Hashtables], page 163).

The following procedures traverses a sparse vector. Note that elements are not visited in the
order of index; it’s just like hash table traversers.

At this moment, if you want to walk a sparse vector with increasing/decreasing index order,
you have to get a list of keys by sparse-vector-keys, sort it, then use it to retrieve values.
We may add an option in future to make-sparse-vector so that those walk operation will be
more convenient.

[Function]sparse-vector-fold sv proc seed
{data.sparse} For each entry in sv, calls proc as (proc k_n v_n seed_n), where k n is an
index and v n is a value for it, and seed n is the returned value of the previous call to proc
if n >= 1, and seed if n = 0. Returns the value of the last call of proc.

[Function]sparse-vector-for-each sv proc
[Function]sparse-vector-map sv proc

{data.sparse} Calls proc with index and value, e.g. (proc k value), for each element of
sv.

The results of proc are discarded by sparse-vector-for-each, and gathered to a list and
returned by sparse-vector-map.

Chapter 12: Library modules - Utilities 612

[Function]sparse-vector-keys sv
[Function]sparse-vector-values sv

{data.sparse} Returns a list of all keys and all values in sv, respectively.

12.14.2 Sparse matrixes

A sparse matrix is like a sparse vector, except it can be indexed by two nonnegative integers.

Note: This implementation of sparse matrixes aims at a reasonable space efficiency for sparse
matrixes without knowing its structure beforehand (imagine, for example, a 2D map with some
scattered landmarks). If what you want is a sparse matrix implementation for efficient numeric
calculations, with certain particular structures, probably the access speed of this module isn’t
suitable.

Currently, each index can have half of bits of sparse-vector-max-index-bits. We’ll remove
this limitation in future.

[Class]<sparse-matrix-base>
{data.sparse} An abstract base class of sparse matrixes. Inherits <collection>.

Like sparse vectors, a sparse matrix can be of type that can store any Scheme objects, or
that can store only certain types of numbers.

All of these sparse matrix subtypes can be accessed by the same API.

[Class]<sparse-matrix>
[Class]<sparse-TAGmatrix>

{data.sparse} The actual sparce matrix classes. Inherits <sparse-matrix-base>. An
instance of <sparse-matrix> can contain any Scheme objects.

TAG either one of s8, u8, s16, u16, s32, u32, s64, u64, f16, f32, or f64. The range of values
an instance of those classes can hold is the same as the corresponding <TAGvector> class in
gauche.uvector (see Section 9.35 [Uniform vectors], page 447). That is, <sparse-u8matrix>
can have exact integer values between 0 and 255.

[Function]make-sparse-matrix :optional type :key default
{data.sparse} Creates an empty sparse matrix. The type argument can be #f (default),
one of subclasses of <sparse-matrix-base>, or a symbol of either one of s8, u8, s16, u16,
s32, u32, s64, u64, f16, f32, or f64.

If type is omitted or #f, a <sparse-matrix> is created. If it is a class, an instance of the class
is created (It is an error to pass a class that is not a subclass of <sparse-matrix-base>.) If
it is a symbol, an instance of corresponding <sparse-TAGmatrix> is created.

You can specify the default value of the matrix by default keyword argument. If given, the
vector behaves as if it is filled with the default value (but the matrix iterator only picks the
values explicitly set).

Note that you have to give the optional argument as well to specify the keyword argument.

[Function]sparse-matrix-num-entries mat
{data.sparse} Returns the number of entries explicitly set in a sparse matrix mat.

[Function]sparse-matrix-ref mat x y :optional fallback
{data.sparse} Returns an element indexed by (x, y) in a sparse matrix mat. If the indexed
element isn’t set, fallback is returned if provided; otherwise, if the matrix has the default
value, it is returned; otherwise, an error is raised.

[Function]sparse-matrix-set! mat x y value
{data.sparse} Set value to the sparse matrix mat at the location (x, y).

Chapter 12: Library modules - Utilities 613

[Function]sparse-matrix-exists? mat x y
{data.sparse} Returns #t iff the sparse matrix mat has a value at (x, y).

[Function]sparse-matrix-clear! mat
{data.sparse} Empties the sparse matrix mat.

[Function]sparse-matrix-delete! mat x y
{data.sparse} Remove the value at (x, y) from the sparse matrix mat.

[Function]sparse-matrix-copy mat
{data.sparse} Returns a fresh copy of mat.

[Function]sparse-matrix-update! mat x y proc :optional fallback
{data.sparse} Call proc with the value at (x, y) of the sparse matrix, and sets the result
of proc as the new value of the location.

The optional fallback argument works just like sparse-matrix-ref; if provided, it is passed
to proc in case the matrix doesn’t have a value at (x, y). If fallback isn’t provided and the
matrix doesn’t have a value at the location, the default value of the matrix is used if it has
one. Otherwise, an error is signalled.

[Function]sparse-matrix-inc! mat x y delta :optional fallback
{data.sparse}

(sparse-matrix-update! mat x y (cut + <> delta) fallback)

[Function]sparse-matrix-push! mat x y val
{data.sparse}

(sparse-matrix-update! mat x y (cut cons val <>) ’())

[Function]sparse-matrix-pop! mat x y
{data.sparse}

(rlet1 r #f

(sparse-matrix-update! mat x y (^p (set! r (car p)) (cdr p))))

[Function]sparse-matrix-fold mat proc seed
{data.sparse} Loop over values in the sparse matrix mat. The procedure proc is called
with four arguments, x, y, val and seed, for each index (x, y) which has the value val. The
initial value of seed is the one given to sparse-matrix-fold, and the result of proc is passed
as the next seed value. The last result of proc is returned from sparse-matrix-fold.

The procedure proc is only called on the entries that’s actually has a value, and the order of
which the procedure is called is undefined.

[Function]sparse-matrix-map mat proc
{data.sparse}

(sparse-matrix-fold sv (^[x y v s] (cons (proc x y v) s)) ’()))

[Function]sparse-matrix-for-each mat proc
{data.sparse}

(sparse-matrix-fold sv (^[x y v _] (proc x y v)) #f))

[Function]sparse-matrix-keys mat
{data.sparse}

(sparse-matrix-fold sv (^[x y _ s] (cons (list x y) s)) ’())

[Function]sparse-matrix-values mat
{data.sparse}

(sparse-matrix-fold sv (^[x y v s] (cons v s)) ’())

Chapter 12: Library modules - Utilities 614

12.14.3 Sparse tables

[Class]<sparse-table>
{data.sparse} A class for sparse table. Inherits <dictionary> and <collection>.

Operationally sparse tables are the same as hash tables, but the former consumes less memory
in trade of slight slower access. (Roughly x1.5 to x2 access time when the table is small. As
the table gets larger the difference becomes smaller.)

[Function]make-sparse-table comparator
{data.sparse} Creates and returns an empty sparse table. The comparator argument spec-
ifies how to compare and hash keys; it must be either a comparator (see Section 6.2.4 [Ba-
sic comparators], page 95), or one of the symbols eq?, eqv?, equal? and string=?, like
hash tables (see Section 6.15 [Hashtables], page 163). If it is a symbol, eq-comparator,
eqv-comparator, equal-comparator or string-comparator are used, respectively.

[Function]sparse-table-comparator st
{data.sparse} Returns the comparator used in the sparse table st.

[Function]sparse-table-copy st
{data.sparse} Returns a copy of a sparse table st.

[Function]sparse-table-num-entries st
{data.sparse} Returns the number of entries in a sparse table st.

[Function]sparse-table-ref st key :optional fallback
{data.sparse} Retrieves a value associated to the key in st. If no entry with key exists,
fallback is returned when it is provided, or an error is signaled otherwise.

[Function]sparse-table-set! st key value
{data.sparse} Sets value with key in st.

[Function]sparse-table-exists? st key
{data.sparse} Returns #t if an entry with key exists in st, #f otherwise.

[Function]sparse-table-delete! st key
{data.sparse} Deletes an entry with key in st if it exists. Returns #t if an entry is actually
deleted, or #f if there hasn’t been an entry with key.

[Function]sparse-table-clear! st
{data.sparse} Empties st.

[Function]sparse-table-update! st key proc :optional fallback
[Function]sparse-table-push! st key val
[Function]sparse-table-pop! st key :optional fallback

{data.sparse}

[Function]sparse-table-fold st proc seed
[Function]sparse-table-for-each st proc
[Function]sparse-table-map st proc

{data.sparse}

[Function]sparse-table-keys st
[Function]sparse-table-values st

{data.sparse}

Chapter 12: Library modules - Utilities 615

12.15 data.trie - Trie

[Module]data.trie
This module provides Trie, a dictionary-like data structure that maps keys to values, where
a key is an arbitrary sequence. Internally it stores the data as a tree where each node
corresponds to each element in the key sequence. Key lookup is O(n) where n is the length
of the key, and not affected much by the number of total entries. Also it is easy to find a set
of values whose keys have a common prefix.

The following example may give you the idea.

(define t (make-trie)) ;; create a trie

(trie-put! t "pho" 3) ;; populate the trie

(trie-put! t "phone" 5)

(trie-put! t "phrase" 6)

(trie-get t "phone") ⇒ 5 ;; lookup

(trie-common-prefix t "pho") ;; common prefix search

⇒ (("phone" . 5) ("pho" . 3))

(trie-common-prefix-keys t "ph")

⇒ ("phone" "pho" "phrase")

Tries are frequently used with string keys, but you are not limited to do so; any sequence
(see Section 9.28 [Sequence framework], page 412) can be a key. If the types of keys differ,
they are treated as different keys:

(trie-put! t ’(#\p #\h #\o) 8) ;; different key from "pho"

Trie inherits <collection> and implements collection framework including the builder. So
you can apply generic collection operations on a trie (see Section 9.5 [Collection framework],
page 322). When iterated, each element of a trie appears as a pair of a key and a value.

[Class]<trie>
{data.trie} A class for Trie. No slots are intended for public. Use the following procedures
to operate on tries.

This class also implements the dictionary interface (see Section 9.8.1 [Generic functions for
dictionaries], page 338).

[Function]make-trie :optional tab-make tab-get tab-put! tab-fold tab-empty?
{data.trie} Creates and returns an empty trie. The optional arguments are procedures to
customize how the nodes of the internal tree are managed.

Each node can have a table to store its child nodes, indexed by an element of the key sequence
(e.g. if the trie uses strings as keys, a node’s table is indexed by characters).

tab-make A procedure with no arguments. When called, creates and returns an empty
table for a node.

tab-get tab elt

Returns a child node indexed by elt, or returns #f if the table doesn’t have a
child for elt.

tab-put! tab elt child-node

If child-node isn’t #f, stores a child-node with index elt. If child-node is #f,
removes the entry with index elt. In both cases, this procedure should return the
updated table.

Chapter 12: Library modules - Utilities 616

tab-fold tab proc seed

Calls proc for every index and node in tab, while passing a seed value, whose
initial value is seed. That is, proc has a type of (index, node, seed) -> seed.
Should return the last result of proc.

tab-empty? tab

Returns #t if tab is empty, #f otherwise. You can omit or pass #f to this
procedure; then we use tab-fold to check if tab is empty, which can be expensive.

The default assumes eqv?-hashtables, i.e. the following procedures are used.

tab-make: (lambda () (make-hash-table ’eqv?))

tab-get: (lambda (tab k) (hash-table-get tab k #f))

tab-put!: (lambda (tab k v)

(if v

(hash-table-put! tab k v)

(hash-table-delete! tab k))

tab)

tab-fold: hash-table-fold

tab-empty?: (lambda (tab) (zero? (hash-table-num-entries tab)))

The following example creates a trie using assoc list to manage children, while comparing
string keys with case-insensitive way:

(make-trie list

(cut assoc-ref <> <> #f char-ci=?)

(lambda (t k v)

(if v

(assoc-set! t k v char-ci=?)

(alist-delete! k t char-ci=?)))

(lambda (t f s) (fold f s t))

null?)

It is important that tab-put! must return an updated table—by that, you can replace the
table structure on the fly. For example, you may design a table which uses assoc list when
the number of children are small, and then switches to a vector (indexed by character code)
once the number of children grows over a certain threshold.

[Function]trie params kv . . .
{data.trie} Construct a trie with the initial contents kv . . . , where each kv is a pair of
a key and a value. Params are a list of arguments which will be given to make-trie to
create the trie. The following example creates a trie with two entries and the default table
procedures.

(trie ’() ’("foo" . a) ’("bar" . b))

[Function]trie-with-keys params key . . .
{data.trie} A convenient version of trie when you only concern the keys. Each value is
the same as its key. The following example creates a trie with two entries and the default
table procedures.

(trie-with-keys ’() "foo" "bar")

[Function]trie? obj
{data.trie} Returns #t if obj is a trie, or #f otherwise.

Chapter 12: Library modules - Utilities 617

[Function]trie-num-entries trie
{data.trie} Returns the number of entries in trie.

[Function]trie-exists? trie key
{data.trie} Returns #t if trie contains an entry with key, or returns #f otherwise.

(let1 t (trie ’() ’("foo" . ok))

(list (trie-exists? t "foo")

(trie-exists? t "fo")

(trie-exists? t "bar")))

⇒ ’(#t #f #f)

[Function]trie-partial-key? trie seq
{data.trie} Returns #t if there’s at least one key in trie that is not equal to seq but seq
matches its prefix. Note that seq may or may not a key of trie; see the example below.

(define t (trie ’() ’("foo" . ok) ’("fo" . ok)))

(trie-partial-key? t "f") ⇒ #t

(trie-partial-key? t "fo") ⇒ #t

(trie-partial-key? t "foo") ⇒ #f

(trie-partial-key? t "bar") ⇒ #f

[Function]trie-get trie key :optional fallback
{data.trie} Returns the value associated with key in trie, if such an entry exists. When
there’s no entry for key, if fallback is given, it is returned; otherwise, an error is signaled.

[Function]trie-put! trie key value
{data.trie} Puts value associated to key into trie.

[Function]trie-update! trie key proc :optional fallback
{data.trie} Works like the following code, except that the lookup of entry in trie is done
only once.

(let ((val (trie-get trie key fallback)))

(trie-put! trie key (proc val)))

[Function]trie-delete! trie key
{data.trie} Removes an entry associated with key from trie. If there’s no such entry, this
procedure does nothing.

[Function]trie->list trie
{data.trie} Makes each entry in trie to a pair (key . value) and returns a list of pairs of
all entries. The order of entries are undefined.

[Function]trie-keys trie
[Function]trie-values trie

{data.trie} Returns a list of all keys and values in trie, respectively. The order of
keys/values are undefined.

[Function]trie->hash-table trie ht-type
{data.trie} Creates a hash table with type ht-type (see Section 6.15 [Hashtables], page 163,
about hash table types), and populates it with every key and value pair in trie.

[Function]trie-longest-match trie seq :optional fallback
{data.trie} Returns a pair of the key and its value, where the key is the longest prefix of
seq. If no such key is found, fallback is returned if it is provided, or an error is thrown.

Chapter 12: Library modules - Utilities 618

Do not confuse this with trie-common-prefix-* procedures below; In this procedure, the
key is the prefix of the given argument. In trie-common-prefix-* procedures, the given
argument is the prefix of the keys.

(let1 t (make-trie)

(trie-put! t "a" ’a)

(trie-put! t "ab" ’ab)

(trie-longest-match t "abc") ⇒ ("ab" . ab)

(trie-longest-match t "acd") ⇒ ("a" . a)

(trie-longest-match t "ab") ⇒ ("ab" . ab)

(trie-longest-match t "zy") ⇒ error

)

[Function]trie-common-prefix trie pre↓x
[Function]trie-common-prefix-keys trie pre↓x
[Function]trie-common-prefix-values trie pre↓x

{data.trie} Gathers all entries whose keys begin with pre↓x; trie-common-prefix returns
those entries in a list of pairs (key . value); trie-common-prefix-keys returns a list of
keys; and trie-common-prefix-values returns a list of values. The order of entries in a
returned list is undefined. If trie contains no entry whose key has pre↓x, an empty list is
returned.

Note that prefix matching doesn’t consider the type of sequence; if trie has entries for "foo"
and (#\f #\o #\o), (trie-common-prefix trie "foo") will return both entries.

[Function]trie-common-prefix-fold trie pre↓x proc seed
{data.trie} For each entry whose key begins with pre↓x, calls proc with three arguments,
the entry’s key, its value, and the current seed value. Seed is used for the first seed value, and
the value proc returns is used for the seed value of the next call of proc. The last returned
value from proc is returned from trie-common-prefix-fold. The order of entries on which
proc is called is undefined. If trie contains no entry whose key has pre↓x, proc is never called
and seed is returned.

[Function]trie-common-prefix-map trie pre↓x proc
[Function]trie-common-prefix-for-each trie pre↓x proc

{data.trie} These are to trie-common-pre↓x-fold as map and for-each are to fold;
trie-common-prefix-map calls proc with key and value for matching entries and gathers
its result to a list; trie-common-prefix-for-each also applies proc, but discards its results.

[Function]trie-fold trie proc seed
[Function]trie-map trie proc
[Function]trie-for-each trie proc

{data.trie} These procedures are like their common-prefix versions, but traverse entire trie
instead.

12.16 dbi - Database independent access layer

[Module]dbi
This module provides the unified interface to access various relational database systems
(RDBMS). The operations specific to individual database systems are packaged in database
driver (DBD) modules, which is usually loaded implicitly by DBI layer.

The module is strongly influenced by Perl’s DBI/DBD architecture. If you have used Perl
DBI, it would be easy to use this module.

Chapter 12: Library modules - Utilities 619

It’s better to look at the example. This is a simple outline of accessing a database by dbi

module:

(use dbi)

(use gauche.collection) ; to make ’map’ work on the query result

(guard (e ((<dbi-error> e)

;; handle error

))

(let* ((conn (dbi-connect "dbi:mysql:test;host=dbhost"))

(query (dbi-prepare conn

"SELECT id, name FROM users WHERE department = ?"))

(result (dbi-execute query "R&D"))

(getter (relation-accessor result)))

(map (lambda (row)

(list (getter row "id")

(getter row "name")))

result)))

There’s nothing specific to the underlying database system except the argument
"dbi:mysql:test;host=dbhost" passed to dbi-connect, from which dbi module figures
out that it is an access to mysql database, loads dbd.mysql module, and let it handle
the mysql-specific stuff. If you want to use whatever database system, you can just pass
"dbi:whatever:parameter" to dbi-connect instead, and everything stays the same as far as
you have dbd.whatever installed in your system.

A query to the database can be created by dbi-prepare. You can issue the query by
dbi-execute. This two-phase approach allows you to create a prepared query, which is a kind
of parameterized SQL statement. In the above example the query takes one parameter, denoted
as ’?’ in the SQL. The actual value is given in dbi-execute. When you issue similar queries a
lot, creating a prepared query and execute it with different parameters may give you performance
gain. Also the parameter is automatically quoted.

When the query is a SELECT statement, its result is returned as a collection that implements
the relation protocol. See Section 9.5 [Collection framework], page 322, and Section 12.68
[Relation framework], page 744, for the details.

The outermost guard is to catch errors. The dbi related errors are supposed to inherit
<dbi-error> condition. There are a few specific errors defined in dbi module. A specific dbd

layer may define more specific errors.

In the next section we describe user-level API, that is, the procedures you need to concern
when you’re using dbi. The following section is for the driver API, which you need to use to
write a specific dbd driver to make it work with dbi framework.

12.16.1 DBI user API

DBI Conditions

There are several predefined conditions dbi API may throw. See Section 6.20 [Exceptions],
page 190, for the details of conditions.

[Condition Type]<dbi-error>
{dbi} The base class of dbi-related conditions. Inherits <error>.

[Condition Type]<dbi-nonexistent-driver-error>
{dbi} This condition is thrown by dbi-connect when it cannot find the specified driver.
Inherits <dbi-error>.

Chapter 12: Library modules - Utilities 620

[Instance Variable of <dbi-nonexistent-driver-error>]driver-name
Holds the requested driver name as a string.

[Condition Type]<dbi-unsupported-error>
{dbi} This condition is thrown when the called method isn’t supported by the underlying
driver. Inherits <dbi-error>.

[Condition Type]<dbi-parameter-error>
{dbi} This condition is thrown when the number of parameters given to the prepared query
doesn’t match the ones in the prepared statement.

Besides these errors, if a driver relies on dbi to parse the prepared SQL statement,
<sql-parse-error> may be thrown if an invalid SQL statement is passed to dbi-prepare.
(see Section 12.56 [SQL parsing and construction], page 727).

Connecting to the database

[Function]dbi-connect dsn :key username password
{dbi} Connect to a database using a data source specified by dsn (data source name). Dsn
is a string with the following syntax:

dbi:driver:options

Driver part names a specific driver. You need to have the corresponding driver module,
dbd.driver, installed in your system. For example, if dsn begins with "dbi:mysql:",
dbi-connect tries to load dbd.mysql.

Interpretation of the options part is up to the driver. Usually it is in the form of
key1=value1;key2=value2;..., but some driver may interpret it differently. For exam-
ple, mysql driver allows you to specify a database name at the beginning of options. You
have to check out the document of each driver for the exact specification of options.

The keyword arguments gives extra information required for connection. The username
and password are commonly supported arguments. The driver may recognize more keyword
arguments.

If a connection to the database is successfully established, a connection object (an instance
of a subclass of <dbi-connection>) is returned. Otherwise, an error is signaled.

[Class]<dbi-connection>
{dbi} The base class of a connection to a database system. Each driver defines a subclass of
this to keep information about database-specific connections.

[Method]dbi-open? (c <dbi-connection>)
{dbi} Queries whether a connection to the database is still open (active).

[Method]dbi-close (c <dbi-connection>)
{dbi} Closes a connection to the database. This causes releasing resources related to this con-
nection. Once closed, c cannot be used for any dbi operations (except passing to dbi-open?).
Calling dbi-close on an already closed connection has no effect.

Although a driver usually closes a connection when <dbi-connection> object is garbage-
collected, it is not a good idea to rely on that, since the timing of GC is unpredictable. The
user program must make sure that it calls dbi-close at a proper moment.

[Function]dbi-list-drivers
{dbi} Returns a list of module names of known drivers.

[Class]<dbi-driver>
{dbi} The base class of a driver. You usually don’t need to see this as far as you’re using
the high-level dbi API.

Chapter 12: Library modules - Utilities 621

[Function]dbi-make-driver driver-name
{dbi} This is a low-level function called from dbi-connect method, and usually a user
doesn’t need to call it.

Loads a driver module specified by driver-name, and instantiate the driver class and returns
it.

Preparing and issuing queries

[Method]dbi-prepare conn sql :key pass-through . . .
{dbi} From a string representation of SQL statement sql, creates and returns a query object
(an instance of <dbi-query> or its subclass) for the database connection conn

Sql may contain parameter slots, denoted by ?.

(dbi-prepare conn "insert into tab (col1, col2) values (?, ?)")

(dbi-prepare conn "select * from tab where col1 = ?")

They will be filled when you actually issue the query by dbi-execute. There are some
advantages of using parameter slots: (1) The necessary quoting is done automatically. You
don’t need to concern about security holes caused by improper quoting, for example. (2)
Some drivers support a feature to send the template SQL statement to the server at the
preparation stage, and send only the parameter values at the execution stage. It would be
more efficient if you issue similar queries lots of time.

If the backend doesn’t support prepared statements (SQL templates having ? parameters),
the driver may use text.sql module to parse sql. It may raise <sql-parse-error> condition
if the given SQL is not well formed.

You may pass a true value to the keyword argument pass-through to suppress interpretation
of SQL and pass sql as-is to the back end database system. It is useful if the back-end
supports extension of SQL which text.sql doesn’t understand.

If the driver lets prepared statement handled in back-end, without using text.sql, the
pass-through argument may be ignored. The driver may also take other keyword arguments.
Check out the documentation of individual drivers.

Note: Case folding of SQL statement is implementation dependent. Some DBMS may treat
table names and column names in case insensitive way, while others do in case sensitive way.
To write a portable SQL statement, make them quoted identifiers, that is, always surround
names by double quotes.

[Class]<dbi-query>
{dbi} Holds information about prepared query, created by dbi-prepare. The following slots
are defined.

[Instance Variable of <dbi-query>]connection
Contains the <dbi-connection> object.

[Instance Variable of <dbi-query>]prepared
If the driver prepares query by itself, this slot may contain a prepared statement. It is up
to each driver how to use this slot, so the client shouldn’t rely on its value.

[Method]dbi-open? (q <dbi-query>)
{dbi} Returns #t iff the query can still be passed to dbi-execute.

[Method]dbi-close (q <dbi-query>)
{dbi} Destroy the query and free resources associated to the query. After this operation,
dbi-open? returns #f for q, and the query can’t be used in any other way. Although the
resource may be freed when q is garbage-collected, it is strongly recommended that the
application closes queries explicitly.

Chapter 12: Library modules - Utilities 622

[Method]dbi-execute (q <dbi-query>) parameter . . .
{dbi} Executes a query created by dbi-prepare. You should pass the same number of
parameters as the query expects.

If the issued query is select statement, dbi-execute returns an object represents a relation.
A relation encapsulates the values in rows and columns, as well as meta information like
column names. See "Retrieving query results" below for how to access the result.

If the query is other types, such as create, insert or delete, the return value of the query
closure is unspecified.

[Method]dbi-do conn sql :optional options parameter-value . . .
{dbi} This is a convenience procedure when you create a query and immediately execute it.
It is equivalent to the following expression, although the driver may overload this method to
avoid creating intermediate query object to avoid the overhead.

(dbi-execute (apply dbi-prepare conn sql options)

parameter-value ...)

[Method]dbi-escape-sql conn str
{dbi} Returns a string where special characters in str are escaped.

The official SQL standard only specify a single quote (’) as such character. However, it
doesn’t specify non-printable characters, and the database system may use other escaping
characters. So it is necessary to use this method rather than doing escaping by your own.

;; assumes c is a valid DBI connection

(dbi-escape-sql c "don’t know")

⇒ "don’’t know"

Retrieving query results

If the query is a select statement, it returns an object of both <collection> and <relation>.
It is a collection of rows (that is, it implements <collection> API), so you can use map,
for-each or other generic functions to access rows. You can also use the relation API to
retrieve column names and accessors from it. See Section 12.68 [Relation framework], page 744,
for the relation API, and Section 9.5 [Collection framework], page 322, for the collection API.

The actual class of the object returned from a query depends on the driver, but you may use
the following method on it.

[Method]dbi-open? result
{dbi} Check whether the result of a query is still active. The result may become inactive
when it is explicitly closed by dbi-close and/or the connection to the database is closed.

[Method]dbi-close result
{dbi} Close the result of the query. This may cause releasing resources related to the result.
You can no longer use result once it is closed, except passing it to dbi-open?.

Although a driver usually releases resources when the result is garbage-collected, the appli-
cation shouldn’t rely on that and is recommended call dbi-close explicitly when it is done
with the result.

12.16.2 Writing drivers for DBI

Writing a driver for a specific database system means implementing a module dbd.foo, where
foo is the name of the driver.

The module have to implement several classes and methods, as explained below.

Chapter 12: Library modules - Utilities 623

DBI classes to implement

You have to define the following classes.

• Subclass <dbi-driver>. The class name must be <foo-driver>, where foo is the name of
the driver. Usually this class produces a singleton instance, and is only used to dispatch
dbi-make-connection method below.

• Subclass <dbi-connection>. An instance of this class is created by dbi-make-connection.
It needs to keep the information about the actual connections.

• Subclass <relation> and <collection> to represent query results suitable for the driver.
(In most cases, the order of the result of SELECT statement is significant, since it may be
sorted by ORDER BY clause. Thus it is more appropriate to inherit <sequence>, rather
than <collection>).

• Optionally, subclass <dbi-query> to keep driver-specific information of prepared queries.

DBI methods to implement

The driver need to implement the following methods.

[Method]dbi-make-connection (d <foo-driver>) (options <string>) (options-alist
<list>) :key username password . . .

{dbi} This method is called from dbi-connect, and responsible to connect to the data-
base and to create a connection object. It must return a connection object, or raise an
<dbi-error> if it cannot establish a connection.

Options is the option part of the data source name (DSN) given to dbi-connect. options-
alist is an assoc list of the result of parsing options. Both are provided so that the driver
may interpret options string in nontrivial way.

For example, given "dbi:foo:myaddressbook;host=dbhost;port=8998" as DSN, foo’s
dbi-make-connection will receive "myaddressbook;host=dbhost;port=8998" as options,
and (("myaddressbook" . #t) ("host" . "dbhost") ("port" . "8998")) as options-alist.

After options-alist, whatever keyword arguments given to dbi-connect are passed. DBI pro-
tocol currently specifies only username and password. The driver may define other keyword
arguments. It is recommended to name the driver-specific keyword arguments prefixed by
the driver name, e.g. for dbd.foo, it may take a :foo-whatever keyword argument.

It is up to the driver writer to define what options are available and the syntax of the options.
The basic idea is that the DSN identifies the source of the data; it’s role is like URL in WWW.
So, it may include the hostname and port number of the database, and/or the name of the
database, etc. However, it shouldn’t include information related to authentication, such as
username and password. That’s why those are passed via keyword arguments.

[Method]dbi-prepare (c <foo-connection>) (sql <string>) :key pass-through . . .
{dbi} This method should create and return a prepared query object, which is an instance
of <dbi-query> or its subclass. The query specified by sql is issued to the database system
when the prepared query object is passed to dbi-execute.

The method must set c to the connection slot of the returned query object.

Sql is an SQL statement. It may contain placeholders represented by ’?’. The query closure
should take the same number of arguments as of the placeholders. It is up to the driver
whether it parses sql internally and construct a complete SQL statement when the query
closure is called, or it passes sql to the back-end server to prepare the statement and let the
query closure just send parameters.

If the driver parses SQL statement internally, it should recognize a keyword argument
pass-through. If a true value is given, the driver must treat sql opaque and pass it as
is when the query closure is called.

Chapter 12: Library modules - Utilities 624

The driver may define other keyword arguments. It is recommended to name the driver-
specific keyword arguments prefixed by the driver name, e.g. for dbd.foo, it may take a
:foo-whatever keyword argument.

[Method]dbi-execute-using-connection (c <foo-connection>) (q <dbi-query>)
(params <list>)

{dbi} This method is called from dbi-execute. It must issue the query kept in q. If the
query is parameterized, the actual parameters given to dbi-execute are passed to params
argument.

If q is a select-type query, this method must return an appropriate relation object.

[Method]dbi-escape-sql (c <foo-connection>) str
{dbi} If the default escape method isn’t enough, the driver may overload this method to
implement a specific escaping. For example, MySQL treats backslash characters specially as
well as single quotes, so it has its dbi-escape-sql method.

[Method]dbi-open? (c <foo-connection>)
[Method]dbi-open? (q <foo-query>)
[Method]dbi-open? (r <foo-result>)
[Method]dbi-close (c <foo-connection>)
[Method]dbi-close (q <foo-query>)
[Method]dbi-close (r <foo-result>)

{dbi} Queries open/close status of a connection and a result, and closes a connection and a
result. The close methods should cause releasing resources used by connection/result. The
driver has to allow dbi-close to be called on a connection or a result which has already been
closed.

[Method]dbi-do (c <foo-connection>) (sql <string>) :optional options
parameter-value . . .

{dbi} The default method uses dbi-prepare and dbi-execute to implement the function.
It just works, but the driver may overload this method in order to skip creating intermediate
query object for efficiency.

DBI utility functions

The following functions are low-level utilities which you may use to implement the above meth-
ods.

[Function]dbi-parse-dsn data-source-name
{dbi} Parse the data source name (DSN) string given to dbi-connect, and returns tree
values: (1) The driver name in a string. (2) ’options’ part of DSN as a string. (3) parsed
options in an assoc list. This may raise <dbi-error> if the given string doesn’t conform DSN
syntax.

You don’t need to use this to write a typical driver, for the parsing is done before dbi-make-
connection is called. This method may be useful if you’re writing a kind of meta-driver,
such as a proxy.

[Function]dbi-prepare-sql connection sql
{dbi} Parses an SQL statement sql which may contain placeholders, and returns a closure,
which generates a complete SQL statement when called with actual values for the parameters.
If the back-end doesn’t support prepared statements, you may use this function to prepare
queries in the driver.

Connection is a DBI connection to the database. It is required to escape values within SQL
properly (see dbi-escape-sql above).

;; assume c contains a valid dbi connection

Chapter 12: Library modules - Utilities 625

((dbi-prepare-sql c "select * from table where id=?") "foo’bar")

=> "select * from table where id=’foo’’bar’"

12.17 dbm - Generic DBM interface

[Module]dbm
DBM-like libraries provides an easy way to store values to a file, indexed by keys. You can
think it as a persistent associative memory.

This modules defines <dbm> abstract class, which has a common interface to use various DBM-
type database packages. As far as you operate on the already opened database, importing
dbm module is enough.

To create or open a database, you need a concrete implementation of the database. With
the default build-time configuration, the following implementations are included in Gauche.
Bindings to various other dbm-like libraries are available as extension pacakges. Each module
defines its own low-level accessing functions as well as the common interface. Note that your
system may not have one or more of those DBM libraries; Gauche defines only what the
system provides.

dbm.fsdbm

file-system dbm (see Section 12.18 [File-system dbm], page 630).

dbm.gdbm GDBM library (see Section 12.19 [GDBM interface], page 630).

dbm.ndbm NDBM library (see Section 12.20 [NDBM interface], page 632).

dbm.odbm DBM library (see Section 12.21 [Original DBM interface], page 633).

The following code shows a typical usage of the database.

(use dbm) ; dbm abstract interface
(use dbm.gdbm) ; dbm concrete interface

; open the database
(define *db* (dbm-open <gdbm> :path "mydb" :rw-mode :write))

; put the value to the database
(dbm-put! *db* "key1" "value1")

; get the value from the database
(define val (dbm-get *db* "key1"))

; iterate over the database
(dbm-for-each *db* (lambda (key val) (foo key val)))

; close the database
(dbm-close *db*)

The <dbm> abstract class implements collection and dictionary framework. (See Section 9.5
[Collection framework], page 322, and Section 9.8 [Dictionary framework], page 338, respec-
tively).

12.17.1 Opening and closing a dbm database

[Class]<dbm>
{dbm} An abstract class for dbm-style database. Inherits <dictionary> (see Section 9.8
[Dictionary framework], page 338). Defindes the common database operations. This class

Chapter 12: Library modules - Utilities 626

has the following instance slots. They must be set before the database is actually opened by
dbm-open.

The concrete class may add more slots for finer control on the database, such as locking.

[Instance Variable of <dbm>]path
Pathname of the dbm database. Some dbm implementation may append suffixes to this.

[Instance Variable of <dbm>]rw-mode
Specifies read/write mode. Can be either one of the following keywords:

:read The database will be opened in read-only mode. The database file must exist
when dbm-open is called.

:write The database will be opened in Read-write mode. If the database file does
not exist, dbm-open creates one.

:create The database will be created and opened in Read-write mode. If the database
file exists, dbm-open truncates it.

[Instance Variable of <dbm>]file-mode
Specifies the file permissions (as sys-chmod) to create the database. The default value is
#o664.

[Instance Variable of <dbm>]key-convert
[Instance Variable of <dbm>]value-convert

By default, you can use only strings for both key and values. With this option, however,
you can specify how to convert other Scheme values to/from string to be stored in the
database. The possible values are the followings:

#f The default value. Keys (values) are not converted. They must be a string.

#t Keys (values) are converted to its string representation, using write, to store
in the database, and converted back to Scheme values, using read, to retrieve
from the database. The data must have an external representation that can
be read back. (But it is not checked when the data is written; you’ll get an
error when you read the data). The key comparison is done in the string level,
so the external representation of the same key must match.

a list of two procedures
Both procedure must take a single argument. The first procedure must receive
a Scheme object and returns a string. It is used to convert the keys (values) to
store in the database. The second procedure must receive a string and returns
a Scheme object. It is used to convert the stored data in the database to a
Scheme object. The key comparison is done in the string level, so the external
representation of the same key must match.

[Metaclass]<dbm-meta>
{dbm} A metaclass of <dbm> and its subclasses.

[Method]dbm-open (dbm <dbm>)
{dbm} Opens a dbm database. dbm must be an instance of one of the concrete classes that
derived from the <dbm> class, and its slots must be set appropriately. On success, it returns
the dbm itself. On failure, it signals an error.

[Method]dbm-open (dbm-class <dbm-meta>) options . . .
{dbm} A convenient method that creates dbm instance and opens it. It is defined as follows.

(define-method dbm-open ((class <class>) . initargs)

(dbm-open (apply make class initargs)))

Chapter 12: Library modules - Utilities 627

Database file is closed when it is garbage collected. However, to ensure the modification is
properly synchronized, you should close the database explicitly.

[Method]dbm-close (dbm <dbm>)
{dbm} Closes a database dbm. Once the database is closed, any operation to access the
database content raises an error.

[Method]dbm-closed? (dbm <dbm>)
{dbm} Returns true if a database dbm is already closed, false otherwise.

[Function]dbm-type->class dbmtype
{dbm} Sometimes you don’t know which type of dbm implementation you need to use in
your application beforehand, but rather you need to determine the type according to the
information given at run-time. This procedure fulfills the need.

The dbmtype argument is a symbol that names the type of dbm implementation; for example,
gdbm for dbm.gdbm, and fsdbm for dbm.fsdbm. We assume that the dbm implementation of
type foo is provided as a module dbm.foo, and its class is named as <foo>.

This procedure first checks if the required module has been loaded, and if not, it tries to
load it. If the module loads successfully, it returns the class object of the named dbm
implementation. If it can’t load the module, or can’t find the dbm class, this procedure
returns #f.

(use dbm)

(dbm-type->class ’gdbm)

⇒ #<class <gdbm>>

(dbm-type->class ’nosuchdbm)

⇒ #f

12.17.2 Accessing a dbm database

Once a database is opened, you can use the following methods to access individual key/value
pairs.

[Method]dbm-put! (dbm <dbm>) key value
{dbm} Put a value with key.

[Method]dbm-get (dbm <dbm>) key :optional default
{dbm} Get a value associated with key. If no value exists for key and default is specified, it
is returned. If no value exists for key and default is not specified, an error is signaled.

[Method]dbm-exists? (dbm <dbm>) key
{dbm} Return true if a value exists for key, false otherwise.

[Method]dbm-delete! (dbm <dbm>) key
{dbm} Delete a value associated with key.

12.17.3 Iterating on a dbm database

To walk over the entire database, following methods are provided.

[Method]dbm-fold (dbm <dbm>) procedure knil
{dbm} The basic iterator. For each key/value pair, procedure is called as (procedure key

value r), where r is knil for the fist call of procedure, and the return value of the previous
call for subsequent calls. Returns the result of the last call of procedure. If no data is in the
database, knil is returned.

Chapter 12: Library modules - Utilities 628

The following method returns the sum of all the integer values.

(dbm-fold dbm (lambda (k v r) (if (integer? v) (+ v r) r)) 0)

[Method]dbm-for-each (dbm <dbm>) procedure
{dbm} For each key/value pair in the database dbm, procedure is called. Two arguments are
passed to procedure—a key and a value. The result of procedure is discarded.

[Method]dbm-map (dbm <dbm>) procedure
{dbm} For each key/value pair in the database dbm, procedure is called. Two arguments are
passed to procedure—a key and a value. The result of procedure is accumulated to a list
which is returned as a result of dbm-map.

12.17.4 Managing dbm database instance

Each dbm implementation has its own way to store the database. Legacy dbm uses two files,
whose names are generated by adding .dir and .pag to the value of path slot. Fsdbm creates a
directory under path. If dbm database is backed up by some database server, path may be used
only as a key to the database in the server. The following methods hide such variations and
provides a convenient way to manage a database itself. You have to pass a class that implements
a concrete dbm database to their first argument.

[Generic Function]dbm-db-exists? class name
{dbm} Returns #t if a database of class class specified by name exists.

;; Returns #t if testdb.dir and testdb.pag exist

(dbm-db-exists? <odbm> "testdb")

[Generic Function]dbm-db-remove class name
{dbm} Removes an entire database of class class specified by name.

[Generic Function]dbm-db-copy class from to
{dbm} Copy a database of class class specified by from to to. The integrity of from is
guaranteed if the class’s dbm implementation supports locking (i.e. you won’t get a corrupted
database even if some other process is trying to write to from during copy). If the destination
database to exists, its content is destroyed. If this function is interrupted, whether to is left
in incomplete state or not depends on the dbm implementation. The implementation usually
tries its best to provide transactional behavior, that is, to recover original to when the copy
fails. However, for the robust operations the caller have to check the state of to if dbm-db-
copy fails.

(dbm-db-copy <gdbm> "testdb.dbm" "backup.dbm")

[Generic Function]dbm-db-move class from to
{dbm} Moves or renames a database of class class specified by from to to. Like dbm-db-copy,
the database integrity is guaranteed as far as class’s dbm implementation supports locking.
If the destination database to exists, its content is destroyed.

12.17.5 Dumping and restoring dbm database

Most dbm implementations use some kind of binary format, and some of them are architecture
dependent. That makes it difficult to pass around dbm databases between different machines. A
safe way is to write out the content of a dbm database into some portable format on the source
machine, and rebuild another dbm database from it on the destination machine.

The operation is so common that Gauche provides convenience scripts that does the job.
They are installed into the standard Gauche library directory, so it can be invoked by gosh

<scriptname>.

Chapter 12: Library modules - Utilities 629

To write out the content of a dbm database named by dbm-name, you can use dbm/dump

script:

$ gosh dbm/dump [-o outfile][-t type] dbm-name

The out↓le argument names the output file. If omitted, the output is written out to stdout.
The type argument specifies the implementation type of the dbm database; e.g. gdbm or fsdbm.
The program calls dbm-type->class (see Section 12.17.1 [Opening and closing a dbm database],
page 625) on the type argument to load the necessary dbm implementation.

The dumped format is simply a series of S-expressions, each of which is a dotted pair of
string key and string value. Character encodings are assumed to be the same as gosh’s native
character encoding.

The dumped output may contain S-expressions other than dotted pair of strings to include
meta information. For now, programs that deals with dumped output should just ignore S-
expressions other than dotted pairs.

To read back the dumped dbm format, you can use dbm/restore script:

$ gosh dbm/restore [-i infile][-t type] dbm-name

The in↓le argument names the dumped file to be read. If omitted, it reads from stdin. The
type argument specifies the dbm type, as in dbm/dump script. The dbm-name argument names
the dbm database; if the database already exists, its content is cleared, so be careful.

12.17.6 Writing a dbm implementation

When you write an extension module that behaves like a persistent hashtable, it is a good idea
to adapt it to the dbm interface, so that the application can use the module in a generic way.

The minimum procedures to conform the dbm interface are as follow:

• Define a metaclass <foo-meta>. It doesn’t need to inherit anything except <class>.

• Define a dbm class <foo> that inherits <dbm> and whose metaclass is <foo-meta>.

• Define methods for dbm-open, dbm-close, dbm-put!, dbm-get, dbm-exists, dbm-delete!,
dbm-fold, dbm-closed?, specialized for <foo>. (The case of dbm-open for <foo-meta> is
handled automatically, so you don’t need to define it unless you want something special).
Also note that the specialized dbm-open must call next-method in it to set up dbm base
class internals.

• Define methods for dbm-db-exists? and dbm-db-remove on <foo-meta>.

Besides above, you may define the following methods.

• Methods for dbm-for-each and dbm-map. If you don’t define them, a generic implemen-
tation by dbm-fold is used. There may be an implementation specific way which is more
efficient.

• Methods for dbm-db-copy and dbm-db-move. If you don’t define them, a fallback method
opens the specified databases and copies elements one by one, and removes the original if
the method is dbm-db-move. Note that the fallback method is not only inefficient, but also
it may not copy any implementation-specific meta information. It is highly recommended
for the dbm implementation to provide these methods as well.

It is generally recommended to name the implementation module as dbm.foo, and the class
of the implementation as <foo>. With this convention it is easier to write an application that
dynamically loads and uses dbm implementation specified at runtime.

Chapter 12: Library modules - Utilities 630

12.18 dbm.fsdbm - File-system dbm

[Module]dbm.fsdbm
Implements fsdbm. Extends dbm.

[Class]<fsdbm>
{dbm.fsdbm} Fsdbm is a dbm implementation that directly uses the filesystem. Basically,
it uses file names for keys, and file content for values. Unlike other dbm implementations,
this doesn’t depend on external libraries—it is pure Scheme implementation—so it is always
available, while other dbm implementations may not. Obviously, it is not suitable for the
database that has lots of entries, or has entries deleted and added very frequently. The
advantage is when the number of entries are relatively small, and the values are relatively
large while keys are small. The database name given to <fsdbm> instance is used as a directory
name that stores the data. The data files are stored in subdirectories under path of fsdbm
instance, hashed by the key. Non-alphanumeric characters in the key is encoded like _3a for
’:’, for example. If a key is too long to be a file name, it is chopped to chunks, and each
chunk but the last one is used as a directory name. Note that a long key name may still
cause a problem, for example, some of old ’tar’ command can’t deal with pathnames (not
each pathname components, but the entire pathname) longer than 256 characters.

Fsdbm implements all of the dbm protocol (see Section 12.17 [Generic DBM interface],
page 625). It doesn’t have any fsdbm-specific procedures.

12.19 dbm.gdbm - GDBM interface

[Module]dbm.gdbm
Provides interface to the gdbm library. Extends dbm.

[Class]<gdbm>
{dbm.gdbm} Inherits <dbm>. Provides an implementation for GDBM library. This module is
only installed when your system already has GDBM (1.8.0 is preferred, but works with older
1.7.x with some limitations).

[Instance Variable of <gdbm>]sync

[Instance Variable of <gdbm>]nolock

[Instance Variable of <gdbm>]bsize
Besides the unified DBM interface (see Section 12.17 [Generic DBM interface], page 625),

this module provides the following low-level functions that provides direct access to the gdbm
API. See gdbm manual for details of these APIs.

[Function]gdbm-open path :optional size rwmode fmode error-callback
{dbm.gdbm}

[Variable]GDBM_READER
{dbm.gdbm}

[Variable]GDBM_WRITER
{dbm.gdbm}

[Variable]GDBM_WRCREAT
{dbm.gdbm}

[Variable]GDBM_NEWDB
{dbm.gdbm}

Chapter 12: Library modules - Utilities 631

[Variable]GDBM_FAST
{dbm.gdbm}

[Variable]GDBM_SYNC
{dbm.gdbm}

[Variable]GDBM_NOLOCK
{dbm.gdbm}

[Function]gdbm-close gdbm-object
{dbm.gdbm}

[Function]gdbm-closed? gdbm-object
{dbm.gdbm}

[Function]gdbm-store key value :optional 'ag
{dbm.gdbm}

[Variable]GDBM_INSERT
{dbm.gdbm}

[Variable]GDBM_REPLACE
{dbm.gdbm}

[Function]gdbm-fetch gdbm-object key
{dbm.gdbm}

[Function]gdbm-delete gdbm-object key
{dbm.gdbm}

[Function]gdbm-firstkey gdbm-object
{dbm.gdbm}

[Function]gdbm-nextkey gdbm-object key
{dbm.gdbm}

[Function]gdbm-reorganize gdbm-object
{dbm.gdbm}

[Function]gdbm-sync gdbm-object
{dbm.gdbm}

[Function]gdbm-exists? gdbm-object key
{dbm.gdbm}

[Function]gdbm-strerror errno
{dbm.gdbm}

[Function]gdbm-setopt gdbm-object option value
{dbm.gdbm}

[Variable]GDBM_CACHESIZE
{dbm.gdbm}

[Variable]GDBM_FASTMODE
{dbm.gdbm}

[Variable]GDBM_SYNCMODE
{dbm.gdbm}

Chapter 12: Library modules - Utilities 632

[Variable]GDBM_CENTFREE
{dbm.gdbm}

[Variable]GDBM_COALESCEBLKS
{dbm.gdbm}

[Function]gdbm-version
{dbm.gdbm}

[Function]gdbm-errno
{dbm.gdbm}

12.20 dbm.ndbm - NDBM interface

[Module]dbm.ndbm
Provides interface to the ’new’ dbm library, a.k.a. ndbm. Extends dbm.

[Class]<ndbm>
{dbm.ndbm} Inherits <dbm>. Provides an implementation for NDBM library. This module is
only installed when your system already has NDBM.

Besides the unified DBM interface (see Section 12.17 [Generic DBM interface], page 625),
this module provides the following low-level functions that provides direct access to the ndbm
API. See ndbm manual for details of these APIs.

[Function]ndbm-open path 'ags mode
{dbm.ndbm}

[Function]ndbm-close ndbm-object
{dbm.ndbm}

[Function]ndbm-closed? ndbm-object
{dbm.ndbm}

[Function]ndbm-store ndbm-object key content :optional 'ag
{dbm.ndbm}

[Function]ndbm-fetch ndbm-object key
{dbm.ndbm}

[Function]ndbm-delete ndbm-object key
{dbm.ndbm}

[Function]ndbm-firstkey ndbm-object
{dbm.ndbm}

[Function]ndbm-nextkey ndbm-object
{dbm.ndbm}

[Function]ndbm-error ndbm-object
{dbm.ndbm}

[Function]ndbm-clear-error ndbm-object
{dbm.ndbm}

Chapter 12: Library modules - Utilities 633

12.21 dbm.odbm - Original DBM interface

[Module]dbm.odbm
Provides interface to the legacy dbm library. Extends dbm.

[Class]<odbm>
{dbm.odbm} Inherits <dbm>. Provides an implementation for legacy DBM library. This
module is only installed when your system already has DBM.

The biggest limitation of the legacy DBM is that you can only open one database at a time.
You can create a multiple <odbm> instances, but you can open at most one of it at a time, or
you’ll get an error.

Besides the unified DBM interface (see Section 12.17 [Generic DBM interface], page 625),
this module provides the following low-level functions that provides direct access to the dbm
API. See dbm manual for details of these APIs.

[Function]odbm-init path
{dbm.odbm}

[Function]odbm-close
{dbm.odbm}

[Function]odbm-store key value
{dbm.odbm}

[Function]odbm-fetch key
{dbm.odbm}

[Function]odbm-delete key
{dbm.odbm}

[Function]odbm-firstkey
{dbm.odbm}

[Function]odbm-nextkey key
{dbm.odbm}

12.22 file.filter - Filtering file content

[Module]file.filter
This module provides utilities for a common pattern in filter-type commands, that is, to take
an input, to process the content, and to write the result. The common occurring pattern is:

• Input may be a specified file, or an input port (the current input port by default).

• Output may be a specified file, or an output port (the current output port by default).

• Output may be a temporary file, which will be renamed upon completion of the process-
ing.

• Output file may be removed when an error occurs in the processing.

[Function]file-filter proc :key input output temporary-↓le keep-output?
rename-hook

{file.filter} Calls proc with two arguments, an input port and an output port. Returns
the result(s) of proc. The input port and output port are chosen depending on the keyword
arguments.

input The argument must be either an input port or a string that specifies a file name.
If it’s an input port, it is passed to proc as is. If it’s a string, the named file is

Chapter 12: Library modules - Utilities 634

opened for input and the resulting port is passed to proc, and the port is closed
when proc returns. If this argument is omitted, the current input port is passed.

output The argument must be either an output port or a string that specifies a file name.
If it’s an output port, it is passed to proc as is. If it’s a string, the named file
is opened for output (unless temporary-↓le is given, in that case a temporary
file is opened instead), and the resulting port is passed to proc. This port is
closed when proc returns. If this argument is omitted, the current output port
is passed.

temporary-file

The value must be a boolean or a string. If a non-false value is given, and output
is a file, then a fresh temporary file is created and opened for output and passed
to proc. When proc returns normally, the file is renamed to the name given to
output keyword argument.

If #t is given, a temporary file name is generated based on the name of the
output file. If a string file name is given to this argument, the name is used for
sys-mkstemp.

If the given file name begins with characters except "/", "./" or "../", the
directory of the file name given to output argument is attached before it.

The default value is #f (do not use a temporary file).

keep-output?

If a true value is given, the output is not deleted even when proc signals an error.
By default, the output (or the temporary file when temporary-↓le is given) will
be deleted on error.

leave-unchanged

When a temporary file is used, and a true value is given to this argument, the
existing output file is left intact when the generated output in the temporary file
exactly matches the original content of the output file. It is useful if touching
output file may trigger some actions (e.g. by make) and you want to avoid
invoking unnecessary actions. The default value is #f (always replace the output).

[Function]file-filter-fold proc seed :key reader input output temporary-↓le
keep-output? rename-hook

{file.filter} A convenience wrapper of file-filter. Call proc for each item read from
input by reader (read-line by default). The argument proc receives is the item, the seed
value and the output port; proc can emit the output, as well as returning some value that is
passed along as the seed value. Other keyword arguments are passed to file-filter.

For example, the following code reads each line from file.txt and displays lines matching
#/regexp/ with line numbers.

(file-filer-fold

(^[line nc out]

(when (#/regexp/ line) (format out "~3d: ~a\n" nc line))

(+ nc 1))

1 :input "file.txt")

[Function]file-filter-map proc :key reader input output temporary-↓le
keep-output? rename-hook

[Function]file-filter-for-each proc :key reader input output temporary-↓le
keep-output? rename-hook

{file.filter} Utilities similar to file-filter-fold, like map and for-each to fold.

Chapter 12: Library modules - Utilities 635

The procedure proc is called with two arguments, an item read from the input and an output
port. The results of proc are collected as a list and returned by file-filter-map, and
discarded by file-filter-for-each.

The meaning of keyword arguments are the same as file-filter-fold.

12.23 file.util - Filesystem utilities

[Module]file.util
Provides convenient utility functions handling files and directories. Those functions are built
on top of the primitive system procedures described in Section 6.25.4 [Filesystems], page 236.

Many procedures in this module takes a keyword argument follow-link?, which specifies the
behavior when the procedure sees a symbolic link. If true value is given to follow-link? (which
is the default), the procedure operates on the file referenced by the link; if false is given, it
operates on the link itself.

Note on the naming convention: Some Scheme implementations "create" new directories and
files, while the others "make" them. Some implementations "delete" them, while the others
"remove" them. It seems that both conventions are equally popular. So Gauche provides both.

12.23.1 Directory utilities

[Function]current-directory :optional new-directory
{file.util} When called with no argument, this returns the pathname of the current work-
ing directory. When called with a string argument new-directory, this sets the current working
directory of the process to it. If the process can’t change directory to new-directory, an error
is signaled.

This function is in ChezScheme, MzScheme and some other Scheme implementations.

[Function]home-directory :optional user
{file.util} Returns the home directory of the given user, which may be a string user name
or an integer user id. If user is omitted, the current user is assumed. If the given user cannot
be found, or the home directory of the user cannot be determined, #f is returned.

On Windows native platforms, this function is only supported to query the current user’s
directory.

[Parameter]temporary-directory
{file.util} A parameter that keeps the name of the directory that can be used to create a
temporary files. The default value is the one returned from sys-tmpdir (see Section 6.25.4.3
[Pathnames], page 239). The difference of sys-tmpdir is that, since this is a parameter, it
can be overridden by application during execution. Libraries are recommended to use this
instead of sys-tmpdir for greater flexibility.

[Function]directory-list path :key children? add-path? ↓lter ↓lter-add-path?
{file.util} Returns a list of entries in the directory path. The result is sorted by dictionary
order.

By default, only the basename (the last component) of the entries returned. If add-path? is
given and true, path is appended to each entry. If children? is given and true, "." and ".."

are excluded from the result.

If ↓lter is given, it must be a predicate that takes one argument. It is called on every element
of the directory entry, and only the entries on which ↓lter returns true are included in the
result. The argument passed to ↓lter is a basename of the directory entry by default, but
when ↓lter-add-path? is true, path is appended to the entry.

Chapter 12: Library modules - Utilities 636

If path is not a directory, an error is signaled.

(directory-list "test")

⇒ ("." ".." "test.scm" "test.scm~")

(directory-list "test" :add-path? #t)

⇒ ("test/." "test/.." "test/test.scm" "test/test.scm~")

(directory-list "test" :children? #t)

⇒ ("test.scm" "test.scm~")

(directory-list "test" :children? #t :add-path? #t

:filter (lambda (e) (not (string-suffix? "~" e))))

⇒ ("test/test.scm")

[Function]directory-list2 path :key children? add-path? ↓lter follow-link?
{file.util} Like directory-list, but returns two values; the first one is a list of subdirec-
tories, and the second one is a list of the rest. The keyword arguments children?, add-path?
and ↓lter are the same as directory-list.

Giving false value to follow-link? makes directory-list2 not follow the symbolic links; if
the path contains a symlink to a directory, it will be included in the first list if follow-link?
is omitted or true, while it will be in the second list if follow-link? is false.

[Function]directory-fold path proc seed :key lister follow-link?
{file.util} A fundamental directory traverser. Conceptually it works as follows, in recur-
sive way.

• If path is not a directory, calls (proc path seed) and returns the result.

• If path is a directory, calls (lister path seed). The procedure lister is expected to
return two values: a list of pathnames, and the next seed value. Then directory-fold is
called on each returned pathname, passing the returned seed value to the seed argument
of the next call of directory-fold. Returns the result of the last seed value.

The default procedure of lister is just a call to directory-list, as follows.

(lambda (path seed)

(values (directory-list path :add-path? #t :children? #t)

seed))

Note that lister shouldn’t return the given path itself (".") nor the parent directory
(".."), or the recursion wouldn’t terminate. Also note lister is expected to return a
path accessible from the current directory, i.e. if path is "/usr/lib/foo" and it con-
tains "libfoo.a" and "libfoo.so", lister should return ’("/usr/lib/foo/libfoo.a"

"/usr/lib/foo/libfoo.so").

The keyword argument follow-link? is used to determine whether lister should be called on a
symbolic link pointing to a directory. When follow-link? is true (default), lister is called with
the symbolic link if it points to a directory. When follow-link? is false, proc is not called.

The following example returns a list of pathnames of the emacs backup files (whose name
ends with "~") under the given path.

(use srfi-13) ;; for string-suffix?

(directory-fold path

(lambda (entry result)

(if (string-suffix? "~" entry)

(cons entry result)

result))

Chapter 12: Library modules - Utilities 637

’())

The following example lists all the files and directories under the given pathname. Note the
use of lister argument to include the directory path itself in the result.

(directory-fold path cons ’()

:lister (lambda (path seed)

(values (directory-list path :add-path? #t :children? #t)

(cons path seed))))

[Function]make-directory* name :optional perm
[Function]create-directory* name :optional perm

{file.util} Creates a directory name. If the intermediate path to the directory doesn’t
exist, they are also created (like mkdir -p command on Unix). If the directory name already
exist, these procedure does nothing. Perm specifies the integer flag for permission bits of the
directory.

[Function]remove-directory* name
[Function]delete-directory* name

{file.util} Deletes directory name and its content recursively (like rm -r command on
Unix). Symbolic links are not followed.

[Function]copy-directory* src dst :key if-exists backup-su¡x safe keep-timestamp
keep-mode follow-link?

{file.util} If src is a regular file, copies its content to dst, just like copy-file does. If src
is a directory, recursively descends it and copy the file tree to dst. Basically it mimics the
behavior of cp -r command.

If there’s any symbolic links under src, the link itself is copied instead of the file pointed to
by it, unless a true value is given to the follow-link? keyword argument, i.e. the default value
of follow-link? is #f. (Note that this is opposite to the copy-file, in which follow-link? is
true by default.)

The meanings of the other keyword arguments are the same as copy-file. See the entry of
copy-file for the details.

[Function]create-directory-tree dir spec
{file.util} Creates a directory tree under dir according to spec. This procedure is useful
to set up certain directory hierarchy at once.

The spec argument is an S-expression with the following structure:

<spec> : <name> ; empty file

| (<name> <option> ...) ; empty file

| (<name> <option> ... <string>) ; file with content

| (<name> <option> ... <procedure>) ; file with generated content

| (<name> <option> ... (<spec> ...)) ; directory

<name> : string or symbol

<option> ... : keyword-value alternating list

With the first and second form of spec, an empty file is created with the given name. With
the third form of spec, the string becomes the content of the file.

With the fourth form of spec, the procedure is called with the pathname as an argument,
and output to the current output port within the procedure is written to the created file.
The pathname is relative to the dir argument. At the time the procedure is called, its parent
directory is already created.

Chapter 12: Library modules - Utilities 638

The last form of spec creates a named directory, then creates its children recursively according
to the specs.

With options you can control attributes of created files/directories. Currently the following
options are recognized.

:mode mode

Takes integer as permission mode bits.

:owner uid

:group gid

Takes integer uid/gid of the owner/group of the file/directory. Calling process
may need special priviledge to change the owner and/or group.

:symlink path

This is only valid for file spec, and it causes create-directory-tree to create
a named symbolic link whose content is path.

[Function]check-directory-tree dir spec
{file.util} Checks if a directory hierarchy according to spec exists under dir. Returns #t
if it exists, or #f otherwise.

The format of spec is the same as create-directory-tree described above.

If spec contains options, the attributes of existing files/directories are also checked if they
match the given options.

12.23.2 Pathname utilities

[Function]build-path base-path component . . .
{file.util} Appends pathname components component to the base-path. Component can
be a symbol up or same; in Unix, they are synonym to ".." and ".". This API is taken from
MzScheme.

[Function]absolute-path? path
[Function]relative-path? path

{file.util} Returns #t if path is absolute or relative, respectively.

[Function]expand-path path
{file.util} Expands tilda-notation of path if it contains one. Otherwise, path is returned.
This function does not check if path exists and/or readable.

[Function]resolve-path path
{file.util} Expands path like expand-path, then resolve symbolic links for every compo-
nents of the path. If path does not exist, or contains dangling link, or contains unreadable
directory, an error is signaled.

[Function]simplify-path path
{file.util} Remove ’up’ ("..") components and ’same’ (".") components from path as
much as possible. This function does not access the filesystem.

[Function]decompose-path path
{file.util} Returns three values; the directory part of path, the basename without ex-
tension of path, and the extension of path. If the pathname doesn’t have an extension,
the third value is #f. If the pathname ends with a directory separator, the second and
third values are #f. (Note: This treatment of the trailing directory separator differs from
sys-dirname/sys-basename; those follow popular shell’s convention, which ignores trailing
slashes.)

(decompose-path "/foo/bar/baz.scm")

Chapter 12: Library modules - Utilities 639

⇒ "/foo/bar", "baz", "scm"

(decompose-path "/foo/bar/baz")

⇒ "/foo/bar", "baz", #f

(decompose-path "baz.scm")

⇒ ".", "baz", "scm"

(decompose-path "/baz.scm")

⇒ "/", "baz", "scm"

;; Boundary cases

(decompose-path "/foo/bar/baz.")

⇒ "/foo/bar", "baz", ""

(decompose-path "/foo/bar/.baz")

⇒ "/foo/bar", ".baz", #f

(decompose-path "/foo/bar.baz/")

⇒ "/foo/bar.baz", #f, #f

[Function]path-extension path
[Function]path-sans-extension path

{file.util} Returns an extension of path, and a pathname of path without extension,
respectively. If path doesn’t have an extension, #f and path is returned respectively.

(path-extension "/foo/bar.c") ⇒ "c"

(path-sans-extension "/foo/bar.c") ⇒ "/foo/bar"

(path-extension "/foo/bar") ⇒ #f

(path-sans-extension "/foo/bar") ⇒ "/foo/bar"

[Function]path-swap-extension path newext
{file.util} Returns a pathname in which the extension of path is replaced by newext. If
path doesn’t have an extension, "." and newext is appended to path.

If newext is #f, it returns path without extension.

(path-swap-extension "/foo/bar.c" "o") ⇒ "/foo/bar.o"

(path-swap-extension "/foo/bar.c" "") ⇒ "/foo/bar."

(path-swap-extension "/foo/bar.c" #f) ⇒ "/foo/bar"

(path-swap-extension "/foo/bar" "o") ⇒ "/foo/bar.o"

(path-swap-extension "/foo/bar" "") ⇒ "/foo/bar."

(path-swap-extension "/foo/bar" #f) ⇒ "/foo/bar"

[Function]find-file-in-paths name :key paths pred extensions
{file.util} Looks for a file that has name name in the given list of pathnames paths
and that satisfies a predicate pred. If found, the absolute pathname of the file is returned.
Otherwise, #f is returned.

If name is an absolute path, only the existence of name and whether it satisfies pred are
checked.

The default value of paths is taken from the environment variable PATH, and the default value
of pred is file-is-executable? (see Section 12.23.3 [File attribute utilities], page 640). That
is, find-file-in-paths searches the named executable file in the command search paths by
default.

(find-file-in-paths "ls")

⇒ "/bin/ls"

Chapter 12: Library modules - Utilities 640

;; example of searchin user preference file of my application
(find-file-in-paths "userpref"

:paths ‘(,(expand-path "~/.myapp")

"/usr/local/share/myapp"

"/usr/share/myapp")

:pred file-is-readable?)

The extensions keyword argument may list alternative extensions added to name. For
example, the following example searches not only notepad, but also notepad.exe and
notepad.com, in the PATH. If an alternate name is found, the returned pathname contains
the extension.

(find-file-in-paths "notepad" :extensions ’("exe" "com"))

For each path, the name and the alternative names are checked in order. That is, if there are
/bin/b.com and /usr/bin/b.exe and paths is ("/bin" "/usr/bin"), you’ll get /bin/b.com
when you search b with extensions ("exe" "com").

[Function]null-device
{file.util} Returns a name of the null device. On unix platforms (including cygwin) it
returns "/dev/null", and on Windows native platforms (including mingw) it returns "NUL".

[Function]console-device
{file.util} Returns a name of the console device. On unix platforms (including cygwin) it
returns "/dev/tty", and on Windows native platforms (including mingw) it returns "CON".

This function does not guarantee the device is actually available to the calling process.

12.23.3 File attribute utilities

[Function]file-type path :key follow-link?
[Function]file-perm path :key follow-link?
[Function]file-mode path :key follow-link?
[Function]file-ino path :key follow-link?
[Function]file-dev path :key follow-link?
[Function]file-rdev path :key follow-link?
[Function]file-nlink path :key follow-link?
[Function]file-uid path :key follow-link?
[Function]file-gid path :key follow-link?
[Function]file-size path :key follow-link?
[Function]file-atime path :key follow-link?
[Function]file-mtime path :key follow-link?
[Function]file-ctime path :key follow-link?

{file.util} These functions return the attribute of file/directory specified by path. The
attribute name corresponds to the slot name of <sys-stat> class (see Section 6.25.4.4 [File
stats], page 240). If the named path doesn’t exist, #f is returned.

If path is a symbolic link, these functions queries the attributes of the file pointed by the
link, unless an optional argument follow-link? is given and false.

MzScheme and Chicken have file-size. Chicken also has file-modification-time, which
is file-mtime.

[Function]file-is-readable? path
[Function]file-is-writable? path
[Function]file-is-executable? path

{file.util} Returns #t if path exists and readable/writable/executable by the current ef-
fective user, respectively. This API is taken from STk.

Chapter 12: Library modules - Utilities 641

[Function]file-is-symlink? path
{file.util} Returns #t if path exists and a symbolic link. See also file-is-regular? and
file-is-directory? in Section 6.25.4.4 [File stats], page 240.

[Function]file-eq? path1 path2
[Function]file-eqv? path1 path2
[Function]file-equal? path1 path2

{file.util} Compares two files specified by path1 and path2. file-eq? and file-eqv?

checks if path1 and path2 refers to the identical file, that is, whether they are on the same
device and have the identical inode number. The only difference is when the last component
of path1 and/or path2 is a symbolic link, file-eq? doesn’t resolve the link (so compares
the links themselves) while ↓le-eqv? resolves the link and compares the files referred by the
link(s).

file-equal? compares path1 and path2 considering their content, that is, when two are not
the identical file in the sense of file-eqv?, file-equal? compares their content and returns
#t if all the bytes match.

The behavior of file-equal? is undefined when path1 and path2 are both directories. Later,
it may be extended to scan the directory contents.

[Generic Function]file-mtime=? f1 f2
[Generic Function]file-mtime<? f1 f2
[Generic Function]file-mtime<=? f1 f2
[Generic Function]file-mtime>? f1 f2
[Generic Function]file-mtime>=? f1 f2

{file.util} Compares file modification time stamps. There are a bunch of methods defined,
so each argument can be either one of the followings.

• String pathname. The mtime of the specified path is used.

• <sys-stat> object (see Section 6.25.4.4 [File stats], page 240). The mtime is taken from
the stat structure.

• <time> object. The time is used as the mtime.

• Number. It is considered as the number of seconds since Unix Epoch, and used as mtime.

;; compare "foo.c" is newer than "foo.o"
(file-mtime>? "foo.c" "foo.o")

;; see if "foo.log" is updated within last 24 hours
(file-mtime>? "foo.c" (- (sys-time) 86400))

[Generic Function]file-ctime=? f1 f2
[Generic Function]file-atime=? f1 f2

{file.util} Same as file-mtime=?, except these checks file’s change time and access time,
respectively. All the variants of <, <=, >, >= are also defined.

12.23.4 File operations

[Function]touch-file path :key (time #f) (type #f) (create #t)
[Function]touch-files paths :key (time #f) (type #f) (create #t)

{file.util} Updates timestamp of path, or each path in the list paths, to the current time.
If the specified path doesn’t exist, a new file with size zero is created, unless the keyword
argument create is #f.

If the keyword argument time is given and not #f, it must be a nonnegative real number. It
is used as the timestamp value instead of the current time.

Chapter 12: Library modules - Utilities 642

The keyword argument type can be #f (default), a symbol atime or mtime. If it is a symbol,
only the access time or modification time is updated.

Note: touch-files processes one file at a time, so the timestamp of each file may not be
exactly the same.

These procedures are built on top of the system call sys-utime (see Section 6.25.4.4 [File
stats], page 240).

[Function]copy-file src dst :key if-exists backup-su¡x safe keep-timestamp
keep-mode follow-link?

{file.util} Copies file from src to dst. The source file src must exist. The behavior when
the destination dst exists varies by the keyword argument if-exists;

:error (Default) Signals an error when dst exists.

:supersede

Replaces dst to the copy of src.

:backup Keeps dst by renaming it.

:append Append the src’s content to the end of dst.

#f Doesn’t copy and returns #f when dst exists.

Copy-file returns #t after completion.

If src is a symbolic link, copy-file follows the symlink and copies the actual content by
default. An error is raised if src is a dangling symlink.

Giving #f to the keyword argument follow-link? makes copy-file to copy the link itself. It
is possible that src is a dangling symlink in this case.

If if-exists is :backup, the keyword argument backup-su¡x specifies the suffix attached to
the dst to be renamed. The default value is ".orig".

By default, copy-file starts copying to dst directly. However, if the keyword argument safe
is a true value, it copies the file to a temporary file in the same directory of dst, then renames
it to dst when copy is completed. (When safe is true and if-exists is :append, we first copy
the content of dst to a temporary file if dst exists, appends the content of src, then renames
the result to dst). If copy is interrupted for some reason, the filesystem is "rolled back"
properly.

If the keyword argument keep-timestamp is true, copy-file sets the destination’s timestamp
to the same as the source’s timestamp after copying.

If the keyword argument keep-mode is true, the destination file’s permission bits are set to
the same as the source file’s. If it is false (default), the destination file’s permission remains
the same if the destination already exists and the safe argument is false, otherwise it becomes
#o666 masked by umask settings.

[Function]move-file src dst :key if-exists backup-su¡x
{file.util} Moves file src to dst. The source src must exist. The behavior when dst exists
varies by the keyword argument if-exists, as follows.

:error (Default) Signals an error when dst exists.

:supersede

Replaces dst by src.

:backup Keeps dst by renaming it.

#f Doesn’t move and returns #f when dst exists.

Chapter 12: Library modules - Utilities 643

Move-file returns #t after completion.

If if-exists is :backup, the keyword argument backup-su¡x specifies the suffix attached to
the dst to be renamed. The default value is ".orig".

The file src and dst can be on the different filesystem. In such a case, move-file first copies
src to the temporary file on the same directory as dst, then renames it to dst, then removes
src.

[Function]remove-file ↓lename
[Function]delete-file ↓lename

[R7RS file] {file.util} Removes the named file. An error is signalled if ↓lename does not
exist, is a directory, or cannot be deleted with other reasons such as permissions. R7RS
defines delete-file.

Compare with sys-unlink (see Section 6.25.4.2 [Directory manipulation], page 238), which
doesn’t raise an error when the named file doesn’t exist.

[Function]remove-files paths
[Function]delete-files paths

{file.util} Removes each path in a list paths. If the path is a file, it is unlinked. If it is
a directory, its contents are recursively removed by remove-directory*. If the path doesn’t
exist, it is simply ignored.

delete-files is just an alias of remove-files.

[Function]file->string ↓lename options . . .
[Function]file->list reader ↓lename options . . .
[Function]file->string-list ↓lename options . . .
[Function]file->sexp-list ↓lename options . . .

{file.util} Convenience procedures to read from a file ↓lename. They first open the named
file, then call port->string, port->list, port->string-list and port->sexp-list on the
opened file, respectively. (see Section 6.22.7.4 [Input utility functions], page 216). The file is
closed if all the content is read or an error is signaled during reading.

Those procedures take the same keyword arguments as call-with-input-file. When the
named file doesn’t exist, the behavior depends on :if-does-not-exist keyword argument—an
error is signaled if it is :error, and #f is returned if the argument is #f.

[Function]string->file ↓lename string options . . .
[Function]list->file writer ↓lename lis options . . .
[Function]string-list->file ↓lename lis options . . .
[Function]sexp-list->file ↓lenme lis options . . .

{file.util} Opposite of file->string etc. They are convenient to quickly write out things
into a file.

NB: The name string->file etc. might suggest they would take the object to be written
as the first argument. We decided to put ↓lename first, since in the situations where these
procedures are used, it is more likely that one want to write literal data, which would be
bigger than the filename itself.

The options part is passed to call-with-output-file as is. For example, the following code
appends the text when foo.txt already exists:

(string->file "foo.txt" "New text to append\n"

:if-exists :append)

The list->file takes writer argument, which is a procedure that receives two arguments,
an element from the list lis, and an output port. It should write out the element to the

Chapter 12: Library modules - Utilities 644

port in a suitable way. The string-list->file and sexp-list->file are specialized ver-
sions of list->file, where string-list->file uses (^[s p] (display s p) (newline p))

as writer, and sexp-list->file uses (^[s p] (write s p) (newline p)) as writer.

12.23.5 Lock files

Exclusivity of creating files or directories is often used for inter-process locking. The following
procedure provides a packaged interface for it.

[Function]with-lock-file lock-name thunk :key type retry-interval retry-limit
secondary-lock-name retry2-interval retry2-limit perms abandon-timeout

{file.util} Exclusively creates a file or a directory (lock file) with lock-name, then executes
thunk. After thunk returns, or an error is thrown in it, the lock file is removed. When thunk
returns normally, its return values become the return values of with-lock-file.

If the lock file already exists, with-lock-file waits and retries getting the lock until timeout
reaches. It can be configured by the keyword arguments.

There’s a chance that with-lock-file leaves the lock file when it gets a serious error situation
and doesn’t have the opportunity to clean up. You can allow with-lock-file to steal the
lock if its timestamp is too old; say, if you know that the applications usually locks just for
seconds, and you find the lock file is 10 minutes old, then it’s likely that the previous process
was terminated abruptly and couldn’t clean it up. You can also configure this behavior by
the keyword arguments.

Internally, two lock files are used to implement this stealing behavior safely. The creation
and removal of the primary lock file (named by lock-name argument) are guarded by the
secondary lock file (named by secondary-lock-↓le argument, defaulted by .2 suffix attached
to lock-name). The secondary lock prevents more than one process steals the same primary
lock file simultaneously.

The secondary lock is acquired for a very short period so there’s much less chance to be left
behind by abnormal terminations. If it happens, however, we just give up; we don’t steal the
secondary lock.

If with-lock-file couldn’t get a lock before timeout, a <lock-file-failure> condition is
thrown.

Here’s a list of keyword arguments.

type

It can be either one of the symbols file or directory.

If it is file, we use a lock file, relying on the O_EXCL exclusive creation flag of
open(2). This is the default value. It works for most platforms; however, some
NFS implementation may not implement the exclusive semantics properly.

If it is directory, we use a lock directory, relying on the atomicity of mkdir(2).
It should work for any platforms, but it may be slower than file.

retry-interval
retry-limit

Accepts a nonnegative real number that specifies either the interval to attempt
to acquire the primary lock, or the maximum time we should keep retrying,
respectively, in seconds. The default value is 1 second interval and 10 second
limit. To prevent retrying, give 0 to retry-limit.

secondary-lock-name
The name of the secondary lock file (or directory). If omitted, lock-name with a
suffix .2 attached is used. Note: The secondary lock name must be aggreed on

Chapter 12: Library modules - Utilities 645

all programs that locks the same (primary) lock file. I recommend to leave this
to the default unless there’s a good reason to do otherwise.

retry2-interval
retry2-limit

Like retry-interval and retry-limit, but these specify interval and timeout for the
secondary lock file. The possibility of secondary lock file collision is usually pretty
low, so you would hardly need to tweak these. The default values are 1 second
interval and 10 second limit.

perms

Specify the permission bitmask of the lock file or directory, in a nonnegative
exact integer. The default is #o644 for a lock file and #o755 for a lock directory.

Note that to control who can acquire/release/steal the lock, what matters is the
permission of the directory in which the lock file/directory, not the permission of
the lock file/directory itself.

abandon-timeout
Specifies the period in seconds in a nonnegative real number. If the primary lock
file is older than that, with-lock-file steals the lock. To prevent stealing, give
#f to this argument. The default value is 600 seconds.

[Condition type]<lock-file-failure>
{file.util} A condition indicating that with-lock-file couldn’t obtain the lock. Inherits
<error>.

[Instance Variable of <lock-file-failure>]lock-file-name
The primary lock file name.

Gauche also provides OS-supported file locking feature, fcntl lock, via gauche.fcntl mod-
ule. Whether you want to use fcntl lock or with-lock-file will depend on your application.

These are the advantages of the fcntl lock:

• The lock is removed when the process dies without explicitly unlocking it.

• You can directly lock the file you’re touching.

• You can lock a part of a file.

• You can have shared (read) and exclusive (write) locks.

In common situations, probably the most handy property is the first one; you don’t need to
worry about leaving lock behind unexpected process termination.

However, there are a couple of shortcomings in fcntl locks.

• It is not guaranteed to work across different platforms, and/or NFS-mounted filesystems.

• The lock is per-process, per-file, and non-recursive. If you have a lock in a file, then calls a
library that also locks the file, the lock always succeeds. Worse, if the library unlocks the
file, the lock is completely removed, while the caller doesn’t know about it. It also means
that, in order to prevent multiple threads in a process from accessing the same file, you
have to use mutex along the fcntl lock.

Especially because of the second point, it is very difficult to use fcntl lock unless you have
total control over and knowledge of the entire application. It is ok to use the fcntl lock by the
application code to lock the application-specific file. Library developers have difficulty, however,
to make sure any potential user of the library won’t try to lock the same file as the library tries
to lock (usually it’s impossible).

Chapter 12: Library modules - Utilities 646

12.24 math.const - Mathematic constants

[Module]math.const
This module defines several commonly-used mathematic constants.

[Constant]pi
[Constant]pi/2
[Constant]pi/4
[Constant]pi/180
[Constant]1/pi
[Constant]180/pi

{math.const} Bound to pi, pi/2, pi/4, pi/180, 1/pi and 180/pi, respectively.

[Constant]e
{math.const} Napier’s constant.

12.25 math.mt-random - Mersenne Twister Random number
generator

[Module]math.mt-random
Provides a pseudo random number generator (RNG) based on "Mersenne Twister" algorithm
developed by Makoto Matsumoto and Takuji Nishimura. It is fast, and has huge period of
2^19937-1. See [MT], page 764, for details about the algorithm.

For typical use cases of random number generators, we recommend to use srfi-27 which is
implemented on top of this module and provides portable API. You should use this module
directly only when you need functions that aren’t available through srfi-27.

[Class]<mersenne-twister>
{math.mt-random} A class to encapsulate the state of Mersenne Twister RNG. Each instance
of this class has its own state, and can be used as an independent source of random bits if
initialized by individual seed.

The random seed value can be given at the instantiation time by :seed initialization argu-
ment, or by using mt-random-set-seed! described below.

(define m (make <mersenne-twister> :seed (sys-time)))

(mt-random-real m) ⇒ 0.10284287848537865

(mt-random-real m) ⇒ 0.463227748348805

(mt-random-real m) ⇒ 0.8628500643709712

...

[Function]mt-random-set-seed! mt seed
{math.mt-random} Sets random seed value seed to the Mersenne Twister RNG mt. Seed can
be an arbitrary positive exact integer, or arbitrary length of u32vector (see Section 11.2 [Ho-
mogeneous vectors], page 517). If it is an integer, the lower 32bits are used for initialization.
If it is a u32vector, up to 624 elements are used for initialization.

[Function]mt-random-get-state mt
[Function]mt-random-set-state! mt state

{math.mt-random} Retrieves and reinstalls the state of Mersenne Twister RNG mt. The
state is represented by a u32vector of 625 elements. The state can be stored elsewhere, and
then restored to an instance of <mersenne-twister> to continue to generate the pseudo
random sequence.

Chapter 12: Library modules - Utilities 647

[Function]mt-random-real mt
[Function]mt-random-real0 mt

{math.mt-random} Returns a random real number between 0.0 and 1.0. 1.0 is not included
in the range. Mt-random-real doesn’t include 0.0 either, while mt-random-real0 does.
Excluding 0.0 is from the draft SRFI-27.

[Function]mt-random-integer mt range
{math.mt-random} Returns a random exact positive integer between 0 and range-1. Range
can be any positive exact integer.

[Function]mt-random-fill-u32vector! mt u32vector
[Function]mt-random-fill-f32vector! mt f32vector
[Function]mt-random-fill-f64vector! mt f64vector

{math.mt-random} Fills the given uniform vector by the random numbers. For mt-random-
fill-u32vector!, the elements are filled by exact positive integers between 0 and 2^32-
1. For mt-random-fill-f32vector! and mt-random-fill-f64vector!, it is filled by an
inexact real number between 0.0 and 1.0, exclusive.

If you need a bunch of random numbers at once, these are much faster than getting one by
one.

12.26 math.prime - Prime numbers

[Module]math.prime
This module provides utilities related to prime numbers.

Sequence of prime numbers

[Variable]*primes*
{math.prime} An infinite lazy sequence of primes.

;; show 10 prime numbers from 100-th one.

(take (drop *primes* 100) 10)

⇒ (547 557 563 569 571 577 587 593 599 601)

[Function]reset-primes
{math.prime} Once you take a very large prime out of *primes*, all primes before that
has been calculated remains in memory, since the head of sequence is held in *primes*.
Sometimes you know you need no more prime numbers and you wish those calculated ones to
be garbage-collected. Calling reset-primes rebinds *primes* to unrealized lazy sequence,
allowing the previously realized primes to be GCed.

[Function]primes
{math.prime} Returns a fresh lazy sequence of primes. It is useful when you need certain
primes in a short period of time—if you don’t keep a reference to the head of the returned
sequence, it will be garbage collected after you’ve done with the primes. (Note that calculation
of a prime number needs the sequence of primes from the beginning, so even if your code only
keep a reference in the middle of the sequence, the entire sequence will be kept in the thunk
within the lazy sequence—you have to release all references in order to make the sequence
GCed.)

On the other hand, each sequence returned by primes are realized individually, duplicating
calculation.

The rule of thumb is—if you use primes repeatedly throughtout the program, just use
primes and you’ll save calculation. If you need primes one-shot, call primes and abandon
it and you’ll save space.

Chapter 12: Library modules - Utilities 648

Testing primality

[Function]small-prime? n
{math.prime} For relatively small positive integers (below *small-prime-bound*, to be
specific), this procedure determines if the input is prime or not, quickly and determinisically.
If n is on or above the bound, this procedure returns #f.

This can be used to quickly filter out known primes; it never returns #t on composite numbers
(while it may return #f on large prime numbers). Miller-Rabin test below can tell if the input
is composite for sure, but it may return #t on some composite numbers.

[Variable]*small-prime-bound*
{math.prime} For all positive integers below this value (slightly above 3.4e14 in the current
implementation), small-prime? can determines whether it is a prime or not.

[Function]miller-rabin-prime? n :key num-tests random-integer
{math.prime} Check if an exact integer n is a prime number, using probabilistic Miller-Rabin
algorithm (n must be greater than 1). If this procedure returns #f, n is a composite number.
If this procedure returns #t, n is likely a prime, but there’s a small probability that it is a
false positive.

Note that if n is smaller than a certain number (*small-prime-bound*), the algorithm is
deterministic; if it returns #t, n is certainly a prime.

If n is greater than or equal to *small-prime-bound*, we use a probabilistic test. We
choosing random base integer to perform Miller-Rabin test up to 7 times by default. You
can change the number of tests by the keyword argument num-tests. The error probability
(to return #t for a composite number) is at most (expt 4 (- num-tests)).

For a probabilistic test, miller-rabin-prime? uses its own fixed random seed by default. We
chose fixed seed so that the behavior can be reproducible. To change the random sequence,
you can provide your own random integer generator to the random-integer keyword argument.
It must be a procedure that takes a positive integer k and returns a random integer from 0
to k-1, including.

[Function]bpsw-prime? n
{math.prime} Check if an exact integer n is a prime number, using Baillie-PSW primality
test (http://www.trnicely.net/misc/bpsw.html). It is deterministic, and returns the
definitive answer below 2^64 (around 1.8e19). For larger integers this can return #t on a
composite number, although such number hasn’t been found yet. This never returns #f on a
prime number.

This is slower than Miller-Rabin but fast enough for casual use, so it is handy when you want
a definitive answer below the above range.

Factorization

[Function]naive-factorize n :optional divisor-limit
{math.prime} Factorize a positive integer n by trying to divide it with all primes up to (sqrt
n). Returns a list of prime factors, smaller ones first.

(naive-factorize 142857)

⇒ (3 3 3 11 13 37)

Although this is pretty naive method, this works well as far as any of n’s factors are up to
the order of around 1e7. For example, the following example runs in about 0.4sec on 2.4GHz
Core2 machine. (The first time will take about 1.3sec to realize lazy prime sequences.)

(naive-factorize 3644357367494986671013))

⇒ (10670053 10670053 32010157)

http://www.trnicely.net/misc/bpsw.html

Chapter 12: Library modules - Utilities 649

Of course, if n includes any factors above that order, the performance becomes abysmal. So
it is better to use this procedure below 1e14 or so.

Alternatively, you can give divisor-limit argument that specifies the upper bound of the prime
number to be tried. If it is given, naive-factorize leaves a factor f as is if it can’t be divided
by any primes less than or equal to divisor-limit. So, the last element of the returned list
may be composite number. This is handy to exclude trivial factors before applying more
sophisticated factorizing algorithms.

(naive-factorize 825877877739 1000)

⇒ (3 43 6402154091)

;; whereas

(naive-factorize 825877877739)

⇒ (3 43 4591 1394501)

The procedure also memoizes the results on smaller n to make things faster.

[Function]mc-factorize n
{math.prime} Factorize a positive integer n using the algorithm described in R. P. Brent,
An improved Monte Carlo factorization algorithm, BIT 20 (1980), 176-184. http: / /

maths-people.anu.edu.au/~brent/pub/pub051.html.

This one is capable to handle much larger range than naive-factorize, somewhere around
1e20 or so.

Since this method is probabilistic, the execution time may vary on the same n. But it will
always return the definitive results as far as every prime factor of n is smaller than 2^64.

At this moment, if n contains a prime factor greater than 2^64, this routine would keep trying
factorizing it forever. Practical applications should have some means to interrupt the functon
and give it up after some time bounds. This will be addressed once we have deterministic
primality test.

Miscellaneous

[Function]jacobi a n
{math.prime} Calculates Jacobi symbol (a/n) (http: / / en . wikipedia . org / wiki /
Jacobi_symbol).

[Function]totient n
{math.prime} Euler’s totient function of nonnegative integer n.

The current implementation relies on mc-factorize above, so it may take very long if n
contains large prime factors.

12.27 os.windows - Windows support

[Module]os.windows
This module is only available on Windows-native Gauche, and provides Windows-specific
procedures. You can check gauche.os.windows feature with cond-expand macro (see
Section 4.12 [Feature conditional], page 64) to conditionalize windows-specific code.

(cond-expand

[gauche.os.windows

(use os.windows)

... Windows-specific code ...]

[else

... Unix code ...])

http://maths-people.anu.edu.au/~brent/pub/pub051.html
http://maths-people.anu.edu.au/~brent/pub/pub051.html
http://en.wikipedia.org/wiki/Jacobi_symbol
http://en.wikipedia.org/wiki/Jacobi_symbol

Chapter 12: Library modules - Utilities 650

Currently there aren’t enough procedures provided here, but eventually we want to support
simple scripting on Windows.

Unless otherwise noted, when Windows API returns an error value, a <system-error> con-
dition is thrown.

12.27.1 Windows dialogs

Currenly we only have MessageBox API.

[Function]sys-message-box window message :optional caption 'ags
{os.windows} Calls Windows MessageBox API. The window argument should be a handle
for a window, or #f; at the moment we don’t provide any API that retrieves window handles,
so you should always pass #f here. The message argument takes a string for the content of
the message box. Optional caption argument takes a string to be used in the window title.

The 'ags argument is an integer; it should be logior of values from one or more of the
following groups. See the Windows reference manual for the details.

Buttons MB_ABORTRETRYIGNORE, MB_CANCELTRYCONTINUE, MB_HELP, MB_OK (default), MB_
OKCANCEL, MB_RETRYCANCEL, MB_YESNO, MB_YESNOCANCEL

Icon Default is no icon. Possible values: MB_ICONEXCLAMATION, MB_ICONWARNING,
MB_ICONINFORMATION, MB_ICONASTERISK, MB_ICONQUESTION, MB_ICONSTOP, MB_
ICONERROR, MB_ICONHAND

Default button
MB_DEFBUTTON1 (default), MB_DEFBUTTON2, MB_DEFBUTTON3, MB_DEFBUTTON4

Modality MB_APPLMODAL (default), MB_SYSTEMMODAL, MB_TASKMODAL

Other options
MB_DEFAULT_DESKTOP_ONLY, MB_RIGHT, MB_RTLREADING, MB_SETFOREGROUND,
MB_TOPMOST, MB_SERVICE_NOTIFICATION

Return value is one of the following integer constants, indicating which button is pressed:
IDABORT, IDCANCEL, IDCONTINUE, IDIGNORE, IDNO, IDOK, IDRETRY, IDTRYAGAIN, or IDYES

12.27.2 Windows console API

Most of these procedures corresponds to Windows Console API one-to-one. See the Windows
reference for the detail description of what each API does.

Attaching and detaching

[Function]sys-alloc-console
[Function]sys-free-console

[Windows] {os.windows} Calls AllocConsole and FreeConsole, respectively.

[Function]sys-generate-console-ctrl-event event pgid
[Windows] {os.windows}

[Constant]CTRL_C_EVENT
[Constant]CTRL_BREAK_EVENT

[Windows] {os.windows}

Chapter 12: Library modules - Utilities 651

Console codepage

[Function]sys-get-console-cp
[Function]sys-get-console-output-cp
[Function]sys-set-console-cp codepage
[Function]sys-set-console-output-cp codepage

[Windows] {os.windows}

[Function]sys-get-console-cursor-info handle
[Function]sys-set-console-cursor-info handle size visible

[Windows] {os.windows}

[Function]sys-set-console-cursor-position handle x y
[Windows] {os.windows}

Console mode

[Function]sys-get-console-mode handle
[Function]sys-set-console-mode handle mode

[Windows] {os.windows}

[Constant]ENABLE_LINE_INPUT
[Constant]ENABLE_ECHO_INPUT
[Constant]ENABLE_PROCESSED_INPUT
[Constant]ENABLE_WINDOW_INPUT
[Constant]ENABLE_MOUSE_INPUT
[Constant]ENABLE_PROCESSED_OUTPUT
[Constant]ENABLE_WRAP_AT_EOL_OUTPUT

[Windows] {os.windows}

Screen buffer

[Function]sys-create-console-screen-buffer desired-access share-mode
inheritable

[Windows] {os.windows}

[Constant]GENERIC_READ
[Constant]GENERIC_WRITE

[Windows] {os.windows}

[Constant]FILE_SHARE_READ
[Constant]FILE_SHARE_WRITE

[Windows] {os.windows}

[Function]sys-set-console-active-screen-buffer handle
[Windows] {os.windows}

[Function]sys-scroll-console-screen-buffer handle scroll-rectangle
clip-rectangle x y ↓ll

[Windows] {os.windows}

[Class]<win:console-screen-buffer-info>
[Windows] {os.windows}

Chapter 12: Library modules - Utilities 652

[Instance Variable of <win:console-screen-buffer-info>]size.x
[Instance Variable of <win:console-screen-buffer-info>]size.y

[Instance Variable of <win:console-screen-buffer-info>]cursor-position.x
[Instance Variable of <win:console-screen-buffer-info>]cursor-position.y

[Instance Variable of <win:console-screen-buffer-info>]attributes

[Instance Variable of <win:console-screen-buffer-info>]window.left
[Instance Variable of <win:console-screen-buffer-info>]window.top
[Instance Variable of <win:console-screen-buffer-info>]window.right
[Instance Variable of <win:console-screen-buffer-info>]window.bottom

[Instance Variable of <win:console-screen-buffer-info>]maximum-window-size.x
[Instance Variable of <win:console-screen-buffer-info>]maximum-window-size.y

[Constant]FOREGROUND_BLUE
[Constant]FOREGROUND_GREEN
[Constant]FOREGROUND_RED
[Constant]FOREGROUND_INTENSITY
[Constant]BACKGROUND_BLUE
[Constant]BACKGROUND_GREEN
[Constant]BACKGROUND_RED
[Constant]BACKGROUND_INTENSITY

[Windows] {os.windows}

[Function]sys-get-console-screen-buffer-info handle
[Windows] {os.windows}

[Function]sys-get-largest-console-window-size handle
[Windows] {os.windows}

[Function]sys-set-screen-buffer-size handle x y
[Windows] {os.windows}

Console input/output

[Class]<win:input-record>
[Windows] {os.windows}

[Instance Variable of <win:input-record>]event-type

[Instance Variable of <win:input-record>]key.down
[Instance Variable of <win:input-record>]key.repeat-count
[Instance Variable of <win:input-record>]key.virtual-key-code
[Instance Variable of <win:input-record>]key.unicode-char
[Instance Variable of <win:input-record>]key.ascii-char
[Instance Variable of <win:input-record>]key.control-key-state

[Instance Variable of <win:input-record>]mouse.x
[Instance Variable of <win:input-record>]mouse.y
[Instance Variable of <win:input-record>]mouse.button-state
[Instance Variable of <win:input-record>]mouse.event-flags

[Instance Variable of <win:input-record>]window-buffer-size.x
[Instance Variable of <win:input-record>]window-buffer-size.y

[Instance Variable of <win:input-record>]menu.command-id

[Instance Variable of <win:input-record>]focus.set-focus

[Function]sys-get-number-of-console-input-events handle

Chapter 12: Library modules - Utilities 653

[Windows] {os.windows}

[Function]sys-get-number-of-console-mouse-buttons
[Windows] {os.windows}

[Function]sys-peek-console-input handle
[Function]sys-read-console-input handle

[Windows] {os.windows}

[Function]sys-read-console handle buf
[Windows] {os.windows}

[Function]sys-read-console-output handle buf w h x y region
[Windows] {os.windows}

[Function]sys-read-console-output-attribute handle buf x y
[Windows] {os.windows}

[Function]sys-read-console-output-character handle len x y
[Windows] {os.windows}

[Function]sys-set-console-text-attribute handle attr
[Windows] {os.windows}

[Function]sys-set-console-window-info handle absolute window
[Windows] {os.windows}

[Function]sys-write-console handle string
[Windows] {os.windows}

[Function]sys-write-console-output-character handle string x y
[Windows] {os.windows}

[Function]sys-get-console-title
[Windows] {os.windows}

Standard handles

[Function]sys-get-std-handle which
[Function]sys-set-std-handle which handle

[Windows] {os.windows}

[Constant]STD_INPUT_HANDLE
[Constant]STD_OUTPUT_HANDLE
[Constant]STD_ERROR_HANDLE

[Windows] {os.windows}

12.28 rfc.822 - RFC822 message parsing

[Module]rfc.822
Defines a set of functions that parses and constructs the “Internet Message Format”, a text
format used to exchange e-mails. The most recent specification can be found in RFC5322.
The format was originally defined in RFC 822, and people still call it “RFC822 format”,
hence I named this module. In the following document, I also refer to the format as “RFC822
format”.

Chapter 12: Library modules - Utilities 654

Parsing message headers

[Function]rfc822-read-headers iport :key strict? reader
{rfc.822} Reads RFC822 format message from an input port iport, until it reaches the end
of the message header. The header fields are broken into a list of the following format:

((name body) ...)

Name . . . are the field names, and body . . . are the corresponding field body, both as strings.
Field names are converted to lower-case characters. Field bodies are not modified, except the
folded line is unfolded. The order of fields are preserved.

By default, the parser works permissively. If EOF is encountered during parsing header, it
is taken as the end of the message. And if a line that doesn’t consist neither continuing
(folded) line nor start a new header field, it is simply ignored. You can change this behavior
by giving true value to the keyword argument strict? ; then the parser raises an error for such
a malformed header.

The keyword argument reader takes a procedure that reads a line from iport. Its default is
read-line, which should be enough for most cases.

[Function]rfc822-header->list iport :key strict? reader
{rfc.822} This is an old name of rfc822-read-headers. This is kept for the backward
compatibility. The new code should use rfc822-read-headers instead.

[Function]rfc822-header-ref header-list ↓eld-name :optional default
{rfc.822} An utility procedure to get a specific field from the parsed header list, which is
returned by rfc822-read-headers.

Field-name specifies the field name in a lowercase string. If the field with given name is in
header-list, the procedure returns its value in a string. Otherwise, if default is given, it is
returned, and if not, #f is returned.

This procedure can actually be used not only for the result of rfc822-read-headers, but for
retrieving a value keyed by strings in a list-of-list structure: ((name value option ...) ...).
For example, the return value of parse-cookie-string can be passed to rfc-822-header-

ref (see Section 12.30 [HTTP cookie handling], page 658, for parse-cookie-string).

(rfc822-header-ref

’(("from" "foo@example.com") ("to" "bar@example.com"))

"from")

⇒ "foo@example.com"

;; If no entry matches, #f is returned by default

(rfc822-header-ref

’(("from" "foo@example.com") ("to" "bar@example.com"))

"reply-to")

⇒ #f

;; You can give the default value for no-match case

(rfc822-header-ref

’(("from" "foo@example.com") ("to" "bar@example.com"))

"reply-to" ’none)

⇒ none

;; By giving the default value, you can distinguish

;; the no-match case and there’s actually an entry with value #f.

(rfc822-header-ref

Chapter 12: Library modules - Utilities 655

’(("from" "foo@example.com") ("reply-to" #f))

"reply-to" ’none)

⇒ #f

Basic field parsers

Several procedures are provided to parse "structured" header fields of RFC2822 messages.
These procedures deal with the body of a header field, i.e. if the header field is
"To: Wandering Schemer <schemer@example.com>", they parse "Wandering Schemer

<schemer@example.com>".

Most of procedures take an input port. Usually you first parse the entire header fields by
rfc822-read-headers, obtain the body of the header by rfc822-header-ref, then open an
input string port for the body and use those procedures to parse them.

The reason for this complexity is because you need different tokenization schemes depending
on the type of the field. Rfc2822 also allows comments to appear between tokens for most cases,
so a simple-minded regexp won’t do the job, since rfc2822 comment can be nested and can’t
be represented by regular grammar. So, this layer of procedures are designed flexible enough
to handle various syntaxes. For the standard header types, high-level parsers are also provided;
see "specific field parsers" below.

[Function]rfc822-next-token iport :optional tokenizer-specs
{rfc.822} A basic tokenizer. First it skips whitespaces and/or comments (CFWS) from iport,
if any. Then reads one token according to tokenizer-specs. If iport reaches EOF before any
token is read, EOF is returned.

Tokenizer-specs is a list of tokenizer spec, which is either a char-set or a cons of a char-set
and a procedure.

After skipping CFWS, the procedure peeks a character at the head of iport, and checks it
against the char-sets in tokenizer-specs one by one. If a char-set that contains the character
belongs to is found, then a token is retrieved as follows: If the tokenizer spec is just a char-
set, a sequence of characters that belong to the char-set consists a token. If it is a cons, the
procedure is called with iport to read a token.

If the head character doesn’t match any char-sets, the character is taken from iport and
returned.

The default tokenizer-specs is as follows:

(list (cons #["] rfc822-quoted-string)

(cons *rfc822-atext-chars* rfc822-dot-atom))

Where rfc822-quoted-string and rfc822-dot-atom are tokenizer procedures described
below, and *rfc822-atext-chars* is bound to a char-set of atext specified in rfc2822. This
means rfc822-next-token retrieves a token either quoted-string or dot-atom specified in
rfc2822 by default.

Using tokenizer-specs, you can customize how the header field is parsed. For example, if you
want to retrieve a token that is either (1) a word constructed by alphabetic characters, or
(2) a quoted string, then you can call rfc822-next-token by this:

(rfc822-next-token iport

‘(#[[:alpha:]] (#["] . ,rfc822-quoted-string)))

[Function]rfc822-field->tokens ↓eld :optional tokenizer-specs
{rfc.822} A convenience procedure. Creates an input string port for a field body ↓eld, and
calls rfc822-next-token repeatedly on it until it consumes all input, then returns a list of
tokens. Tokenizer-specs is passed to rfc822-next-token.

Chapter 12: Library modules - Utilities 656

[Function]rfc822-skip-cfws iport
{rfc.822} A utility procedure that consumes any comments and/or whitespace characters
from iport, and returns the head character that is neither a whitespece nor a comment. The
returned character remains in iport.

[Constant]*rfc822-atext-chars*
{rfc.822} Bound to a char-set that is a valid constituent of atom.

[Constant]*rfc822-standard-tokenizers*
{rfc.822} Bound to the default tokenizer-specs.

[Function]rfc822-atom iport
[Function]rfc822-dot-atom iport
[Function]rfc822-quoted-string iport

{rfc.822} Tokenizers for atom, dot-atom and quoted-string, respectively. The double-
quotes and escaping backslashes within quoted-string are removed by rfc822-quoted-

string.

Specific field parsers

[Function]rfc822-parse-date string
{rfc.822} Takes RFC-822 type date string, and returns eight values:

year, month, day-of-month, hour, minutes, seconds, timezone,

day-of-week.

Timezone is an offset from UT in minutes. Day-of-week is a day from sunday, and may be
#f if that information is not available. Month is an integer between 1 and 12, inclusive. If
the string is not parsable, all the elements are #f.

[Function]rfc822-date->date string
{rfc.822} Parses RFC822 type date format and returns SRFI-19 <date> object (see
Section 11.7.4 [SRFI-19 Date], page 529). If string can’t be parsed, returns #f instead.

To construct rfc822 date string from SRFI-19 date, you can use date->rfc822-date below.

Message constructors

[Function]rfc822-write-headers headers :key output continue check
{rfc.822} This is a sort of inverse function of rfc822-read-headers. It receives a list of
header data, in which each header data consists of (<name> <body>), and writes them out in
RFC822 header field format to the output port specified by the output keyword argument.
The default output is the current output port.

By default, the procedure assumes headers contains all the header fields, and adds an empty
line in the end of output to indicate the end of the header. You can pass a true value to the
continue keyword argument to prevent this, enabling more headers can be added later.

I said “a sort of” above. That’s because this function doesn’t (and can’t) do the exact inverse.
Specifically, the caller is responsible for line folding and make sure each header line doesn’t
exceed the “hard limit” defined by RFC2822 (998 octets). This procedure cannot do the line
folding on behalf of the caller, because the places where line folding is possible depend on the
semantics of each header field.

It is also the caller’s responsibility to make sure header field bodies don’t have any char-
acters except non-NUL US-ASCII characters. If you want to include characters outside of
that range, you should convert them in the way allowed by the protocol, e.g. MIME. The

Chapter 12: Library modules - Utilities 657

rfc.mime module (see Section 12.38 [MIME message handling], page 672) provides a conve-
nience procedure mime-encode-text for such purpose. Again, this procedure cannot do the
encoding automatically, since the way the field should be encoded depends on header fields.

What this procedure can do is to check and report such violations. By default, it runs several
checks and signals an error if it finds any violations of RFC2822. You can control this checking
behavior by the check keyword argument. It can take one of the following values:

:error Default. Signals an error if a violation is found.

#f, :ignore

Doesn’t perform any check. Trust the caller.

procedure

When rfc822-write-headers finds a violation, the procedure is called with
three arguments; the header field name, the header field body, and the type of
violation explained below. The procedure may correct the problem and return
two values, the corrected header field name and body. The returned values
are checked again. If the procedure returns the header field name and body
unchanged, an error is signaled in the same way as :error is specified.

The third argument passed to the procedure given to the check argument is one of the
following symbols. New symbols may be added in future versions for more checks.

incomplete-string

Incomplete string is passed.

bad-character

Header field contains characters outside of US-ASCII or NUL.

line-too-long

Line length exceeds 998 octet limit.

stray-crlf

The string contains CR and/or LF character that doesn’t consist of proper line
folding.

[Function]date->rfc822-date date
{rfc.822} Takes SRFI-19 <date> object (see Section 11.7.4 [SRFI-19 Date], page 529) and
returns a string of its rfc822 date representation. This is a reverse operation of rfc822-date-
>date.

12.29 rfc.base64 - Base64 encoding/decoding

[Module]rfc.base64
This module defines a few functions to encode/decode Base64 format, defined in RFC 2045
([RFC2045], page 762), section 6.3 and RFC 4648 ([RFC4648], page 762)

[Function]base64-encode :key line-width url-safe
{rfc.base64} Reads byte stream from the current input port, encodes it in Base64 format
and writes the result character stream to the current output port. The conversion ends when
it reads EOF from the current input port.

Newline characters can be inserted to keep the maximum line width to the value given to the
line-width keyword argument. The default value of line-width is 76, as specified in RFC2045.
You can give #f or zero to line-width to suppress line splitting.

If a true value is given to url-safe, the input bytes will be encoded with an alternative encoding
table, which substitutes + instead of - and / instead of _. The result will contain filename
and url safe characters only. Default value of url-safe is false.

Chapter 12: Library modules - Utilities 658

[Function]base64-encode-string string :key line-width url-safe
{rfc.base64} Converts contents of string to Base64 encoded format. Input string can be
either complete or incomplete string; it is always interpreted as a byte sequence.

[Function]base64-decode :key url-safe
{rfc.base64} Reads character stream from the current input port, decodes it from Base64
format and writes the result byte stream to the current output port. The conversion ends
when it reads EOF or the termination character (=). The characters which does not in legal
Base64 encoded character set are silently ignored.

[Function]base64-decode-string string :key url-safe
{rfc.base64} Decodes a Base64 encoded string string and returns the result as a string. The
conversion terminates at the end of string or the termination character (=). The characters
which does not in legal Base64 encoded character set are silently ignored.

12.30 rfc.cookie - HTTP cookie handling

[Module]rfc.cookie
Defines a set of functions to parse and construct a “cookie” information defined in RFC 6265.

[Function]parse-cookie-string string :optional version
{rfc.cookie} Parse a cookie string string, which is the value of “Cookie” request header.
Usually, the same information is available to CGI program via the environment variable
HTTP_COOKIE.

If the cookie version is known, via “Cookie2” request header, the integer version must be
passed to version. Otherwise, parse-cookie-string figures out the version from string.

The result has the following format.

((<name> <value> [:path <path>] [:domain <domain>] [:port <port>])

...)

where <name> is the attribute name, and <value> is the corresponding value. If the attribute
doesn’t have value, <value> is #f. (Note that it differs from the attribute having null value,
"".) If the attribute has path, domain or port options, it is given as a form of keyword-value
pair.

Note: To retrieve the value of a specific cookie conveniently, you can use rfc822-header-ref
(see Section 12.28 [RFC822 message parsing], page 653).

[Function]construct-cookie-string specs :optional version
{rfc.cookie} Given list of cookie specs, creates a cookie string suitable for Set-cookie2 or
Set-cookie header.

Optional version argument specifies cookie protocol version. 0 for the old Netscape style
format, and 1 for RFC2965 style format. When omitted, version 1 is assumed.

Each cookie spec has the following format.

(<name> <value> [:comment <comment>] [:comment-url <url>]

[:discard <bool>] [:domain <domain>]

[:max-age <age>] [:path <path>]

[:port <port-list>] [:secure <bool>] [:http-only <bool>]

[:version <version>] [:expires <date>])

Where,

<name> A string. Name of the cookie.

<value> Value of the cookie. May be a string, or #f if no value is needed.

Chapter 12: Library modules - Utilities 659

<comment> <url> <domain> <path> <port-list>

Strings.

<bool> Boolean value

<age> <version>

Integers

<date> Either an integer (seconds since Epoch) or a formatted date string following the
netscape cookie specification.

The attribute values are quoted appropriately. If the specified attribute is irrelevant for the
version, it is ignored. So you can pass the same specs to generate both old-style and new-style
cookie strings.

Return value is a list of cookie strings, each of which stands for each cookie. For old-style
protocol (using Set-cookie header) you must send each of them by individual header. For
new-style protocol (using Set-cookie2 header), you can join them with comma and send it
at once. See RFC6265 for further details.

Some examples:

(construct-cookie-string

‘(("name" "foo" :domain "foo.com" :path "/"

:expires ,(+ (sys-time) 86400) :max-age 86400)))

⇒ ("name=foo;Domain=foo.com;Path=/;Max-age=86400")

(construct-cookie-string

‘(("name" "foo" :domain "foo.com" :path "/"

:expires ,(+ (sys-time) 86400) :max-age 86400))

0)

⇒
("name=foo;Domain=foo.com;Path=/;Expires=Sun, 09-Sep-2001 01:46:40 GMT")

12.31 rfc.ftp - FTP client

[Module]rfc.ftp
This module provides a set of convenient functions to access ftp servers.

[Class]<ftp-connection>
{rfc.ftp} An object to keep FTP connection to a server. It has the following public slots.

[Instance Variable of <ftp-connection>]transfer-type
FTP transfer type. Must be one of the following symbols: ascii, binary (default), and
image.

[Instance Variable of <ftp-connection>]passive
True if the client uses passive connection.c

[Instance Variable of <ftp-connection>]log-drain
This slot must hold a <log-drain> instance (see Section 9.15 [User-level logging],
page 364) or #f. If it has a <log-drain> instance, ftp communication logs are put to
it.

[Condition Type]<ftp-error>
{rfc.ftp} This type of exception is thrown when the ftp server returns an error code. Inherits
<error>. The message field contains the server reply, including the status code.

Chapter 12: Library modules - Utilities 660

[Function]call-with-ftp-connection host proc :key passive port username
password account log-drain

{rfc.ftp} A high-level convenience routine to open an ftp connection to an ftp server and
calls the given procedure.

The server is specified by host. Optionally, you can add user name and/or port number by
the form user@servername:port. If present, user and port portion in host supersedes the
keyword arguments.

If ftp connection to host is established successfully, proc is called with one argument, which
is an instance of <ftp-connection>. When proc returns, the connection is closed and the
return value(s) of proc is/are returned from call-with-ftp-connection. When an exception
is thrown, the ftp connection is closed before the exception escapes from call-with-ftp-

connection.

When a true value is given to the keyword argument passive, created ftp connection will use
passive mode to send/receive data. The default is the active mode.

The keyword argument port, username, and password specify the port number, username,
and password, respectively. When omitted, the port number defaults to 21, username to
"anonymous", and password to "anonymous@". Note that the port number and/or username
are ignored when those information is given in the host argument.

If the keyword arugment account is given, its value is passed to ftp ACCT command when
requested by the server at login time. The default value is a null string "".

The keyword argument log-drain is set to the created ftp connection’s log-drain slot.

[Function]ftp-transfer-type conn
{rfc.ftp} Returns the transfer type of the ftp connection conn. Can be used with setter,
e.g. (set! (ftp-transfer-type conn) ’ascii).

[Function]ftp-passive? conn
{rfc.ftp} Returns true iff ftp connection uses passive data retrieval.

[Function]ftp-login host :key passive port username password account log-drain
{rfc.ftp} Connects to the ftp server specified by host, authenticate the user, and returns
a newly created <ftp-connection> instance. This procedure is called implicitly when you
use call-with-ftp-connection. The semantics of the host argument and the keyword
arguments are the same as call-with-ftp-connection.

[Function]ftp-quit conn
{rfc.ftp} Sends ftp QUIT command to the connection conn and shutdown the connection.
This procedure is called implicitly when you use call-with-ftp-connection.

Once a connection is shut down, you cannot communicate through this connection.

[Function]ftp-chdir conn dirname
{rfc.ftp} Changes the remote directory to dirname.

[Function]ftp-remove conn path
{rfc.ftp} Removes the remote file named by path.

[Function]ftp-help conn :optional option . . .
{rfc.ftp} Sends ftp HELP commands. Options must be strings, and will be passed to the
HELP command arguments.

[Function]ftp-mkdir conn dirname
{rfc.ftp} Creates a directory dirname. Returns the created directory name.

Chapter 12: Library modules - Utilities 661

[Function]ftp-current-directory conn
{rfc.ftp} Returns the current remote directory.

[Function]ftp-site conn arg
{rfc.ftp} Sends ftp SITE command with the argument arg. The SITE command’s semantics
depends on the server. Returns the server reply.

[Function]ftp-rmdir conn dirname
{rfc.ftp} Removes remote directory specified by dirname. Returns the server reply.

[Function]ftp-stat conn :optional pathname
{rfc.ftp} Sends ftp STAT command to the server. RFC959 defines several different semantics
of this command. See RFC959 for the details. Returns the server reply.

[Function]ftp-system conn
{rfc.ftp} Queries the server’s operating system by ftp SYST command. Returns the server
reply without status code.

(call-with-ftp-connection "localhost" ftp-system)

⇒ "UNIX Type: L8"

[Function]ftp-size conn path
{rfc.ftp} Queries the size of the remote file specified by path. Returns the integer value.

Note: The size may differ whether the connection is in ascii mode or binary mode; further-
more, some ftp server may returns the value only if the connection is in binary mode. Make
sure you have desired transfer type in the connection.

[Function]ftp-mdtm conn path
{rfc.ftp} Queries the modification time of the remote file specified by path. This function
returns the server’s reply as is, including the status code. Use ftp-mtime below to obtain a
parsed result.

[Function]ftp-mtime conn path :optional local-time?
{rfc.ftp} Queries the modification time of the remote file specified by path, and returns
the result in a <date> object (see Section 11.7 [Time data types and procedures], page 527).
If a true value is given to local-time?, the returned date is in local time. Otherwise, the
returned date is in UTC.

[Function]ftp-noop conn
{rfc.ftp} Sends ftp NOOP command and returns the server’s reply.

[Function]ftp-list conn :optional path
{rfc.ftp} Returns the information about the files within the remote file or directory specified
by path, or the current remote directory, much like ls(1) format. Returns a list of strings,
where each string is for each line of the server’s reply. The exact format depends on the server.
Return the list of names in the specfied path, or the current remote directory, without any
other information. ftp-ls is just an alias of ftp-name-list for the convenience.

Note that the server may return an error if there’s no files in the remote directory.

[Function]ftp-get conn path :key sink 'usher
{rfc.ftp} Retrieves a remote file path. The retrieved data is sent to an output port given
to sink. Once all the data is retrieved, a procedure given to 'usher is called with the port
sink as an argument, and its return value(s) is/are returned from ftp-get.

The default values of sink and 'usher are a newly created string port and get-output-

string, respectively. That is, ftp-get returns the retrieved data as a string by default. You
don’t want this behavior if the retrieved file is huge.

Chapter 12: Library modules - Utilities 662

[Function]ftp-put conn from-↓le :optional to-↓le
{rfc.ftp} Sends the local file specified by from-↓le to the remote server as the name specified
by to-↓le. If to-↓le is omitted, the basename of from-↓le is used. Returns the server response.

[Function]ftp-put-unique conn from-↓le
{rfc.ftp} Sends the local file specified by from-↓le to the remote server. The remote side
filename is guaranteed to be unique. Returns two values—the final server response, and the
remote file name. The second value can be #f if the remote host doesn’t support RFC1123
(which must be rare).

[Function]ftp-rename conn from-name to-name
{rfc.ftp} Renames the remote file specified by from-name to the name to-name. Returns
the final response of the server.

12.32 rfc.hmac - HMAC keyed-hashing

[Module]rfc.hmac
This module implements HMAC algorithm, Keyed-hashing for message authentication, de-
fined in RFC 2104.

For simple batched keyed hashing, you can use high-level API hmac-digest and
hmac-digest-string. Or you can create <hmac> object and update its state as the data
coming in.

[Class]<hmac>
{rfc.hmac} Keeps state information of HMAC algorithm. Key and the hashing algorithm
should be given at the construction time, using :key and :hasher keyword-arguments re-
spectively. You can pass any class object that implements message digest interface (see
Section 12.61 [Message digester framework], page 732), such as <md5> (see Section 12.37 [MD5
message digest], page 671) or <sha256> (see Section 12.40 [SHA message digest], page 678).

Example:

(make <hmac> :key (make-byte-string 16 #x0b) :hasher <md5>)

[Method]hmac-update! (hmac <hmac>) data
{rfc.hmac} Updates the internal state of hmac by data, which must be represented by a
(possibly incomplete) string.

[Method]hmac-final! (hmac <hmac>)
{rfc.hmac} Finalizes the internal state of hmac and returns the hashed string in incom-
plete string. You can use digest-hexify (see Section 12.61 [Message digester framework],
page 732) to obtain "hexified" result. Once finalized, you can’t call hmac-update! or
hmac-final! on hmac.

[Method]hmac-digest :key key hasher
{rfc.hmac} Creates an <hmac> object and hash the data stream from the current input port,
then returns the hashed result in an incomplete string.

[Method]hmac-digest-string string :key key hasher
{rfc.hmac} Creates an <hmac> object and hash the data in string, then returns the hashed
result in an incomplete string.

Chapter 12: Library modules - Utilities 663

12.33 rfc.http - HTTP

[Module]rfc.http
This module provides a simple client API for HTTP/1.1, defined in RFC2616, "Hypertext
Transfer Protocol – HTTP/1.1" ([RFC2616], page 762).

Current API implements only a part of the protocol. It doesn’t talk with HTTP/1.0 server
yet, and it doesn’t support HTTP/1.1 advanced features such as persistent connection. Sup-
port for those features may be added in the future versions.

[Condition Type]<http-error>
{rfc.http} This type of condition is raised when the server terminates connection prema-
turely or server’s response has invalid header fields. Inherits <error>.

[Function]http-get server request-uri :key sink 'usher redirect-handler secure . . .
[Function]http-head server request-uri :key redirect-handler secure . . .
[Function]http-post server request-uri body :key sink 'usher redirect-handler

secure . . .
[Function]http-put server request-uri body :key sink 'usher redirect-handler secure

. . .
[Function]http-delete server request-uri :key sink 'usher redirect-handler secure

. . .
{rfc.http} Send http GET, HEAD, POST, PUT and DELETE requests to the http server,
respectively, and returns the server’s reply.

By default, if the server returns 300, 301, 302, 303, 305 and 307 status, these procedures
attempts to fetch the redirected URL by the "location" reply message header if it is allowed
by RFC2616. This behavior can be turned off or customized by the redirect-handler keyword
argument; see the "keyword arguments" heading below for the details.

Required arguments: The server argument specifies http server name in a string. A server
name can be optionally followed by colon and a port number. You can use IP address, too;
for IPv6, you have to surround the address in brackets.

Additionally, you can specify "unix:/path" where /path is the absolute path to the unix
domain socket; this allows to connect to httpd listening on unix domain sockets. Examples:
"w3c.org", "mycompany.com:8080", "192.168.0.1:8000", "[::1]:8000"

The request-uri argument can be a string or a list. If it is a string, it’s request-uri specified
in RFC2616; usually, this is the path part of http url. The string is passed to the server as is,
so the caller must properly convert character encodings and perform necessary url encodings.

If request-uri is a list, it must be in the following form:

(path (name value) ...)

Here, path is a string specifying up to the path component of the request-uri. From provided
alist of names and values, http procedures compose a query string in application/x-www-

form-urlencoded format as defined in HTML4, and append it to path. For example, the
following two requests have the same effect. Note that url escaping is automatically handled
in the second call.

(http-get "example.com" "/search?q=foo%20bar&n=20")

(http-get "example.com" ’("/search" (q "foo bar") (n 20)))

If request-encoding keyword argument is also given, names and values are converted into the
specified character encoding before url escaping. If it is omitted, gauche’s internal character
encoding is used.

Chapter 12: Library modules - Utilities 664

Some procedures take the third argument, body, to specify the body of the request message.
It can be a string, which will be copied verbatim to the request body, or a list, which will be
encoded in multipart/form-data message.

If body is a list, it is a list of parameter specs. Each parameter spec is either a list of name
and value, e.g. ("submit" "OK") or a name followed by keyword-value list, e.g. ("upload"

:file "logo.png" :content-type "image/png").

The first form is for the convenience. It is also compatible to the query parameter list in
request-uri, so that you can use the same format for GET and POST request. Each value is
put in a MIME part with text/plain media type, with the character encoding specified by
request-encoding keyword argument described below.

The second form allows further control over each MIME part’s attributes. The following
keywords are treated specially.

:value Speficies the value of the parameter. The convenience form, (name val), is just
an abbreviation of (name :value val).

:file Specifies the pathname of the file, whose content is inserted as the value of the
parameter. Useful to upload a file. This option has precedence over :value.
MIME type of the part is set to application/octet-stream unless specified
otherwise.

:content-type

Overrides the MIME type of the part. A charset parameter is added to the
content-type if not given in this argument.

:content-transfer-encoding

Specifies the value of content-transfer-encoding; currently the following values are
supported: 7bit, binary, quoted-printable and base64. If omitted, binary is
used.

Other keywords are used as the header of the MIME part.

Return values: All procedures return three values.

The first value is the status code defined in RFC2616 in a string (such as "200" for success,
"404" for "not found").

The second value is a list of parsed headers—each element of list is a list of (header-name
value ...), where header-name is a string name of the header (such as "content-type" or
"location"), and value is the corresponding value in a string. The header name is converted
to lowercase letters. The value is untouched except that "soft line breaks" are removed, as
defined in RFC2822. If the server returns more than one headers with the same name, their
values are consolidated to one list. Except that, the order of the header list in the second
return value is the same as the order in the server’s reply.

The third value is for the message body of the server’s reply. By default, it is a message
body itself in a string. If the server’s reply doesn’t have a body, the third value is #f. You
can change how the message body is handled by keyword arguments; for example, you can
directly store the returned message body to a file without creating intermediate string. The
details are explained below.

Keyword arguments: By default, these procedures only attaches "Host" header field to the
request message. You can give keyword arguments to add more header fields.

(http-get "foo.bar.com" "/index.html"

:accept-language "ja"

:user-agent "My Scheme Program/1.0")

Chapter 12: Library modules - Utilities 665

The following keyword arguments are recognized by the procedure and do not appear in the
request headers.

request-encoding

When a list is given to the request-uri or body arguments, the characters in
names and values of the parameters are first converted to the character encoding
specified by this keyword argument, then encoded into application/x-www-

form-urlencoded or multipart/form-data MIME formats. If this argument is
omitted, Gauche’s internal character encoding is used.

For multipart/form-data, you can override character encodings for individual
parameters by giving content-type header. See the description of body argu-
ments above.

If you give a string to request-uri or body, it is used without encoding conversion.
It is caller’s responsibility to ensure desired character encodings are used.

proxy Specify http proxy server in a string of a form hostname or hostname:port. If
omitted, the value of the parameter http-proxy is used.

redirect-handler

Specifies how the redirection is handled when the server responds with 3xx status
code. You can pass #f, #t or a procedure. The default is #t.

If #f is given, no redirect attempt will be made; the 3xx status code and response
is just returned from http-* procedures as they are.

If a procedure is given, it is called when the response status code is 3xx. The
procedure takes four arguments, the request method (in symbol, e.g. GET), the
response status code (in string, e.g. "302"), the parsed response headers and the
response body (a string if there’s a body, or #f if the response doesn’t have a
body).

The procedure can return a pair or #f. If it is a pair, it should be (method .

url), where method is a symbol (e.g. GET) and url is a string representing url.
If a pair is returned, the http-* procedures tries to send the request with the
given method (it allows a redirection of POST request to be GET, for example).
If it is #f, no further attempt of redirection is made.

If redirect-handler is #t, which is the default, then it works as if the value of
the parameter http-default-redirect-handler is passed to redirect-handler.
The parameter contains a procedure with reasonable default behavior. See the
http-default-redirect-handler entry below for the details.

A loop in redirection is detected automatically and <http-error> is thrown.

no-redirect

This is an obsoleted keyword argument kept only for the backward compatibility.
If a true value is given, it has the same effect as specifying #f to redirect-handler.

secure If a true value is given, the secure connection is used. The value specifies the
secure transport agent to establish https connection. It can be #t or a symbol
tls or stunnel. If #f is given (default), non-secure plain http is used. See the
“Secure connection” section below.

auth-user, auth-password

If given, the authorization header using Basic Authentication (RFC2617) is added
to the request. In future, we might add support for other authentication scheme.

Chapter 12: Library modules - Utilities 666

sink, flusher

You can customize how the reply message body is handled by these keyword
arguments. You have to pass an output port to sink, and a procedure that takes
two arguments to 'usher.

When the procedure starts receiving the message body, it feeds the received
chunk to sink. When the procedure receives entire message body, 'usher method
is called with sink and a list of message header fields (in the same format to be
returned in the second value from the procedure). The return value of 'usher
becomes the third return value from the procedure.

So, the default value of sink is a newly opened string port and the default value
of 'usher is (lambda (sink headers) (get-output-string sink)).

The following example saves the message body directly to a file, without allocat-
ing (potentially very big) string buffer.

(call-with-output-file "page.html"

(lambda (out)

(http-get "www.schemers.org" "/"

:sink out :flusher (lambda _ #t))))

The module also provides some utility procedures.

[Parameter]http-user-agent :optional value
{rfc.http} The value of this parameter is used as a default value to pass to the user-agent
header. The default value is something like gauche.http/*, where * is Gauche’s version. An
application is encouraged to set this parameter appropriately.

[Parameter]http-proxy :optional value
{rfc.http} This value is used as the default http proxy name by http-get etc. The default
value is #f (no proxy).

[Parameter]http-default-redirect-handler :optional value
{rfc.http} Specifies the behavior of redirection if no redirect-handler keyword argument
is given to the http-* procedures. If you change this value, it must be a procedure that
follows the protocol of redirect-handler; see the description of http-* procedures above.

The default behavior is as follows:

300, 301, 305, 307
Redirect to the url given to the location header only if the original request
method is GET or HEAD.

302 Redirect to the url given to the location header. If the original request method
is HEAD, it is used again. Otherwise, GET method is used.

Strictly speaking, this is a violation of RFC2616. However, as the note in
RFC2616 says, many user agent do this, so we follow the flock. (We may change
this in future.)

303 Redirect to the url given to the location header. If the original request method
is HEAD, it is used again. Otherwise, GET method is used.

other than above
No redirection is made.

The following code is an example of intercepting the default behavior in a specific request:

(http-get server uri

:redirect-handler

Chapter 12: Library modules - Utilities 667

(^[method status headers body]

(if (and (equal? status "302")

(not (member method ’(GET HEAD))))

#f

((http-default-request-handler) method status headers body))))

[Function]http-compose-query path params :optional encoding
{rfc.http} A helper procedure to create a request-uri from a list of query parameters.
Encoding specifies the character encodings to be used.

(http-compose-query "/search" ’((q "$foo") (n 20)))

⇒ "/search?q=%24foo&n=20"

(http-compose-query "" ’((x "a b") (x 2)))

⇒ "?x=a%20b&x=2"

If path is #f, only the query parameter part is returned (compare the following example and
the last example):

(http-compose-query #f ’((x "a b") (x 2)))

⇒ "x=a%20b&x=2"

[Function]http-compose-form-data params port :optional encoding
{rfc.http} A helper procedure to create multipart/form-data from a list of parameters.
The format of params argument is the same as the list format of body argument of http
request procedures. The result is written to an output port port, and the boundary string
used to compose MIME message is returned. Alternatively you can pass #f to the port to
get the result in a string. In that case, two values are returned, the MIME message string
and the boundary string.

Encoding specifies the character encodings to be used. When omitted, Gauche’s native
encoding is used.

(define p (open-output-string))

(http-compose-form-data ’((name "Preludes and Fugues")

(composer "Shostakovich, Dmitri")

(opus "87"))

p)

⇒ "boundary-fh87o52rp6zkubp2uhdmo"

(get-output-string p)

⇒
"\r\n--boundary-fh87o52rp6zkubp2uhdmo\r\nContent-type: te

xt/plain; charset=utf-8\r\nContent-transfer-encoding: bi

nary\r\ncontent-disposition: form-data; name=title\r\n\r\n

Preludes and Fugues\r\n--boundary-fh87o52rp6zkubp2uhdmo...

;; (result is truncated)

[Function]http-status-code->description code
{rfc.http} Returns a brief description of http status code code, which may be an integer
or a string (e.g. "404"). If code isn’t one of known code, #f is returned.

(http-status-code->description 404)

⇒ "Not Found"

Chapter 12: Library modules - Utilities 668

Secure connection

When you pass a true value to secure keyword argument, the request-making APIs such as
http-get use a secure connection. That is, it connects with https instead of http. The actual
value for the keyword argument can be one of the followings:

#t

tls The rfc.tls module is used for the secure connection. See Section 12.41 [Transport
layer security], page 678, for the details—you might need to set CA certificate bundle
path.

stunnel The external process stunnel is spawned and used for the secure connection.

#f Secure connection is not used.

If specified secure connection subsystem isn’t available in the running Gauche, an error is
signaled. Use the following procedure to check if you can use secure connections:

[Function]http-secure-connection-available? :optional type
{rfc.http} The type argument may be tls or stunnel. If omitted, tls is assumed. Returns
#t if running Gauche can use secure connection of the given type, #f otherwise.

12.34 rfc.icmp - ICMP packets

[Module]rfc.icmp
{rfc.icmp} This module provides some basic utilities to construct and parse ICMP packets.

For the functions below, bu↑er should be a writable u8vector of the enough size.

Parsing functions takes o↑set as well as bu↑er, which specifies the beginning of the ICMP
packet. Using the offset you can carry the whole IP packet in bu↑er, without creating a new
buffer to extract ICMP portion.

[Function]icmp4-fill-echo! bu↑er ident sequence data
{rfc.icmp} Fills bu↑er with the ICMPv4 Echo Request packet. Data must be a u8vector.
The checksum field is left to be zero, which can be filled by icmp4-fill-checksum!.

[Function]icmp4-fill-checksum! bu↑er size
{rfc.icmp} Calculates the ICMPv4 checksum of the packet in the bu↑er, of size length (the
size of the packet, not the buffer), and fills the checksum field of the packet.

[Function]icmp6-fill-echo! bu↑er ident sequence data
{rfc.icmp} Fills bu↑er with the ICMPv6 Echo Request packet. Data must be a u8vector.
The checksum field is left to be zero, which is to be filled by the kernel (so you don’t need to
fill by yourself).

[Function]icmp-packet-type bu↑er o↑set
[Function]icmp-packet-code bu↑er o↑set
[Function]icmp-packet-ident bu↑er o↑set
[Function]icmp-packet-sequence bu↑er o↑setj

{rfc.icmp} Extracts type, code, ident and sequence fields of ICMP packet. These functions
are common to both ICMPv4/v6.

[Function]icmp4-describe-packet bu↑er o↑set
[Function]icmp6-describe-packet bu↑er o↑set

{rfc.icmp} Prints out a simple text description of the given ICMPv4 and v6 packet, respec-
tively.

Chapter 12: Library modules - Utilities 669

[Function]icmp4-message-type->string type
[Function]icmp4-unreach-code->string code
[Function]icmp4-redirect-code->string code
[Function]icmp4-router-code->string code
[Function]icmp4-exceeded-code->string code
[Function]icmp4-parameter-code->string code
[Function]icmp4-security-code->string code
[Function]icmp6-message-type->string type
[Function]icmp6-unreach-code->string code
[Function]icmp6-exceeded-code->string code
[Function]icmp6-parameter-code->string code

{rfc.icmp} Returns a text description of ICMPv4 and ICMPv6 types and codes.

12.35 rfc.ip - IP packets

[Module]rfc.ip
This module provides some basic utilities to parse raw IP packets.

The packet argument in the following functions must be any type of uniform vector (see
Section 9.35 [Uniform vectors], page 447), containing a raw IP packet including its IP header.
Those functions work for both IPv4 and IPv6 packets; however, reading from a raw IPv6 socket
returns a packet without IPv6 header, so you usually don’t need to use these functions.

The o↑set argument specifies the beginning of the IP packet in packet. If packet contains
only one IP packet you can pass 0. It is not an optional argument, since these routines may be
used in speed-sensitive inner loop.

[Function]ip-version packet o↑set
{rfc.ip} Returns the IP version number (either 4 or 6) of the given IP packet.

[Function]ip-header-length packet o↑set
{rfc.ip} Returns the size of IP header of the given packet in octets, including any IP header
options.

[Function]ip-protocol packet o↑set
{rfc.ip} Returns the IP protocol number of the given packet.

[Function]ip-source-address packet o↑set
[Function]ip-destination-address packet o↑set

{rfc.ip} Returns the source and destination address in the given packet in an integer,
respectively.

12.36 rfc.json - JSON parsing and construction

[Module]rfc.json
Procedures to parse JSON (RFC7159) data to S-expressions, and convert S-expressions to
JSON representation, are provided.

[Condition type]<json-parse-error>
{rfc.json} The parser parse-json and parse-json-string raise this condition when they
encounter invalid JSON syntax. It inherits <error>, and adds the following slot.

[Instance Variable of <json-parse-error>]position
The input position, counted in characters, where the error occurred.

Chapter 12: Library modules - Utilities 670

[Function]parse-json :optional input-port
{rfc.json} Reads and parses the JSON representation from input-port (default is the current
input port), and returns the result in an S-expression. May raise a <json-parse-error>

condition when parse error occurs.

The following table shows how JSON datatypes are mapped to Scheme objects.

true, false, null
Symbols true, false and null. (Customizable by json-special-handler)

Arrays Scheme vectors. (Customizable by json-array-handler)

Objects Scheme assoc-lists, in which keys are strings, and values are Scheme objects.
(Customizable by json-object-handler)

Numbers Scheme inexact real numbers.

Strings Scheme strings.

Since the parser used internally in parse-json prefetches characters, some characters after
the parsed JSON expression may already been read from port when parse-json returns.
That is, you cannot call parse-json repeatedly on port to read subsequent JSON expressions.
Use parse-json* if you need to read multiple JSON expressions.

[Function]parse-json* :optional input-port
{rfc.json} Read JSON repeatedly from input-port until it reaches EOF, and returns parsed
results as a list.

[Function]parse-json-string str
{rfc.json} Parses the JSON string and returns the result in an S-expression. May raise a
<json-parse-error> condition when parse error occurs.

See parse-json above for the mappings from JSON datatypes to Scheme types.

[Parameter]json-array-handler
[Parameter]json-object-handler
[Parameter]json-special-handler

{rfc.json} The value of these parameters must be a procedure that takes one argument: for
json-array-handler, it is a list of elements of a JSON array, for json-object-handler, it
is a list of conses of key and value of a JSON object, and for json-special-handler, it is
one of the symbols false, true or null.

Whenever parse-json reads a JSON array, a JSON object, or one of those special values, it
calls corresponding parameter to get a Scheme object.

The default value of these parameters are list->vector, identity, and identity, respec-
tively.

The following example maps JSON objects to hash tables.

(use gauche.parameter)

(parameterize ([json-object-handler (cut alist->hash-table <> ’string=?)])

(parse-json-string "{\"a\":1, \"b\":2}"))

⇒ #<hash-table ...>

[Condition type]<json-construct-error>
{rfc.json} The converters construct-json and construct-json-string raise this condi-
tion when they cannot convert given Scheme object to JSON. It inherits <error>, and adds
the following slot.

[Instance Variable of <json-construct-error>]object
The Scheme object that cannot convert to JSON representation.

Chapter 12: Library modules - Utilities 671

[Function]construct-json obj :optional output-port
[Function]construct-json-string obj

{rfc.json} Creates JSON representation of Scheme object obj. construct-json writes out
the result to output-port, whose default is the current output port. construct-json-string
returns the result in a string. Note that RFC4627 defines JSON text to be an object or an
array; so obj must be a Scheme object that can be mapped to either a JSON object or a
JSON array.

If obj contains a Scheme object that cannot be mapped to JSON representation, a
<json-construct-error> condition is raised.

Scheme objects are mapped to JSON as follows:

symbol false, #f
false

symbol true, #t
true

symbol null
null

list, instance of <dictionary>
JSON object (list must be an assoc list of key and value).

string string

real number
number

instance of <sequence> (except strings and lists)
JSON array

12.37 rfc.md5 - MD5 message digest

[Module]rfc.md5
This module implements MD5 message digest algorithm, defined in RFC 1321 ([RFC1321],
page 762). The module extends util.digest (see Section 12.61 [Message digester framework],
page 732).

[Class]<md5>
{rfc.md5} The instance of this class keeps internal state of MD5 digest algorithm.

This class implements util.digest framework interface, digest-update!, digest-final!,
digest, and digest-string. See Section 12.61 [Message digester framework], page 732, for
detailed explanation of these methods.

Besides the digester framework, this module provides to short-cut procedures.

[Function]md5-digest
{rfc.md5} Reads data from the current input port until EOF, and returns its digest in an
incomplete string.

[Function]md5-digest-string string
{rfc.md5} Digest the data in string, and returns the result in an incomplete string.

Chapter 12: Library modules - Utilities 672

12.38 rfc.mime - MIME message handling

[Module]rfc.mime
This module provides utility procedures to handle Multipurpose Internet Mail Extensions
(MIME) messages, defined in RFC2045 thorough RFC2049. Provided APIs include proce-
dures to parse or compose MIME-specific header fields, and parse or compose MIME-encoded
message bodies.

This module mainly focuses on providing low-level building-block procedures, on top of which
application-specific modules are to be built. For example, rfc.http uses this module to
compose multipart/form-data message for the body of POST requests (see Section 12.33
[HTTP], page 663).

This module is supposed to be used with rfc.822module (see Section 12.28 [RFC822 message
parsing], page 653).

Utilities for header fields

A few utility procedures to parse and generate MIME-specific header fields.

[Function]mime-parse-version ↓eld
{rfc.mime} If ↓eld is a valid header field for MIME-Version, returns its major and minor
versions in a list. Otherwise, returns #f. It is allowed to pass #f to ↓eld, so that you can di-
rectly pass the result of rfc822-header-ref to it. Given parsed header list by rfc822-read-

headers, you can get mime version (currently, it should be (1 0)) by the following code.

(mime-parse-version (rfc822-header-ref headers "mime-version"))

Note: simple regexp such as #/\d+\.\d+/ doesn’t do this job, for ↓eld may contain comments
between tokens.

[Function]mime-parse-content-type ↓eld
{rfc.mime} Parses the "content-type" header field, and returns a list such as:

(type subtype (attribute . value) ...)

where type and subtype are MIME media type and subtype in a string, respectively

(mime-parse-content-type "text/html; charset=iso-2022-jp")

⇒ ("text" "html" ("charset" . "iso-2022-jp"))

If ↓eld is not a valid content-type field, #f is returned.

[Function]mime-parse-content-disposition ↓eld
{rfc.mime} Parses Content-disposition header field as specified in RFC2183. (mime-parse-
content-disposition "attachment; filename=genome.jpeg;\ modification-date=\"Wed, 12 Feb
1997 16:29:51 -0500\";") ⇒ ("attachment" ("filename" . "genome.jpeg") ("modification-
date" . "Wed, 12 Feb 1997 16:29:51 -0500"))

[Function]mime-parse-parameters :optional iport
[Function]mime-compose-parameters params :optional oport :key start-column

{rfc.mime} These are low-level utility procedures to parse and compose parameter part of
header fields (as appeared in RFC2045 Section 5.1 etc).

Mime-parse-parameters reads the parameter part of the header body from an input
port iport, and returns an assoc list of the parameter names and values. Conversely,
mime-compose-parameters takes an assoc list of names and values, compose parameter part
and emit it to oport. When omitted, the current input port and the current output port
are used for iport and oport, respectively. You can pass #f to oport and mime-compose-

parameters returns the result in a string instead of emitting it to a port.

(call-with-input-string

Chapter 12: Library modules - Utilities 673

"; name=foo; filename=\"foo/bar/baz\""

mime-parse-parameters)

⇒ (("name" . "foo") ("filename" . "foo/bar/baz"))

(mime-compose-parameters

’(("name" . "foo") ("filename" . "foo/bar/baz"))

#f)

⇒ "; name=foo; filename=\"foo/bar/baz\""

Mime-compose-parameters tries to insert folding line breaks between parameters to avoid the
header line becomes too long. You can pass the beginning column position of the parameter
part via start-column argument.

We plan to make these procedures handle RFC2231’s parameter value extension transparently
in future.

[Function]mime-decode-word word
{rfc.mime} Decodes RFC2047-encoded word. If word isn’t an encoded word, it is returned
as is.

Note that this procedure decodes only if the entire word is an “encoded word” defined in
RFC2047. If you are dealing with a field that may contain multiple encoded word and/or
unencoded parts, use mime-decode-text below.

(mime-decode-word "=?iso-8859-1?q?this=20is=20some=20text?=")

⇒ "this is some text"

[Function]mime-decode-text text
{rfc.mime} Returns a string in which all encoded words contained within text are decoded.
This procedure can deal with a header field body that may contain mixture of non-encoded
and encoded parts, and/or multiple encoded parts. One of such header field is the Subject
field of email.

(mime-decode-text "This is =?US-ASCII?q?some=20text?=")

⇒ "This is some text"

Care should be taken if you apply this procedure to a “structured” header field body (see
RFC2822 section 2.2.2). The proper way of parsing a structured header field body is to tok-
enize it first, then to decode each word using mime-decode-word. since the decoded text may
contain characters that affects the tokenization. (However, if you can just show the header
field in human readable way for informational purposes, you may just use mime-decode-text
on entire header field for the convenience).

[Function]mime-encode-word word :key charset transfer-encoding
{rfc.mime} Encodes word in the RFC2047 format. The keyword argument charset specifies
the character encoding scheme in string or symbol. whose default is utf-8. If charset differs
from Gauche’s internal encoding and word is a complete string, the procedure convers the
character encoding to charset, then performs transfer encoding.

(mime-encode-word "this is some text")

⇒ "=?utf-8?B?dGhpcyBpcyBzb21lIHRleHQ=?="

The keyword argument transfer-encoding specifies how the octets are encoded to transfer-safe
characters. You can give a symbol b, B or base64 for Base64, and Q, q, quoted-printable
for Quoted-printable transfer encodings. An error is raised if you pass values other than
those. The default is Base64 encoding.

This procedure does not consider the length of the resulting encoded word, which RFC2047
recommends to be less than 75 octets. Use mime-encode-text below to conform the line
length limit.

Chapter 12: Library modules - Utilities 674

(Note: In most Gauche procedures, a keyword argument encoding is used to specify character
encodings. In this context we have two encodings, however, and to avoid the confusion we
chose to use the terms “charset” and “transfer-encoding” that appear in RFC documents.)

[Function]mime-encode-text text :key charset transfer-encoding line-width
start-column force

{rfc.mime} Encode text in RFC2047 format if necessary, and considering line foling if the
result gets too long.

The keyword arguments charset and transfer-encoding are the same as mime-encode-word.

If the text only consists of printable ASCII characters, no encoding is done, and only line
folding is considered. However, if a true value is given to the force argument, even ASCII-only
text is encoded.

The line-width specifies the maximum line width of the result. Its default is 76. If the encoded
word gets too long, it is splitted to multiple encoded words and CR LF SPC sequence (“folding
white space” defined in RFC2822) are inserted inbetween. You can suppress this behavior
by passing #f or 0 to line-width. Since encoded word needs some overhead characters, it
doesn’t make much sense to specify small value to line-width. Current implementation
rejects line-width smaller than 30.

The start-column keyword argument can be used to shorten the first of folded lines to make
room for header field name. For example, if you want to encode the body of a Subject header
field, you can pass the value of (string-length "Subject: ") so that the encoded result
can directly concatenated after the header field name. The default value is 0.

This procedure is not designed to encode parts of structured header fields, which have further
restrictions such as which parts can be encoded and where the folding white spaces can be
inserted. The robust way is to encode some parts first, then construct a structured header
fields, considering line folding.

Streaming parser

The streaming parser is designed so that you can decide how to do with the message body before
the entire message is read.

[Function]mime-parse-message port headers handler
{rfc.mime} The fundamental streaming parser. Port is an input port from where the message
is read. Headers is a list of headers parsed by rfc822-read-headers; that is, this procedure
is supposed to be called after the header part of the message is parsed from port:

(let* ((headers (rfc822-read-headers port)))

(if (mime-parse-version (rfc822-header-ref headers "mime-version"))

;; parse MIME message

(mime-parse-message port headers handler)

;; retrieve a non-MIME body

...))

Mime-parse-message analyzes headers, and calls handler on each message body with two
arguments:

(handler part-info xport)

Part-Info is a <mime-part> structure described below that encapsulates the information of
this part of the message. Xport is an input port, initially points to the beginning of the body
of message. The handler can read from the port as if it is reading from the original port.
However, xport recognizes MIME boundary internally, and returns EOF when it reaches the
end of the part. (Do not read from the original port directly, or it will mess up the internal
state of vport).

Chapter 12: Library modules - Utilities 675

Handler can read the part into the memory, or save it to the disk, or even discard the part.
Whatever it does, it has to read from vport until it returns EOF.

The return value of handler will be set in the content slot of part-info. If the message
has nested multipart messages, handler is called for each "leaf" part, in depth-first order.
Handler can know its nesting level by examining part-info structure. The message doesn’t
need to be a multipart type; if it is a MIME message type, handler is called on the body of
enclosed message. If it is other media types such as text or application, handler is called
on the (only) message body.

[Class]<mime-part>
{rfc.mime} A structure that encloses metainformation about a MIME part. It is constructed
when the header of the part is read, and passed to the handler that reads the body of the
part.

It has the following slots:

[Instance Variable of <mime-part>]type
MIME media type string. If content-type header is omitted to the part, an appropriate
default value is set.

[Instance Variable of <mime-part>]subtype
MIME media subtype string. If content-type header is omitted to the part, an appro-
priate default value is set.

[Instance Variable of <mime-part>]parameters
Associative list of parameters given to content-type header field.

[Instance Variable of <mime-part>]transfer-encoding
The value of content-transfer-encoding header field. If the header field is omitted, an
appropriate default value is set.

[Instance Variable of <mime-part>]headers
The list of header fields, as parsed by rfc822-read-headers.

[Instance Variable of <mime-part>]parent
If this is a part of multipart message or encapsulated message, points to the enclosing
part’s <mime-part> structure. Otherwise #f.

[Instance Variable of <mime-part>]index
Sequence number of this part within the same parent.

[Instance Variable of <mime-part>]content
If this part is multipart/* or message/* media type, this slot contains a list of parts within
it. Otherwise, the return value of handler is stored.

[Instance Variable of <mime-part>]source
This slot is only used when composing a MIME message. The caller can set this slot a
name of the file to be inserted into this part, instead of setting the entire content of the
file to the content slot. See mime-compose-message below for the more details.

[Function]mime-retrieve-body part-info xport outp
{rfc.mime} A procedure to retrieve message body. It is intended to to be a building block
of handler to be passed to mime-parse-message.

Part-info is a <mime-part> object. Xport is an input port passed to the handler, from which
the MIME part can be read. This procedure read from xport until it returns EOF. It also
looks at the transfer-encoding of part-info, and decodes the body accordingly; that is,

Chapter 12: Library modules - Utilities 676

base64 encoding and quoted-printable encoding is handled. The result is written out to an
output port outp.

This procedure does not handle charset conversion. The caller must use CES conversion port
as outp (see Section 9.4 [Character code conversion], page 318) if desired.

A couple of convenience procedures are defined for typical cases on top of mime-retrieve-
body.

[Function]mime-body->string part-info xport
[Function]mime-body->file part-info xport ↓lename

{rfc.mime} Reads in the body of mime message, decoding transfer encoding, and returns it
as a string or writes it to a file, respectively.

The simplest form of MIME message parser would be like this:

(let ((headers (rfc822-read-headers port)))

(mime-parse-message port headers

(cut mime-body->string <> <>)))

This reads all the message on memory (i.e. the "leaf" <mime-part> objects’ content field
would hold the part’s body as a string), and returns the top <mime-part> object. Content
transfer encoding is recognized and handled, but character set conversion isn’t done.

You may want to feed the message body to a file directly, or even want to skip some body
according to mime media types and/or other header information. Then you can put the logic
in the handler closure. That’s the reason that this module provides building blocks, instead of
all-in-one procedure.

Message composer

[Function]mime-compose-message parts :optional port :key boundary
[Function]mime-compose-message-string parts :key boundary

{rfc.mime} Composes a MIME multipart message. Mime-compose-message emits the result
to an output port port, whose default is the current output port. Mime-compose-message-

stringmakes the result into a string. You can give a boundary string via boundary argument;
when omitted, a fresh boundary string is automatically generated by mime-make-boundary

below.

Mime-compose-message returns the boundary string. Mime-compose-message-string re-
turns two values, the result string and the boundary string.

The content of the message is provided by the parts argument, which can be a list of instances
of <mime-part> (see above) or lists that describe parts. The list form is supported for the
caller’s convenience, and internally it is converted to a list of <mime-part>s.

The syntax of each part element in parts are defined as follow.

<part> : <mime-part> | <mime-part-desc>

<mime-part> : an instance of the class <mime-part>

<mime-part-desc> : (<content-type> (<header> ...) <body>)

<content-type> : (<type> <subtype> <header-param> ...)

<header-param> : (<key> . <value>) ...

<header> : (<header-name> <encoded-header-value>)

| (<header-name> (<header-value> <header-param> ...))

<body> : a string
| (file <filename>)

Chapter 12: Library modules - Utilities 677

| (subparts <part> ...)

Note: In the first form of <header>, <encoded-header-value> must already be encoded
using RFC2047 or RFC2231 if the original value contains non-ascii characters. In the second
form, we plan to do RFC2231 encoding on behalf of the caller; but the current version does
not implement it. The caller should not pass encoded words in this form, since it may result
double-encoding when we implement the auto encoding feature; for the time being, the second
form restricts ASCII-only values.

If <body> is a string, it is used as the part’s content. If <body> is (file filename), the
content is read from the named file. If <body> is (subparts part ...), the part becomes
nested MIME part.

It is the caller’s responsibility to give the proper content. For example, if <body> is in the
third form, the part must have multipart content type.

The caller needs to provide proper content-transfer-encoding header, depending on the
application. If none is given, the content is inserted into the message as is, which may be
appropriate for some applications, but if you want to use the result in email message you
certainly want to encode binary part with base64, for example.

[Function]mime-make-boundary
{rfc.mime} Returns a unique string that can be used as a boundary of a MIME multipart
message.

12.39 rfc.quoted-printable - Quoted-printable
encoding/decoding

[Module]rfc.quoted-printable
This module defines a few functions to encode/decode Quoted-printable format, defined in
RFC 2045 ([RFC2045], page 762), section 6.7.

[Function]quoted-printable-encode :key line-width binary
{rfc.quoted-printable} Reads byte stream from the current input port, encodes it in
Quoted-printable format and writes the result character stream to the current output port.
The conversion ends when it reads EOF from the current input port. The keyword argument
line-width specifies the maximum line width of the generated output in characters. If the
encoded output creates a long line, the procedure inserts a “soft line break” so that the each
line is equal to or shorter than this number. Soft line breaks are removed when quoted-
printable text is decoded. The default line width is 76. (The minimum meaningful number of
line-width is 4). You can suppress soft line breaks by giving #f or 0 to line-width. By default,
quoted-printable-encode generates CR-LF sequence for each line break in the input (“hard
line break”). When a true value is given to the keyword argument binary, however, octets
#x0a and #x0d in the input are encoded as =0A and =0D, respectively. See RFC2045 section
6.7 for the details.

[Function]quoted-printable-encode-string string :key line-width binary
{rfc.quoted-printable} Converts contents of string to Quoted-printable encoded format.
Input string can be either complete or incomplete string; it is always interpreted as a byte
sequence.

The keyword arguments are the same as quoted-printable-encode.

[Function]quoted-printable-decode
{rfc.quoted-printable} Reads character stream from the current input port, decodes it
from Quoted-printable format and writes the result byte stream to the current output port.
The conversion ends when it reads EOF. If it encounters illegal character sequence (such as
’=’ followed by non-hexadecimal characters), it copies them literally to the output.

Chapter 12: Library modules - Utilities 678

[Function]quoted-printable-decode-string string
{rfc.quoted-printable} Decodes a Quoted-printable encoded string string and returns the
result as a string.

12.40 rfc.sha - SHA message digest

[Module]rfc.sha
This module implements US Secure Hash Algorithm defined in RFC 4634. It provides SHA-1,
SHA-224, SHA-256, SHA-384 and SHA-512 (the latter four are sometimes referred as SHA-2
collectively).

The module extends util.digest (see Section 12.61 [Message digester framework], page 732).

[Module]rfc.sha1
This is the old module that provided only SHA-1. It is kept as an alias of rfc.sha for the
backward compatibility. New code should use rfc.sha.

[Class]<sha1>
[Class]<sha224>
[Class]<sha256>
[Class]<sha384>
[Class]<sha512>

{rfc.sha} An instance of these class keeps internal state of SHA digest algorithm.

This class implements util.digest framework interface, digest-update!, digest-final!,
digest, and digest-string. See Section 12.61 [Message digester framework], page 732, for
detailed explanation of these methods.

Besides the digester framework, this module provides to short-cut procedures.

[Function]sha1-digest
[Function]sha224-digest
[Function]sha256-digest
[Function]sha384-digest
[Function]sha512-digest

{rfc.sha} Reads data from the current input port until EOF, and returns its digest in an
incomplete string.

[Function]sha1-digest-string string
[Function]sha224-digest-string string
[Function]sha256-digest-string string
[Function]sha384-digest-string string
[Function]sha512-digest-string string

{rfc.sha} Digest the data in string, and returns the result in an incomplete string.

12.41 rfc.tls - Transport layer security

[Module]rfc.tls
This module handles secure connection over TCP socket. This module is used by rfc.http

(see Section 12.33 [HTTP], page 663).

We haven’t yet got other use cases than https connections, so we’re not sure how API of this
layer should look like. At this moment, we document the minimal features you need to know
to use the TLS layer with rfc.http.

Gauche supports two TLS subsystems - one based on axTLS (http://axtls.sourceforge.
net/), and the other based on mbedTLS (https://tls.mbed.org/). Whether they’re

http://axtls.sourceforge.net/
http://axtls.sourceforge.net/
https://tls.mbed.org/

Chapter 12: Library modules - Utilities 679

included depends on the configuration options. By default, axTLS support is compiled in,
and mbedTLS support is only included if the build platform has mbedTLS library installed.
And axTLS is set to be used by default.

Whether the running Gauche has any of TLS support can be checked with a feature iden-
tifier gauche.net.tls. Availability of each individual subsystems can be checked with fea-
ture identifiers gauche.net.tls.axtls and gauche.net.tls.mbedtls, respectively. See
Section 4.12 [Feature conditional], page 64, for more about feature identifiers.

In the current version, we don’t verify certificates by default in axTLS, but we do in mbedTLS.
You need to specify the location of CA certificates explicitly when you want to verify, unless
the CA certificate location is specified at the configuration time. In future, we might set the
default CA certificate file automatically so that users don’t need to bother by default, but
not now.

[Class]<ax-tls>
{rfc.tls} A class that implements axTLS subsystem interface.

[Class]<mbed-tls>
{rfc.tls} A class that implements mbedTLS subsystem interface.

[Parameter]default-tls-class :optional class
{rfc.tls} Set/get the default TLS subsystem to be used. Without arguments, it return a
class (either <ax-tls> or <mbed-tls> to be used. With one argument, which must be either
<ax-tls> or <mbed-tls>, changes the default and returns the previous value.

[Parameter]tls-ca-bundle-path :optional path
{rfc.tls} Set/get the CA certificate bundle path to be used. Without arguments, it returns
the current path. With one argument, a pathname to the CA bundle file, updates the
parameter to the new value and returns the previous value.

If you use mbedTLS, you need to set this value to the valid CA bundle file. Unfortunately
there’s no globally agreed location for such file. If you need one, one choice is to fetch it
from https://curl.haxx.se/ca/cacert.pem, store it locally and set its path to tls-ca-

bundle-path. (We can’t automatically do that, since we can’t securely fetch the file before
we get valid CA certs!)

12.42 rfc.uri - URI parsing and construction

[Module]rfc.uri
Provides a set of procedures to parse and construct Uniform Resource Identifiers defined in
RFC 2396 ([RFC2396], page 762), as well as Data URI scheme defined in RFC2397.

First, lets review the structur of URI briefly. The following graph shows how the URI is
constructed:

URI-+-scheme

|

+-specific--+--authority-+--userinfo

| +--host

| +--port

+--path

+--query

+--fragment

Not all URIs have this full hierachy. For exmaple, mailto:admin@example.com has only
scheme (mailto) and specific (admin@example.com) parts.

https://curl.haxx.se/ca/cacert.pem

Chapter 12: Library modules - Utilities 680

Most popular URI schemes, however, organize resources in a tree, so they adopt
authority (which usually identifies the server) and the hierarchical path. In the URI
http://example.com:8080/search?q=key#results, the authority part is exmaple.com:8080,
the path is /search, the query is key and the fragment is results. The userinfo can be
provided before hostname, such as anonymous in ftp://anonymous@example.com/pub/.

We have procedures that decompose a URI into those parts, and that compose a URI from
those parts.

Parsing URI

[Function]uri-ref uri parts
{rfc.uri} Extract specific part(s) from the given URI. You can fully decompose URI by
the procedures described below, but in actual applications, you often need only some of the
parts. This procedure comes handy for it.

The parts argument may be a symbol, or a list of symbols, to name the desired parts. The
recognized symbos are as follows.

scheme The scheme part, as string..

authority

The authority part, as string. If URI doesn’t have the part, #f.

userinfo The userinfo part, as string. If URI doesn’t have the part, #f.

host The host part, as string. If URI doesn’t have the part, #f.

port The port part, as integer. If URI doesn’t have the part, #f.

path The path part, as string. If URI isn’t hierarchical, this returns the specific part.

query The query part, as string. If URI doesn’t have the part, #f.

fragment The fragment part, as string. If URI doesn’t have the part, #f.

scheme+authority

The scheme and authority part.

host+port

The host and port part.

userinfo+host+port

The userinfo, host and port part.

path+query

The path and query part.

path+query+fragment

The path, query and fragment part.

(define uri "http://foo:bar@example.com:8080/search?q=word#results")

(uri-ref uri ’scheme) ⇒ "http"

(uri-ref uri ’authority) ⇒ "//foo:bar@example.com:8080/"

(uri-ref uri ’userinfo) ⇒ "foo:bar"

(uri-ref uri ’host) ⇒ "example.com"

(uri-ref uri ’port) ⇒ 8080

(uri-ref uri ’path) ⇒ "/search"

(uri-ref uri ’query) ⇒ "q=word"

(uri-ref uri ’fragment) ⇒ "results"

(uri-ref uri ’scheme+authority) ⇒ "http://foo:bar@example.com:8080/"

Chapter 12: Library modules - Utilities 681

(uri-ref uri ’host+port) ⇒ "example.com:8080"

(uri-ref uri ’userinfo+host+port) ⇒ "foo:bar@example.com:8080"

(uri-ref uri ’path+query) ⇒ "/search?q=word"

(uri-ref uri ’path+query+fragment)⇒ "/search?q=word#results"

You can extract multiple parts at once by specifying a list of parts. A list of parts is returned.

(uri-ref uri ’(host+port path+query))

⇒ ("example.com:8080" "/search?q=word")

[Function]uri-parse uri
[Function]uri-scheme&specific uri
[Function]uri-decompose-hierarchical speci↓c
[Function]uri-decompose-authority authority

{rfc.uri} General parser of URI. These functions does not decode URI encoding, since the
parts to be decoded differ among the uri schemes. After parsing uri, use uri-decode below
to decode them.

uri-parse is the most handy procedure. It breaks the uri into the following parts and returns
them as multiple values. If the uri doesn’t have the corresponding parts, #f are returned for
the parts.

• URI scheme as a string (e.g. "mailto" in "mailto:foo@example.com").

• User-info in the authority part (e.g. "anonymous" in ftp://anonymous@ftp.example.com/pub/foo).

• Hostname in the authority part (e.g. "ftp.example.com" in
ftp://anonymous@ftp.example.com/pub/foo).

• Port number in the authority part, as an integer (e.g. 8080 in
http://www.example.com:8080/).

• Path part (e.g. "/index.html" in http://www.example.com/index.html).

• Query part (e.g. "key=xyz&lang=en" in http://www.example.com/search?key=xyz&lang=en).

• Fragment part (e.g. "section4" in http://www.example.com/document.html#section4).

The following procedures are finer grained and break up uris with different stages.

uri-scheme&specific takes a URI uri, and returns two values, its scheme part and its
scheme-specific part. If uri doesn’t have a scheme part, #f is returned for it.

(uri-scheme&specific "mailto:sclaus@north.pole")

⇒ "mailto" and "sclaus@north.pole"

(uri-scheme&specific "/icons/new.gif")

⇒ #f and "/icons/new.gif"

If the URI scheme uses hierarchical notation, i.e. “//authority/path?query#fragment”,
you can pass the scheme-specific part to uri-decompose-hierarchical and it returns four
values, authority, path, query and fragment.

(uri-decompose-hierarchical "//www.foo.com/about/company.html")

⇒ "www.foo.com", "/about/company.html", #f and #f

(uri-decompose-hierarchical "//zzz.org/search?key=%3fhelp")

⇒ "zzz.org", "/search", "key=%3fhelp" and #f

(uri-decompose-hierarchical "//jjj.jp/index.html#whatsnew")

⇒ "jjj.jp", "/index.html", #f and "whatsnew"

(uri-decompose-hierarchical "my@address")

⇒ #f, #f, #f and #f

Furthermore, you can parse authority part of the hierarchical URI by uri-decompose-

authority. It returns userinfo, host and port.

(uri-decompose-authority "yyy.jp:8080")

Chapter 12: Library modules - Utilities 682

⇒ #f, "yyy.jp" and "8080"

(uri-decompose-authority "[::1]:8080") ;(IPv6 host address)
⇒ #f, "::1" and "8080"

(uri-decompose-authority "mylogin@yyy.jp")

⇒ "mylogin", "yyy.jp" and #f

[Function]uri-decompose-data uri
{rfc.uri} Parse a Data URI string uri. You can either pass the entire uri including data:

scheme part, or just the specific part. If the passed uri is invalid as a data uri, an error is
signalled.

Returns two values: parsed content type and the decoded data. The data is a string if the
content type is text/*, and a u8vector otherwise.

The content-type is parsed by mime-parse-content-type (see Section 12.38 [MIME message
handling], page 672). The result format is a list as follows:

(type subtype (attribute . value) ...).

Here are a couple of examples:

(uri-decompose-data

"data:text/plain;charset=utf-8;base64,KGhlbGxvIHdvcmxkKQ==")

⇒ ("text" "plain" ("charset" . "utf-8")) and "(hello world)"

(uri-decompose-data

"data:application/octet-stream;base64,AAECAw==")

⇒ ("application" "octet-stream") and #u8(0 1 2 3)

Constructing URI

[Function]uri-compose :key scheme userinfo host port authority path path* query
fragment speci↓c

{rfc.uri} Compose a URI from given components. There can be various combinations
of components to create a valid URI—the following diagram shows the possible ’paths’ of
combinations:

/-----------------specific-------------------\

| |

scheme-+------authority-----+-+-------path*---------+-

| | | |

\-userinfo-host-port-/ \-path-query-fragment-/

If #f is given to a keyword argument, it is equivalent to the absence of that keyword argument.
It is particularly useful to pass the results of parsed uri.

If a component contains a character that is not appropriate for that component, it must be
properly escaped before being passed to url-compose.

Some examples:

(uri-compose :scheme "http" :host "foo.com" :port 80

:path "/index.html" :fragment "top")

⇒ "http://foo.com:80/index.html#top"

(uri-compose :scheme "http" :host "foo.net"

:path* "/cgi-bin/query.cgi?keyword=foo")

⇒ "http://foo.net/cgi-bin/query.cgi?keyword=foo"

(uri-compose :scheme "mailto" :specific "a@foo.org")

Chapter 12: Library modules - Utilities 683

⇒ "mailto:a@foo.org"

(receive (authority path query fragment)

(uri-decompose-hierarchical "//foo.jp/index.html#whatsnew")

(uri-compose :authority authority :path path

:query query :fragment fragment))

⇒ "//foo.jp/index.html#whatsnew"

[Function]uri-merge base-uri relative-uri relative-uri2 . . .
{rfc.uri} Arguments are strings representing full or part of URIs. This procedure resolves
relative-uri in relative to base-uri, as defined in RFC3986 Section 5.2. “Relative Resolution”.

If more realtive-uri2s are given, first relative-uri is merged to base-uri, then the next argument
is merged to the resulting uri, and so on.

(uri-merge "http://example.com/foo/index.html" "a/b/c")

⇒ "http://example.com/foo/a/b/c"

(uri-merge "http://example.com/foo/search?q=abc" "../about#me")

⇒ "http://example.com/about#me"

(uri-merge "http://example.com/foo" "http://example.net/bar")

⇒ "http://example.net/bar"

(uri-merge "http://example.com/foo/" "q" "?xyz")

⇒ "http://example.com/foo/q?xyz"

[Function]uri-compose-data data :key content-type encoding
{rfc.uri} Creates a Data URI of the given data, with specified content-type and transfer
encoding. Returns a string.

The data argument must be a string or a u8vector.

The content-type argument can be #f (default), a string that represents a content type (e.g.
"text/plain;charset=utf-8"), or a list form of parsed content type (e.g. ("application"
"octet-stream"). If it is #f, text/plain with the gauche’s native character encoding is
used when data is a complete string, and application/octet-stream is used otherwise.

The encoding argument can be either #f (default), or a symbol uri or base64. This is for
transfer encoding, not character encoding. If it is #f, URI encoding is used for text data and
base64 encoding is used for binary data.

(uri-compose-data "(hello world)")

⇒ "data:text/plain;charset=utf-8,%28hello%20world%29"

(uri-compose-data "(hello world)" :encoding ’base64)

⇒ "data:text/plain;charset=utf-8;base64,KGhlbGxvIHdvcmxkKQ=="

(uri-compose-data ’#u8(0 1 2 3))

⇒ "data:application/octet-stream;base64,AAECAw=="

URI Encoding and decoding

[Function]uri-decode :key :cgi-decode
[Function]uri-decode-string string :key :cgi-decode :encoding

{rfc.uri} Decodes “URI encoding”, i.e. %-escapes. uri-decode takes input from the current
input port, and writes decoded result to the current output port. uri-decode-string takes
input from string and returns decoded string.

Chapter 12: Library modules - Utilities 684

If cgi-decode is true, also replaces + to a space character.

To uri-decode-string you can provide the external character encoding by the encoding
keyword argument. When it is given, the decoded octet sequence is assumed to be in the
specified encoding and converted to the Gauche’s internal character encoding.

[Function]uri-encode :key :noescape
[Function]uri-encode-string string :key :noescape :encoding

{rfc.uri} Encodes unsafe characters by %-escape. uri-encode takes input from the current
input port and writes the result to the current output port. uri-encode-string takes input
from string and returns the encoded string.

By default, characters that are not specified “unreserved” in RFC3986 are escaped. You
can pass different character set to noescape argument to keep from being encoded. For
example, the older RFC2396 has several more “unreserved” characters, and passing
rfc2396-unreserved-char-set (see below) prevents those characters from being
escaped.

The multibyte characters are encoded as the octet stream of Gauche’s native multibyte repre-
sentation by default. However, you can pass the encoding keyword argument to uri-encode-
string, to convert string to the specified character encoding.

[Constant]*rfc2396-unreserved-char-set*
[Constant]*rfc3986-unreserved-char-set*

{rfc.uri} These constants are bound to character sets that represents “unreserved” char-
acters defined in RFC2396 and RFC3986, respectively. (See Section 6.11 [Character set],
page 137, and Section 11.6 [Character-set library], page 527, for operations on character
sets).

12.43 rfc.zlib - zlib compression library

[Module]rfc.zlib
This module provides bindings to zlib compression library. Most features of zlib can be used
through this module.

Zlib supports reading and writing of Zlib compressed data format (RFC1950), DEFLATE
compressed data format (RFC1951), and GZIP file format (RFC1052). It also provides
procedures to calculate CRC32 and Adler32 checksums.

Compression and decompression are done through specialized ports. There are number of
parameters to fine-tune compression; refer to zlib documentation for the details.

Condition types

The following condition types are defined to represent errors during processing by zlib.

[Condition Type]<zlib-error>
{rfc.zlib} Subclass of <error> and superclass of the following condition types. This class
is an abstract class to catch any of the zlib-specific errors. Zlib-specific errors raised by
procedures in rfc.zlib are always an instance (or a compound condition including) one of
the following specific classes.

[Condition Type]<zlib-need-dict-error>
[Condition Type]<zlib-stream-error>
[Condition Type]<zlib-data-error>
[Condition Type]<zlib-memory-error>

Chapter 12: Library modules - Utilities 685

[Condition Type]<zlib-version-error>
{rfc.zlib} Subclasses of <zlib-error>. Those condition type correspond to zlib’s Z_NEED_
DICT_ERROR, Z_STREAM_ERROR, Z_DATA_ERROR, Z_MEMORY_ERROR, and Z_VERSION_ERROR er-
rors.

When an error occurs during reading data, a compound condition of a subclass of
<zlib-error> and <io-read-error> is raised. When an error occurs without I/O, a simple
condition of a subclass of <zlib-error> is raised. Errors unrelated to zlib, such as invalid
argument error, would be a simple <error> condition.

Compression/decompression ports

[Class]<deflating-port>
[Class]<inflating-port>

{rfc.zlib} Compression and decompression functions are provided via ports. A deflating
port is an output port that compresses the output data. An inflating port is an input that
reads compressed data and decompress it.

When an inflating port encounters a corrupted compressed data, a compound condition of
<io-read-error> and <zlib-data-error> is raised during read operation.

[Function]open-deflating-port drain :key compression-level bu↑er-size
window-bits memory-level strategy dictionary owner?

{rfc.zlib} Creates and returns an instance of <deflating-port>, an output port that
compresses the output data and sends the compressed data to another output port drain.
This combines the functionality of zlib’s deflateInit2() and deflateSetDictionary().

You can specify an exact integer between 1 and 9 (inclusive) to compression-level. Larger
integer means larger compression ratio. When omitted, a default compression level is used,
which is usually 6.

The following constants are defined to specify compression-level conveniently:

[Constant]Z_NO_COMPRESSION
[Constant]Z_BEST_SPEED
[Constant]Z_BEST_COMPRESSION
[Constant]Z_DEFAULT_COMPRESSION

{rfc.zlib}

The bu↑er-size argument specifies the buffer size of the port in bytes. The default is 4096.

The window-bits argument specifies the size of the window in exact integer. Typically the
value should be between 8 and 15, inclusive, and it specifies the base two logarithm of the
window size used in compression. Larger number yields better compression ratio, but more
memory usage. The default value is 15.

There are a couple of special modes specifiable by window-bits. When an integer between
-8 and -15 is given to window-bits, the port produces a raw deflated data, that lacks zlib
header and trailer. In this case, Adler32 checksum isn’t calculated. The actual window size
is determined by the absolute value of window-bits.

When window-bits is between 24 and 31, the port uses GZIP encoding; that is, instead of zlib
wrapper, the compressed data is enveloped by simple gzip header and trailer. The gzip header
added by this case doesn’t have filenames, comments, header CRC and other data, and have
zero modified time, and 255 (unknown) in the OS field. The zstream-adler32 procedure
will return CRC32 checksum instead of Adler32. The actual window size is determined by
window-bits-16.

The memory-level argument specifies how much memory should be allocated to keep the
internal state during compression. 1 means smallest memory, which causes slow and less

Chapter 12: Library modules - Utilities 686

compression. 9 means fastest and best compression with largest amount of memory. The
default value is 8.

To fine tune compression algorithm, you can use the strategy argument. The following
constants are defined as the valid value as strategy :

[Constant]Z_DEFAULT_STRATEGY
{rfc.zlib} The default strategy, suitable for most ordinary data.

[Constant]Z_FILTERED
{rfc.zlib} Suitable for data genereated by filters. Filtered data consists mostly of small
values with a random distribution, and this makes the compression algorithm to use more
huffman encoding and less string match.

[Constant]Z_HUFFMAN_ONLY
{rfc.zlib} Force huffman encoding only (no string match).

[Constant]Z_RLE
{rfc.zlib} Limit match distance to 1 (that is, to force run-length encoding). It is as fast
as Z_HUFFMAN_ONLY and gives better compression for png image data.

[Constant]Z_FIXED
{rfc.zlib} Prohibits dynamic huffman encoding. It allows a simple decoder for special
applications.

The choice of strategy only affects compression ratio and speed. Any choice produces correct
and decompressable data.

You can give an initial dictionary to the dictionary argument to be used in compression. The
compressor and decompressor must use exactly the same dictionary. See the zlib documen-
tation for the details.

By default, a deflating port leaves drain open after all conversion is done, i.e. the deflating
port itself is closed. If you don’t want to bother closing drain, give a true value to the owner?
argument; then drain is closed after the deflating port is closed and all data is written out.

Note: You must close a deflating port explicitly, or the compressed data can be chopped
prematurely. When you leave a deflating port open to be GCed, the finalizer will close it;
however, the order in which finalizers are called is undeterministic, and it is possible that
the drain port is closed before the deflating port is closed. In such cases, the deflating port’s
attempt to flush the buffered data and trailer will fail.

[Function]open-inflating-port source :key bu↑er-size window-bits dictionary
owner?

{rfc.zlib} Takes an input port source from which a compressed data can be read, and
creates and returns a new instance of <inflating-port>, that is, a port that allows de-
compressed data from it. This procedure covers zlib’s functionality of inflateInit2() and
inflateSetDictionary().

The meaning of bu↑er-size and owner are the same as open-deflating-port.

The meaning of window-bits is almost the same, except that if a value increased by 32 is
given, the inflating port automatically detects whether the source stream is zlib or gzip by
its header.

If the input data is compressed with specified dictionary, the same dictionary must be given
to the dictionary argument. Otherwise, a compound condition of <io-read-error> and
<zlib-need-dict-error> will be raised.

Chapter 12: Library modules - Utilities 687

Operations on inflating/deflating ports

[Function]zstream-total-in x'ating-port
[Function]zstream-total-out x'ating-port
[Function]zstream-adler32 x'ating-port
[Function]zstream-data-type x'ating-port

{rfc.zlib} The x'ating-port argument must be either inflating and deflating port, or an
error is raised.

Returns the value of total_in, total_out, adler32, and data_type fields of the z_stream

structure associated to the given inflating or deflating port, respectively.

The value of data_type can be one of the following constants:

[Constant]Z_BINARY
[Constant]Z_TEXT
[Constant]Z_ASCII
[Constant]Z_UNKNOWN

{rfc.zlib}

[Function]zstream-params-set! de'ating-port :key compression-level strategy
{rfc.zlib} Changes compression level and/or strategy during compressing.

[Function]zstream-dictionary-adler32 de'ating-port
{rfc.zlib} When a dictionary is given to open-deflating-port, the dictionary’s adler32
checksum is calculated. This procedure returns the checksum. If no dictionary has been
given, this procedure returns #f.

[Function]deflating-port-full-flush de'ating-port
{rfc.zlib} Flush the data buffered in the de'ating-port, and resets compression state. The
decompression routine can skip the data to the full-flush point by inflate-sync.

[Function]inflate-sync in'ating-port
{rfc.zlib} Skip the (possibly corrupted) compressed data up to the next full-flush point
marked by deflating-port-full-flush. You may want to use this procedure when you get
<zlib-data-error>. Returns the number of bytes skipped when the next full-flush point is
found, or #f when the input reaches EOF before finding the next point.

Miscellaneous API

[Function]zlib-version
{rfc.zlib} Returns Zlib’s version in string.

[Function]deflate-string string options . . .
{rfc.zlib} Compresses the given string and returns zlib-compressed data in a string. All
optional arguments are passed to open-deflating-port as they are.

[Function]inflate-string string options . . .
{rfc.zlib} Takes zlib-compressed data in string, and returns decompressed data in a string.
All optional arguments are passed to open-inflating-port as they are.

[Function]gzip-encode-string string options . . .
[Function]gzip-decode-string string options . . .

{rfc.zlib} Like deflate-string and inflate-string, but uses the gzip format instead.
It is same as giving more than 15 to the window-bits argument of deflate-string and
inflate-string.

Chapter 12: Library modules - Utilities 688

[Function]crc32 string :optional checksum
{rfc.zlib} Returns CRC32 checksum of string. If optional checksum is given, the returned
checksum is an update of checksum by string.

[Function]adler32 string :optional checksum
{rfc.zlib} Returns Adler32 checksum of string. If optional checksum is given, the returned
checksum is an update of checksum by string.

Calculating Adler32 is faster than CRC32, but it is known to produce uneven distribution
of hash values for small input. See RFC3309 for the detailed description. If it matters, use
CRC32 instead.

12.44 slib - SLIB interface

[Module]slib
This module is the interface to the Aubrey Jaffer’s SLIB. To use SLIB, say (use slib). SLIB
itself is not included in Gauche distribution. If you don’t have it on your system, get it from
http://www-swiss.ai.mit.edu/~jaffer/SLIB.html.

By default, the SLIB installation is searched from the directory specified at the Gauche con-
figuration. If SLIB isn’t there, an error is signaled. In that case, you can set the environment
variable SCHEME_LIBRARY_PATH to point to the SLIB installation path.

This module redefines require, shadowing the Gauche’s original require. If it gets a symbol
as an argument, it works as SLIB’s require, while if it gets a string, it works as Gauche’s
require. The same applies to provide and provided?.

All SLIB symbol bindings, loaded by require, stay in the module slib.

(use slib) ; load and set up slib
(require ’getopt) ; load SLIB’s getopt module
(require "foo") ; load Gauche’s foo module

12.45 sxml.ssax - Functional XML parser

[Module]sxml.ssax
sxml.* modules are the adaptation of Oleg Kiselyov’s SXML framework ([SSAX], page 764),
which is based on S-expression representation of XML structure.

SSAX is a parser part of SXML framework. This is a quote from SSAX webpage:

A SSAX functional XML parsing framework consists of a DOM/SXML parser,
a SAX parser, and a supporting library of lexing and parsing procedures. The
procedures in the package can be used separately to tokenize or parse various
pieces of XML documents. The framework supports XML Namespaces, charac-
ter, internal and external parsed entities, attribute value normalization, process-
ing instructions and CDATA sections. The package includes a semi-validating
SXML parser : a DOM-mode parser that is an instantiation of a SAX parser
(called SSAX).

The current version is based on the SSAX CVS version newer than the last ’official’ release
of SXML toolset (4.9), and SXML-gauche-0.9 package which was based on SXML-4.9. There
is an important change from that release. Now the API uses lowercase letter suffix ssax:

instead of uppercase SSAX:—the difference matters since Gauche is case sensitive by default.
Alias names are defined for backward compatibility, but the use of uppercase suffixed names
are deprecated.

http://www-swiss.ai.mit.edu/~jaffer/SLIB.html

Chapter 12: Library modules - Utilities 689

I derived the content of this part of the manual from SSAX source code, just by converting
its comments into texinfo format. The original text is by Oleg Kiselyov. Shiro Kawai should be
responsible for any typographical error or formatting error introduced by conversion.

The manual entries are ordered in "bottom-up" way, beginning from the lower-level constructs
towards the high-level utilities. If you just want to parse XML document and obtain SXML,
check out ssax:xml->sxml in Section 12.45.4 [SSAX Highest-level parsers - XML to SXML],
page 696.

12.45.1 SSAX data types

TAG-KIND
a symbol ’START, ’END, ’PI, ’DECL, ’COMMENT, ’CDSECT or ’ENTITY-REF that identifies
a markup token.

UNRES-NAME
a name (called GI in the XML Recommendation) as given in an xml document
for a markup token: start-tag, PI target, attribute name. If a GI is an NCName,
UNRES-NAME is this NCName converted into a Scheme symbol. If a GI is a QName,
UNRES-NAME is a pair of symbols: (PREFIX . LOCALPART)

RES-NAME
An expanded name, a resolved version of an UNRES-NAME. For an element or an
attribute name with a non-empty namespace URI, RES-NAME is a pair of symbols,
(URI-SYMB . LOCALPART). Otherwise, it’s a single symbol.

ELEM-CONTENT-MODEL
A symbol:

ANY anything goes, expect an END tag.
EMPTY-TAG no content, and no END-tag is coming.
EMPTY no content, expect the END-tag as the next token.
PCDATA expect character data only, and no children elements.
MIXED

ELEM-CONTENT

URI-SYMB
A symbol representing a namespace URI – or other symbol chosen by the user to
represent URI. In the former case, URI-SYMB is created by %-quoting of bad URI
characters and converting the resulting string into a symbol.

NAMESPACES
A list representing namespaces in effect. An element of the list has one of the
following forms:

(prefix uri-symb . uri-symb)

or,

(prefix user-prefix . uri-symb)

user-pre↓x is a symbol chosen by the user to represent the URI.

(#f user-prefix . uri-symb)

Specification of the user-chosen prefix and a uri-symbol.

(*DEFAULT* user-prefix . uri-symb)

Declaration of the default namespace

(*DEFAULT* #f . #f)

Un-declaration of the default namespace. This notation represents over-
riding of the previous declaration

Chapter 12: Library modules - Utilities 690

A NAMESPACES list may contain several elements for the same PREFIX. The
one closest to the beginning of the list takes effect.

ATTLIST An ordered collection of (NAME . VALUE) pairs, where NAME is a RES-NAME
or an UNRES-NAME. The collection is an ADT.

STR-HANDLER
A procedure of three arguments: (string1 string2 seed) returning a new seed.
The procedure is supposed to handle a chunk of character data string1 followed by
a chunk of character data string2. string2 is a short string, often "\n" and even ""

ENTITIES
An assoc list of pairs:

(named-entity-name . named-entity-body)

where named-entity-name is a symbol under which the entity was declared, named-
entity-body is either a string, or (for an external entity) a thunk that will return
an input port (from which the entity can be read). named-entity-body may also be
#f. This is an indication that a named-entity-name is currently being expanded. A
reference to this named-entity-name will be an error: violation of the WFC nonre-
cursion.

XML-TOKEN
A record with two slots, kind and token. This record represents a markup, which
is, according to the XML Recommendation, "takes the form of start-tags, end-
tags, empty-element tags, entity references, character references, comments, CDATA
section delimiters, document type declarations, and processing instructions."

kind a TAG-KIND

head an UNRES-NAME. For xml-tokens of kinds ’COMMENT and ’CDSECT, the
head is #f

For example,

<P> => kind=’START, head=’P

</P> => kind=’END, head=’P

 => kind=’EMPTY-EL, head=’BR

<!DOCTYPE OMF ...> => kind=’DECL, head=’DOCTYPE

<?xml version="1.0"?> => kind=’PI, head=’xml

&my-ent; => kind = ’ENTITY-REF, head=’my-ent

Character references are not represented by xml-tokens as these references are trans-
parently resolved into the corresponding characters.

XML-DECL
A record with three slots, elems, entities, and notations.

The record represents a datatype of an XML document: the list of declared ele-
ments and their attributes, declared notations, list of replacement strings or loading
procedures for parsed general entities, etc. Normally an xml-decl record is created
from a DTD or an XML Schema, although it can be created and filled in in many
other ways (e.g., loaded from a file).

elems: an (assoc) list of decl-elem or #f. The latter instructs the parser to do no
validation of elements and attributes.

decl-elem: declaration of one element: (elem-name elem-content decl-attrs);
elem-name is an UNRES-NAME for the element. elem-content is an ELEM-
CONTENT-MODEL. decl-attrs is an ATTLIST, of (attr-name . value) asso-
ciations. This element can declare a user procedure to handle parsing of an element
(e.g., to do a custom validation, or to build a hash of IDs as they’re encountered).

Chapter 12: Library modules - Utilities 691

decl-attr: an element of an ATTLIST, declaration of one attribute (attr-name

content-type use-type default-value): attr-name is an UNRES-NAME for the
declared attribute; content-type is a symbol: CDATA, NMTOKEN, NMTOKENS,
...; or a list of strings for the enumerated type. use-type is a symbol: REQUIRED,
IMPLIED, FIXED default-value is a string for the default value, or #f if not given.

[Function]make-empty-attlist
[Function]attlist-add attlist name-value
[Function]attlist-null?
[Function]attlist-remove-top attlist
[Function]attlist->alist attlist
[Function]attlist-fold

{sxml.ssax} Utility procedures to deal with attribute list, which keeps name-value associa-
tion.

[Function]make-xml-token kind head
[Function]xml-token? token

{sxml.ssax} A constructor and a predicate for a XML-TOKEN record.

[Macro]xml-token-kind token
[Macro]xml-token-head token

{sxml.ssax} Accessor macros of a XML-TOKEN record.

12.45.2 SSAX low-level parsing code

They deal with primitive lexical units (Names, whitespaces, tags) and with pieces of more
generic productions. Most of these parsers must be called in appropriate context. For example,
ssax:complete-start-tag must be called only when the start-tag has been detected and its
GI has been read.

[Function]ssax:skip-S port
{sxml.ssax} Skip the S (whitespace) production as defined by

[3] S ::= (#x20 | #x9 | #xD | #xA)

The procedure returns the first not-whitespace character it encounters while scanning the
port. This character is left on the input stream.

[Function]ssax:ncname-starting-char? a-char
{sxml.ssax} Check to see if a-char may start a NCName.

[Function]ssax:read-NCName port
{sxml.ssax} Read a NCName starting from the current position in the port and return it as
a symbol.

[Function]ssax:read-QName port
{sxml.ssax} Read a (namespace-) Qualified Name, QName, from the current position in the
port.

From REC-xml-names:

[6] QName ::= (Prefix ’:’)? LocalPart

[7] Prefix ::= NCName

[8] LocalPart ::= NCName

Return: an UNRES-NAME.

[Variable]ssax:Prefix-XML
{sxml.ssax} The prefix of the pre-defined XML namespace, i.e. ’xml.

Chapter 12: Library modules - Utilities 692

[Function]ssax:read-markup-token port
{sxml.ssax} This procedure starts parsing of a markup token. The current position in the
stream must be #\<. This procedure scans enough of the input stream to figure out what
kind of a markup token it is seeing. The procedure returns an xml-token structure describing
the token. Note, generally reading of the current markup is not finished! In particular, no
attributes of the start-tag token are scanned.

Here’s a detailed break out of the return values and the position in the port when that
particular value is returned:

PI-token only PI-target is read. To finish the Processing Instruction and disregard it, call
ssax:skip-pi. ssax:read-attributes may be useful as well (for PIs whose
content is attribute-value pairs)

END-token

The end tag is read completely; the current position is right after the terminating
#\> character.

COMMENT is read and skipped completely. The current position is right after "-->" that
terminates the comment.

CDSECT The current position is right after "<!CDATA[". Use ssax:read-cdata-body to
read the rest.

DECL We have read the keyword (the one that follows "<!") identifying this declara-
tion markup. The current position is after the keyword (usually a whitespace
character)

START-token

We have read the keyword (GI) of this start tag. No attributes are
scanned yet. We don’t know if this tag has an empty content either. Use
ssax:complete-start-tag to finish parsing of the token.

[Function]ssax:skip-pi port
{sxml.ssax} The current position is inside a PI. Skip till the rest of the PI.

[Function]ssax:read-pi-body-as-string port
{sxml.ssax} The current position is right after reading the PITarget. We read the body of
PI and return it as a string. The port will point to the character right after ’?>’ combination
that terminates PI.

[16] PI ::= ’<?’ PITarget (S (Char* - (Char* ’?>’ Char*)))? ’?>’

[Function]ssax:skip-internal-dtd port
{sxml.ssax} The current pos in the port is inside an internal DTD subset (e.g., after reading
#\[that begins an internal DTD subset) Skip until the "]>" combination that terminates
this DTD

[Function]ssax:read-cdata-body port str-handler seed
{sxml.ssax} This procedure must be called after we have read a string "<![CDATA[" that be-
gins a CDATA section. The current position must be the first position of the CDATA body. This
function reads lines of the CDATA body and passes them to a STR-HANDLER, a character
data consumer.

The str-handler is a STR-HANDLER, a procedure string1 string2 seed. The first string1
argument to STR-HANDLER never contains a newline. The second string2 argument of-
ten will. On the first invocation of the STR-HANDLER, the seed is the one passed to
ssax:read-cdata-body as the third argument. The result of this first invocation will be
passed as the seed argument to the second invocation of the line consumer, and so on. The

Chapter 12: Library modules - Utilities 693

result of the last invocation of the STR-HANDLER is returned by the ssax:read-cdata-

body. Note a similarity to the fundamental ’fold’ iterator.

Within a CDATA section all characters are taken at their face value, with only three exceptions:

• CR, LF, and CRLF are treated as line delimiters, and passed as a single #\newline to the
STR-HANDLER.

• "]]>" combination is the end of the CDATA section.

• > is treated as an embedded #\> character. Note, < and & are not specially
recognized (and are not expanded)!

[Function]ssax:read-char-ref port
{sxml.ssax}

[66] CharRef ::= ’&#’ [0-9]+ ’;’

| ’&#x’ [0-9a-fA-F]+ ’;’

This procedure must be called after we we have read "&#" that introduces a char reference.
The procedure reads this reference and returns the corresponding char. The current po-
sition in port will be after ";" that terminates the char reference. Faults detected: WFC:

XML-Spec.html#wf-Legalchar.

According to Section "4.1 Character and Entity References" of the XML Recommendation:

"[Definition: A character reference refers to a specific character in the ISO/IEC
10646 character set, for example one not directly accessible from available input
devices.]"

Therefore, we use a ucscode->char function to convert a character code into the character
– regardless of the current character encoding of the input stream.

[Function]ssax:handle-parsed-entity port name entities content-handler
str-handler seed

{sxml.ssax} Expand and handle a parsed-entity reference

• port - a PORT

• name - the name of the parsed entity to expand, a symbol.

• entities - see ENTITIES

• content-handler - procedure port entities seed that is supposed to return a seed.

• str-handler - a STR-HANDLER. It is called if the entity in question turns out to be a
pre-declared entity

The result is the one returned by content-handler or str-handler.

Faults detected:

WFC: XML-Spec.html#wf-entdeclared

WFC: XML-Spec.html#norecursion

[Function]ssax:read-attributes port entities
{sxml.ssax} This procedure reads and parses a production Attribute*

[41] Attribute ::= Name Eq AttValue

[10] AttValue ::= ’"’ ([^<&"] | Reference)* ’"’

| "’" ([^<&’] | Reference)* "’"

[25] Eq ::= S? ’=’ S?

The procedure returns an ATTLIST, of Name (as UNRES-NAME), Value (as string) pairs.
The current character on the port is a non-whitespace character that is not an ncname-
starting character.

Chapter 12: Library modules - Utilities 694

Note the following rules to keep in mind when reading an ’AttValue’ "Before the value of
an attribute is passed to the application or checked for validity, the XML processor must
normalize it as follows:

• a character reference is processed by appending the referenced character to the attribute
value

• an entity reference is processed by recursively processing the replacement text of the
entity [see ENTITIES] [named entities amp lt gt quot apos are assumed pre-declared]

• a whitespace character (#x20, #xD, #xA, #x9) is processed by appending #x20 to the
normalized value, except that only a single #x20 is appended for a "#xD#xA" sequence
that is part of an external parsed entity or the literal entity value of an internal parsed
entity

• other characters are processed by appending them to the normalized value "

Faults detected:

WFC: XML-Spec.html#CleanAttrVals

WFC: XML-Spec.html#uniqattspec

[Function]ssax:resolve-name port unres-name namespaces apply-default-ns?
{sxml.ssax} Convert an unres-name to a res-name given the appropriate namespaces dec-
larations. The last parameter apply-default-ns? determines if the default namespace applies
(for instance, it does not for attribute names)

Per REC-xml-names/#nsc-NSDeclared, "xml" prefix is considered pre-declared and bound
to the namespace name "http://www.w3.org/XML/1998/namespace".

This procedure tests for the namespace constraints: http: / / www . w3 . org / TR /

REC-xml-names/#nsc-NSDeclared.

[Function]ssax:uri-string->symbol uri-str
{sxml.ssax} Convert a uri-str to an appropriate symbol.

[Function]ssax:complete-start-tag tag port elems entities namespaces
{sxml.ssax} This procedure is to complete parsing of a start-tag markup. The procedure
must be called after the start tag token has been read. Tag is an UNRES-NAME. Elem s
is an instance of xml-decl::elems; it can be #f to tell the function to do no validation of
elements and their attributes.

This procedure returns several values:

elem-gi a RES-NAME.

attributes element’s attributes, an ATTLIST of (res-name . string) pairs. The list does
not include xmlns attributes.

namespaces
the input list of namespaces amended with namespace (re-)declarations contained
within the start-tag under parsing ELEM-CONTENT-MODEL.

On exit, the current position in port will be the first character after #\> that terminates the
start-tag markup.

Faults detected:

VC: XML-Spec.html#enum

VC: XML-Spec.html#RequiredAttr

VC: XML-Spec.html#FixedAttr

VC: XML-Spec.html#ValueType

WFC: XML-Spec.html#uniqattspec (after namespaces prefixes are resolved)

http://www.w3.org/XML/1998/namespace
http://www.w3.org/TR/REC-xml-names/#nsc-NSDeclared
http://www.w3.org/TR/REC-xml-names/#nsc-NSDeclared

Chapter 12: Library modules - Utilities 695

VC: XML-Spec.html#elementvalid

WFC: REC-xml-names/#dt-NSName

Note, although XML Recommendation does not explicitly say it, xmlns and xmlns: attributes
don’t have to be declared (although they can be declared, to specify their default value).

[Function]ssax:read-external-id port
{sxml.ssax} This procedure parses an ExternalID production.

[75] ExternalID ::= ’SYSTEM’ S SystemLiteral

| ’PUBLIC’ S PubidLiteral S SystemLiteral

[11] SystemLiteral ::= (’"’ [^"]* ’"’) | ("’" [^’]* "’")

[12] PubidLiteral ::= ’"’ PubidChar* ’"’ | "’" (PubidChar - "’")* "’"

[13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9]

| [-’()+,./:=?;!*#@$_%]

This procedure is supposed to be called when an ExternalID is expected; that is, the current
character must be either #\S or #\P that start correspondingly a SYSTEM or PUBLIC token.
This procedure returns the SystemLiteral as a string. A PubidLiteral is disregarded if
present.

12.45.3 SSAX higher-level parsers and scanners

They parse productions corresponding to the whole (document) entity or its higher-level pieces
(prolog, root element, etc).

[Function]ssax:scan-Misc port
{sxml.ssax} Scan the Misc production in the context:

[1] document ::= prolog element Misc*

[22] prolog ::= XMLDecl? Misc* (doctypedec l Misc*)?

[27] Misc ::= Comment | PI | S

The following function should be called in the prolog or epilog contexts. In these contexts,
whitespaces are completely ignored. The return value from ssax:scan-Misc is either a PI-
token, a DECL-token, a START token, or EOF. Comments are ignored and not reported.

[Function]ssax:read-char-data port expect-eof? str-handler seed
{sxml.ssax} This procedure is to read the character content of an XML document or an
XML element.

[43] content ::=

(element | CharData | Reference | CDSect | PI

| Comment)*

To be more precise, the procedure reads CharData, expands CDSect and character entities,
and skips comments. The procedure stops at a named reference, EOF, at the beginning of a
PI or a start/end tag.

port a port to read

expect-eof?
a boolean indicating if EOF is normal, i.e., the character data may be terminated
by the EOF. EOF is normal while processing a parsed entity.

str-handler
a STR-HANDLER.

seed an argument passed to the first invocation of STR-HANDLER.

The procedure returns two results: seed and token.

Chapter 12: Library modules - Utilities 696

The seed is the result of the last invocation of str-handler, or the original seed if str-handler
was never called.

Token can be either an eof-object (this can happen only if expect-eof? was #t), or:

• an xml-token describing a START tag or an END-tag; For a start token, the caller has
to finish reading it.

• an xml-token describing the beginning of a PI. It’s up to an application to read or skip
through the rest of this PI;

• an xml-token describing a named entity reference.

CDATA sections and character references are expanded inline and never returned. Comments
are silently disregarded.

As the XML Recommendation requires, all whitespace in character data must be preserved.
However, a CR character (#xD) must be disregarded if it appears before a LF character (#xA), or
replaced by a #xA character otherwise. See Secs. 2.10 and 2.11 of the XML Recommendation.
See also the canonical XML Recommendation.

[Function]ssax:assert-token token kind gi error-cont
{sxml.ssax} Make sure that token is of anticipated kind and has anticipated gi. Note gi
argument may actually be a pair of two symbols, Namespace URI or the prefix, and of the
localname. If the assertion fails, error-cont is evaluated by passing it three arguments: token
kind gi. The result of error-cont is returned.

12.45.4 SSAX Highest-level parsers - XML to SXML

These parsers are a set of syntactic forms to instantiate a SSAX parser. A user can instantiate
the parser to do the full validation, or no validation, or any particular validation. The user
specifies which PI he wants to be notified about. The user tells what to do with the parsed
character and element data. The latter handlers determine if the parsing follows a SAX or a
DOM model.

[Macro]ssax:make-pi-parser my-pi-handlers
{sxml.ssax} Create a parser to parse and process one Processing Element (PI).

My-pi-handlers: An assoc list of pairs (PI-TAG . PI-HANDLER) where PI-TAG is an
NCName symbol, the PI target, and PI-HANDLER is a procedure port pi-tag seed where
port points to the first symbol after the PI target. The handler should read the rest of the
PI up to and including the combination ’?>’ that terminates the PI. The handler should
return a new seed. One of the PI-TAGs may be a symbol *DEFAULT*. The corresponding
handler will handle PIs that no other handler will. If the *DEFAULT* PI-TAG is not specified,
ssax:make-pi-parser will make one, which skips the body of the PI.

The output of the ssax:make-pi-parser is a procedure port pi-tag seed, that will parse the
current PI accoding to user-specified handlers.

[Macro]ssax:make-elem-parser my-new-level-seed my-↓nish-element
my-char-data-handler my-pi-handlers

{sxml.ssax} Create a parser to parse and process one element, including its character content
or children elements. The parser is typically applied to the root element of a document.

my-new-level-seed
procedure elem-gi attributes namespaces expected-content seed
where elem-gi is a RES-NAME of the element about to be processed. This
procedure is to generate the seed to be passed to handlers that process the content
of the element.

Chapter 12: Library modules - Utilities 697

my-↓nish-element
procedure elem-gi attributes namespaces parent-seed seed
This procedure is called when parsing of elem-gi is finished. The seed is the
result from the last content parser (or from my-new-level-seed if the element has
the empty content). Parent-seed is the same seed as was passed to my-new-level-
seed. The procedure is to generate a seed that will be the result of the element
parser.

my-char-data-handler
A STR-HANDLER.

my-pi-handlers
See ssax:make-pi-handler above.

The generated parser is a: procedure start-tag-head port elems entities namespaces preserve-
ws? seed.
The procedure must be called after the start tag token has been read. Start-tag-head is an
UNRES-NAME from the start-element tag. Elems is an instance of xml-decl::elems. See
ssax:complete-start-tag::preserve-ws?

Faults detected:

VC: XML-Spec.html#elementvalid

WFC: XML-Spec.html#GIMatch

[Macro]ssax:make-parser user-handler-tag user-handler-proc . . .
{sxml.ssax} Create an XML parser, an instance of the XML parsing framework. This will
be a SAX, a DOM, or a specialized parser depending on the supplied user-handlers.

user-handler-tag is a symbol that identifies a procedural expression that follows the tag.
Given below are tags and signatures of the corresponding procedures. Not all tags have to
be specified. If some are omitted, reasonable defaults will apply.

tag: DOCTYPE

handler-procedure: port docname systemid internal-subset? seed

If internal-subset? is #t, the current position in the port is right after we have
read #\[that begins the internal DTD subset. We must finish reading of this
subset before we return (or must call skip-internal-subset if we aren’t interested
in reading it). The port at exit must be at the first symbol after the whole
DOCTYPE declaration.

The handler-procedure must generate four values:
elems entities namespaces seed
See xml-decl::elems for elems. It may be #f to switch off the validation. names-
paces will typically contain USER-PREFIXes for selected URI-SYMBs. The de-
fault handler-procedure skips the internal subset, if any, and returns (values #f

’() ’() seed).

tag: UNDECL-ROOT

handler-procedure: elem-gi seed
where elem-gi is an UNRES-NAME of the root element. This procedure is called
when an XML document under parsing contains no DOCTYPE declaration. The
handler-procedure, as a DOCTYPE handler procedure above, must generate four
values:
elems entities namespaces seed
The default handler-procedure returns (values #f ’() ’() seed).

Chapter 12: Library modules - Utilities 698

tag: DECL-ROOT

handler-procedure: elem-gi seed
where elem-gi is an UNRES-NAME of the root element. This procedure is called
when an XML document under parsing does contains the DOCTYPE declaration.
The handler-procedure must generate a new seed (and verify that the name of
the root element matches the doctype, if the handler so wishes). The default
handler-procedure is the identity function.

tag: NEW-LEVEL-SEED

handler-procedure: see ssax:make-elem-parser, my-new-level-seed

tag: FINISH-ELEMENT

handler-procedure: see ssax:make-elem-parser, my-↓nish-element

tag: CHAR-DATA-HANDLER

handler-procedure: see ssax:make-elem-parser, my-char-data-handler

tag: PI handler-procedure: see ssax:make-pi-parser.
The default value is ’().

The generated parser is a
procedure PORT SEED

This procedure parses the document prolog and then exits to an element parser (created by
ssax:make-elem-parser) to handle the rest.

[1] document ::= prolog element Misc*

[22] prolog ::= XMLDecl? Misc* (doctypedec | Misc*)?

[27] Misc ::= Comment | PI | S

[28] doctypedecl ::= ’<!DOCTYPE’ S Name (S ExternalID)? S?

(’[’ (markupdecl | PEReference | S)* ’]’ S?)? ’>’

[29] markupdecl ::= elementdecl | AttlistDecl

| EntityDecl

| NotationDecl | PI

| Comment

A few utility procedures that turned out useful.

[Function]ssax:reverse-collect-str fragments
{sxml.ssax} given the list of fragments (some of which are text strings) reverse the list and
concatenate adjacent text strings.

[Function]ssax:reverse-collect-str-drop-ws fragments
{sxml.ssax} given the list of fragments (some of which are text strings) reverse the list and
concatenate adjacent text strings. We also drop "unsignificant" whitespace, that is, white-
space in front, behind and between elements. The whitespace that is included in character
data is not affected. We use this procedure to "intelligently" drop "insignificant" whitespace
in the parsed SXML. If the strict compliance with the XML Recommendation regarding the
whitespace is desired, please use the ssax:reverse-collect-str procedure instead.

[Function]ssax:xml->sxml port namespace-pre↓x-assig
{sxml.ssax} This is an instance of a SSAX parser above that returns an SXML representation
of the XML document to be read from port. Namespace-pre↓x-assig is a list of (USER-PREFIX
. URI-STRING) that assigns USER-PREFIXes to certain namespaces identified by particular
URI-STRINGs. It may be an empty list. The procedure returns an SXML tree. The port
points out to the first character after the root element.

Chapter 12: Library modules - Utilities 699

12.46 sxml.sxpath - SXML Query Language

[Module]sxml.sxpath
SXPath is a query language for SXML, an instance of XML Information set (Infoset) in the
form of s-expressions.

It is originally written by Oleg Kiselyov, and improved by Dmitry Lizorkin and Kirill Lisovsky.
This module also incorporates various procedures written for SXPath by Dmitry Lizorkin and
Kirill Lisovsky.

Current version is based on sxpathlib.scm,v 3.915, sxpath.scm,v 1.1, and sxpath-ext.scm,v
1.911.

This manual is mostly derived from the comments in the original source files.

The module consists of three layers.

1. Basic converters and applicators, which provides the means to access and translate SXML
tree.

2. High-level query language compiler, which takes abbreviated SXPath and returns a Scheme
function that selects a nodeset that satisfies the specified path from the given nodeset.

3. Extension libraries, which implements SXML counterparts to W3C XPath Core Functions
Library.

12.46.1 SXPath basic converters and applicators

A converter is a function

type Converter = Node|Nodeset -> Nodeset

A converter can also play a role of a predicate: in that case, if a converter, applied to a node or
a nodeset, yields a non-empty nodeset, the converter-predicate is deemed satisfied. Throughout
this file a nil nodeset is equivalent to #f in denoting a failure.

[Function]nodeset? x
{sxml.sxpath} Returns #t if given object is a nodeset.

[Function]as-nodeset x
{sxml.sxpath} If x is a nodeset - returns it as is, otherwise wrap it in a list.

[Function]sxml:element? obj
{sxml.sxpath} Predicate which returns #t if obj is SXML element, otherwise returns #f.

[Function]ntype-names?? crit
{sxml.sxpath} The function ntype-names?? takes a list of acceptable node names as a
criterion and returns a function, which, when applied to a node, will return #t if the node
name is present in criterion list and #f otherwise.

ntype-names?? :: ListOfNames -> Node -> Boolean

[Function]ntype?? crit
{sxml.sxpath} The function ntype?? takes a type criterion and returns a function, which,
when applied to a node, will tell if the node satisfies the test.

ntype?? :: Crit -> Node -> Boolean

The criterion crit is one of the following symbols:

id tests if the Node has the right name (id)

@ tests if the Node is an attributes-list.

* tests if the Node is an Element.

Chapter 12: Library modules - Utilities 700

text tests if the Node is a text node.

data tests if the Node is a data node (text, number, boolean, etc., but not pair).

PI tests if the Node is a PI node.

COMMENT

tests if the Node is a COMMENT node.

ENTITY tests if the Node is a ENTITY node.

any #t for any type of Node.

[Function]ntype-namespace-id?? ns-id
{sxml.sxpath} This function takes a namespace-id, and returns a predicate Node

-> Boolean, which is #t for nodes with this very namespace-id. ns-id is a string.
(ntype-namespace-id?? #f) will be #t for nodes with non-qualified names.

[Function]sxml:invert pred
{sxml.sxpath} This function takes a predicate and returns it inverted . That is if the given
predicate yields #f or ’() the inverted one yields the given node (#t) and vice versa.

[Function]node-eq? other
[Function]node-equal? other

{sxml.sxpath} Curried equivalence converter-predicates, i.e.

((node-eq? a) b) ≡ (eq? a b)

((node-equal? a) b) ≡ (equal? a b)

[Function]node-pos n
{sxml.sxpath}

node-pos:: N -> Nodeset -> Nodeset, or

node-pos:: N -> Converter

Select the N ’th element of a Nodeset and return as a singular Nodeset; Return an empty
nodeset if the Nth element does not exist. ((node-pos 1) Nodeset) selects the node at the
head of the Nodeset, if exists; ((node-pos 2) Nodeset) selects the Node after that, if exists.
N can also be a negative number: in that case the node is picked from the tail of the list.
((node-pos -1) Nodeset) selects the last node of a non-empty nodeset; ((node-pos -2)

Nodeset) selects the last but one node, if exists.

[Function]sxml:filter pred?
{sxml.sxpath}

filter:: Converter -> Converter

A filter applicator, which introduces a filtering context. The argument converter is considered
a predicate, with either #f or nil result meaning failure.

[Function]take-until pred?
{sxml.sxpath}

take-until:: Converter -> Converter, or

take-until:: Pred -> Node|Nodeset -> Nodeset

Given a converter-predicate and a nodeset, apply the predicate to each element of the nodeset,
until the predicate yields anything but #f or nil. Return the elements of the input nodeset
that have been processed till that moment (that is, which fail the predicate). take-until

is a variation of the filter above: take-until passes elements of an ordered input set till
(but not including) the first element that satisfies the predicate. The nodeset returned by
((take-until (not pred)) nset) is a subset – to be more precise, a prefix – of the nodeset
returned by ((filter pred) nset).

Chapter 12: Library modules - Utilities 701

[Function]take-after pred?
{sxml.sxpath}

take-after:: Converter -> Converter, or

take-after:: Pred -> Node|Nodeset -> Nodeset

Given a converter-predicate and a nodeset, apply the predicate to each element of the nodeset,
until the predicate yields anything but #f or nil. Return the elements of the input nodeset
that have not been processed: that is, return the elements of the input nodeset that follow
the first element that satisfied the predicate. take-after along with take-until partition
an input nodeset into three parts: the first element that satisfies a predicate, all preceding
elements and all following elements.

[Function]map-union proc lst
{sxml.sxpath} Apply proc to each element of lst and return the list of results. If proc returns
a nodeset, splice it into the result.

From another point of view, map-union is a function Converter->Converter, which places an
argument-converter in a joining context.

[Function]node-reverse node-or-nodeset
{sxml.sxpath}

node-reverse :: Converter, or

node-reverse:: Node|Nodeset -> Nodeset

Reverses the order of nodes in the nodeset. This basic converter is needed to implement a
reverse document order (see the XPath Recommendation).

[Function]node-trace title
{sxml.sxpath}

node-trace:: String -> Converter

(node-trace title) is an identity converter. In addition it prints out a node or nodeset it
is applied to, prefixed with the ’title’. This converter is very useful for debugging.

What follow are Converter combinators, higher-order functions that transmogrify a converter
or glue a sequence of converters into a single, non-trivial converter. The goal is to arrive at
converters that correspond to XPath location paths.

From a different point of view, a combinator is a fixed, named pattern of applying converters.
Given below is a complete set of such patterns that together implement XPath location path
specification. As it turns out, all these combinators can be built from a small number of basic
blocks: regular functional composition, map-union and filter applicators, and the nodeset union.

[Function]select-kids test-pred?
{sxml.sxpath}

select-kids:: Pred -> Node -> Nodeset

Given a Node, return an (ordered) subset its children that satisfy the Pred (a converter,
actually).

select-kids:: Pred -> Nodeset -> Nodeset

The same as above, but select among children of all the nodes in the Nodeset.

[Function]node-self pred
{sxml.sxpath}

node-self:: Pred -> Node -> Nodeset, or

node-self:: Converter -> Converter

Similar to select-kids but apply to the Node itself rather than to its children. The resulting
Nodeset will contain either one component, or will be empty (if the Node failed the Pred).

Chapter 12: Library modules - Utilities 702

[Function]node-join . selectors
{sxml.sxpath}

node-join:: [LocPath] -> Node|Nodeset -> Nodeset, or

node-join:: [Converter] -> Converter

join the sequence of location steps or paths as described in the title comments above.

[Function]node-reduce . converters
{sxml.sxpath}

node-reduce:: [LocPath] -> Node|Nodeset -> Nodeset, or

node-reduce:: [Converter] -> Converter

A regular functional composition of converters. From a different point of view, ((apply
node-reduce converters) nodeset) is equivalent to (foldl apply nodeset converters)

i.e., folding, or reducing, a list of converters with the nodeset as a seed.

[Function]node-or . converters
{sxml.sxpath}

node-or:: [Converter] -> Converter

This combinator applies all converters to a given node and produces the union of their results.
This combinator corresponds to a union, ’|’ operation for XPath location paths.

[Function]node-closure test-pred?
{sxml.sxpath}

node-closure:: Converter -> Converter

Select all descendants of a node that satisfy a converter-predicate. This combinator is similar
to select-kids but applies to grand... children as well. This combinator implements the
"descendant::" XPath axis. Conceptually, this combinator can be expressed as

(define (node-closure f)

(node-or

(select-kids f)

(node-reduce (select-kids (ntype?? ’*)) (node-closure f))))

This definition, as written, looks somewhat like a fixpoint, and it will run forever. It is obvious
however that sooner or later (select-kids (ntype?? ’*)) will return an empty nodeset. At
this point further iterations will no longer affect the result and can be stopped.

12.46.2 SXPath query language

[Function]sxpath abbrpath . ns-binding
{sxml.sxpath} Evaluates an abbreviated SXPath

sxpath:: AbbrPath -> Converter, or

sxpath:: AbbrPath -> Node|Nodeset -> Nodeset

AbbrPath is a list. It is translated to the full SXPath according to the following rewriting
rules:

(sxpath ’()) -> (node-join)

(sxpath ’(path-component ...)) ->

(node-join (sxpath1 path-component) (sxpath ’(...)))

(sxpath1 ’//) -> (node-or

(node-self (ntype?? ’*any*))

(node-closure (ntype?? ’*any*)))

(sxpath1 ’(equal? x)) -> (select-kids (node-equal? x))

(sxpath1 ’(eq? x)) -> (select-kids (node-eq? x))

Chapter 12: Library modules - Utilities 703

(sxpath1 ’(or@ ...)) -> (select-kids (ntype-names??

(cdr ’(or@ ...))))

(sxpath1 ’(not@ ...)) -> (select-kids (sxml:invert

(ntype-names??

(cdr ’(not@ ...)))))

(sxpath1 ’(ns-id:* x)) -> (select-kids

(ntype-namespace-id?? x))

(sxpath1 ?symbol) -> (select-kids (ntype?? ?symbol))

(sxpath1 ?string) -> (txpath ?string)

(sxpath1 procedure) -> procedure

(sxpath1 ’(?symbol ...)) -> (sxpath1 ’((?symbol) ...))

(sxpath1 ’(path reducer ...)) ->

(node-reduce (sxpath path) (sxpathr reducer) ...)

(sxpathr number) -> (node-pos number)

(sxpathr path-filter) -> (filter (sxpath path-filter))

Note that the above table is abstract rules to show how it works, and not the running code
examples. The nonterminals sxpath1 and sxpathr don’t exist as APIs. The term txpath is an
internal function that interprets XPath query given as a string. In the code, a string passed
to sxpath is interpreted as a XPath query.

;; select all <book> elements whose style attribute value is equal to

;; the <bookstore> element’s speciality attribute value.

(sxpath "//book[/bookstore/@specialty=@style]")

Some wrapper functions around sxpath:

[Function]if-sxpath path
{sxml.sxpath} sxpath always returns a list, which is #t in Scheme. if-sxpath returns #f
instead of empty list.

[Function]if-car-sxpath path
{sxml.sxpath} Returns first node found, if any. Otherwise returns #f.

[Function]car-sxpath path
{sxml.sxpath} Returns first node found, if any. Otherwise returns empty list.

[Function]sxml:id-alist node . lpaths
{sxml.sxpath} Built an index as a list of (ID_value . element) pairs for given node. lpaths
are location paths for attributes of type ID.

12.46.3 SXPath extension

SXML counterparts to W3C XPath Core Functions Library.

[Function]sxml:string object
{sxml.sxpath} The counterpart to XPath string function (section 4.2 XPath Rec.) Con-
verts a given object to a string. NOTE:

1. When converting a nodeset - a document order is not preserved

2. number->string function returns the result in a form which is slightly different from
XPath Rec. specification

[Function]sxml:boolean object
{sxml.sxpath} The counterpart to XPath boolean function (section 4.3 XPath Rec.) Con-
verts its argument to a boolean.

Chapter 12: Library modules - Utilities 704

[Function]sxml:number obj
{sxml.sxpath} The counterpart to XPath number function (section 4.4 XPath Rec.) Con-
verts its argument to a number NOTE:

1. The argument is not optional (yet?).

2. string->number conversion is not IEEE 754 round-to-nearest.

3. NaN is represented as 0.

[Function]sxml:string-value node
{sxml.sxpath} Returns a string value for a given node in accordance to XPath Rec. 5.1 -
5.7

[Function]sxml:node? node
{sxml.sxpath} According to XPath specification 2.3, this test is true for any XPath node.
For SXML auxiliary lists and lists of attributes has to be excluded.

[Function]sxml:attr-list obj
{sxml.sxpath} Returns the list of attributes for a given SXML node. Empty list is returned
if the given node is not an element, or if it has no list of attributes

[Function]sxml:id id-index
{sxml.sxpath} Select SXML element by its unique IDs. (XPath Rec. 4.1) Returns a con-
verter that takes object, which is a nodeset or a datatype which can be converted to a string
by means of a ’string’ function.

id-index is ((id-value . element) (id-value . element) ...).

This index is used for selection of an element by its unique ID.

Comparators for XPath objects:

[Function]sxml:equality-cmp bool-op number-op string-op
{sxml.sxpath} A helper for XPath equality operations: = , != bool-op, number-op and
’string-op are comparison operations for a pair of booleans, numbers and strings respectively.

[Function]sxml:equal? a b
[Function]sxml:not-equal? a b

{sxml.sxpath} Counterparts of XPath equality operations: = , !=, using default equality
tests.

[Function]sxml:relational-cmp op
{sxml.sxpath} Creates a relational operation (< , > , <= , >=) for two XPath objects. op

is comparison procedure: < , > , <= or >=.

XPath axises. An order in resulting nodeset is preserved.

[Function]sxml:attribute test-pred?
{sxml.sxpath} Attribute axis.

[Function]sxml:child test-pred?
{sxml.sxpath} Child axis. This function is similar to ’select-kids’, but it returns an empty
child-list for PI, Comment and Entity nodes.

[Function]sxml:parent test-pred?
{sxml.sxpath} Parent axis.

Given a predicate, it returns a function RootNode -> Converter which yields a node ->

parent converter then applied to a rootnode.

Chapter 12: Library modules - Utilities 705

Thus, such a converter may be constructed using ((sxml:parent test-pred) rootnode)

and returns a parent of a node it is applied to. If applied to a nodeset, it returns the list
of parents of nodes in the nodeset. The rootnode does not have to be the root node of the
whole SXML tree – it may be a root node of a branch of interest. The parent:: axis can be
used with any SXML node.

[Function]sxml:ancestor test-pred?
{sxml.sxpath} Ancestor axis

[Function]sxml:ancestor-or-self test-pred?
{sxml.sxpath} Ancestor-or-self axis

[Function]sxml:descendant test-pred?
{sxml.sxpath} Descendant axis

[Function]sxml:descendant-or-self test-pred?
{sxml.sxpath} Descendant-or-self axis

[Function]sxml:following test-pred?
{sxml.sxpath} Following axis

[Function]sxml:following-sibling test-pred?
{sxml.sxpath} Following-sibling axis

[Function]sxml:namespace test-pred?
{sxml.sxpath} Namespace axis

[Function]sxml:preceding test-pred?
{sxml.sxpath} Preceding axis

[Function]sxml:preceding-sibling test-pred?
{sxml.sxpath} Preceding-sibling axis

Popular shortcuts:

[Function]sxml:child-nodes nodeset
{sxml.sxpath}

((sxml:child sxml:node?) nodeset)

[Function]sxml:child-elements nodeset
{sxml.sxpath}

((select-kids sxml:element?) nodeset)

12.47 sxml.tools - Manipulating SXML structure

[Module]sxml.tools
This module is a port of Kirill Lisofsky’s sxml-tools, a collection of convenient procedures
that work on SXML structure. The current version is derived from sxml-tools CVS revision
3.13.

The manual entry is mainly derived from the comments in the original source code.

Chapter 12: Library modules - Utilities 706

12.47.1 SXML predicates

[Function]sxml:empty-element? obj
{sxml.tools} A predicate which returns #t if given element obj is empty. Empty element
has no nested elements, text nodes, PIs, Comments or entities but it may contain attributes
or namespace-id. It is a SXML counterpart of XML empty-element.

[Function]sxml:shallow-normalized? obj
{sxml.tools} Returns #t if the given obj is shallow-normalized SXML element. The element
itself has to be normalized but its nested elements are not tested.

[Function]sxml:normalized? obj
{sxml.tools} Returns #t if the given obj is normalized SXML element. The element itself
and all its nested elements have to be normalised.

[Function]sxml:shallow-minimized? obj
{sxml.tools} Returns #t if the given obj is shallow-minimized SXML element. The element
itself has to be minimised but its nested elements are not tested.

[Function]sxml:minimized? obj
{sxml.tools} Returns #t if the given obj is minimized SXML element. The element itself
and all its nested elements have to be minimised.

12.47.2 SXML accessors

[Function]sxml:name obj
{sxml.tools} Returns a name of a given SXML node. It’s just an alias of car, but introduced
for the sake of encapsulation.

[Function]sxml:element-name obj
{sxml.tools} A version of sxml:name, which returns #f if the given obj is not a SXML
element. Otherwise returns its name.

[Function]sxml:node-name obj
{sxml.tools} Safe version of sxml:name, which returns #f if the given obj is not a SXML
node. Otherwise returns its name.

[Function]sxml:ncname obj
{sxml.tools} Returns Local Part of Qualified Name (Namespaces in XML production [6])
for given obj, which is ":"-separated suffix of its Qualified Name. If a name of a node given
is NCName (Namespaces in XML production [4]), then it is returned as is. Please note that
while SXML name is a symbol this function returns a string.

[Function]sxml:name->ns-id sxml-name
{sxml.tools} Returns namespace-id part of given name, or #f if it’s LocalName

[Function]sxml:content obj
{sxml.tools} Returns the content of given SXML element or nodeset (just text and element
nodes) representing it as a list of strings and nested elements in document order. This list is
empty if obj is empty element or empty list.

[Function]sxml:content-raw obj
{sxml.tools} Returns all the content of normalized SXML element except attr-list and aux-
list. Thus it includes PI, COMMENT and ENTITY nodes as well as TEXT and ELEMENT nodes
returned by sxml:content. Returns a list of nodes in document order or empty list if obj is
empty element or empty list. This function is faster than sxml:content.

Chapter 12: Library modules - Utilities 707

In SXML normal form, an element is represented by a list as this:

(name attr-list aux-list content ...)

where attr-list is a list beginning with @, and aux-list is a list beginning with @@.

In the minimized form, Aux-list can be omitted when it is empty. Attr-list can be omitted
when it is empty and aux-list is absent.

The following procedures extract attr-list and aux-list.

[Function]sxml:attr-list-node obj
{sxml.tools} Returns attr-list for a given obj, or #f if it is absent

[Function]sxml:attr-as-list obj
{sxml.tools} Returns attr-list wrapped in list, or ’((@)) if it is absent and aux-list is present,
or ’() if both lists are absent.

[Function]sxml:aux-list-node obj
{sxml.tools} Returns aux-list for a given obj, or #f if it is absent.

[Function]sxml:aux-as-list obj
{sxml.tools} Returns aux-list wrapped in list, or ’() if it is absent.

[Function]sxml:attr-list-u obj
{sxml.tools} Returns the list of attributes for given element or nodeset. Analog of ((sxpath
’(@ *)) obj). Empty list is returned if there is no list of attributes.

The -u suffix indicates it can be used for non-normalized SXML node. (’u’ stands for ’uni-
versal’).

[Function]sxml:aux-list obj
{sxml.tools} Returns the list of auxiliary nodes for given element or nodeset. Analog of
((sxpath ’(@@ *)) obj). Empty list is returned if a list of auxiliary nodes is absent.

[Function]sxml:aux-list-u obj
{sxml.tools} Returns the list of auxiliary nodes for given element or nodeset. Analog of
((sxpath ’(@@ *)) obj). Empty list is returned if a list of auxiliary nodes is absent.

The -u suffix indicates it can be used for non-normalized SXML node. (’u’ stands for ’uni-
versal’).

[Function]sxml:aux-node obj aux-name
{sxml.tools} Return the first aux-node with aux-name given in SXML element obj or #f
is such a node is absent. Note: it returns just the first node found even if multiple nodes are
present, so it’s mostly intended for nodes with unique names .

[Function]sxml:aux-nodes obj aux-name
{sxml.tools} Return a list of aux-node with aux-name given in SXML element obj or ’()
if such a node is absent.

[Function]sxml:attr obj attr-name
{sxml.tools} Accessor for an attribute attr-name of given SXML element obj. It returns:
the value of the attribute if the attribute is present, or #f if there is no such an attribute in
the given element.

[Function]sxml:num-attr obj attr-name
{sxml.tools} Accessor for a numerical attribute attr-name of given SXML element obj. It
returns: a value of the attribute as the attribute as a number if the attribute is present and
its value may be converted to number using string->number, or #f if there is no such an
attribute in the given element or its value can’t be converted to a number.

Chapter 12: Library modules - Utilities 708

[Function]sxml:attr-u obj attr-name
{sxml.tools} Accessor for an attribute attr-name of given SXML element obj which may
also be an attributes-list or nodeset (usually content of SXML element).

It returns: the value of the attribute if the attribute is present, or #f if there is no such an
attribute in the given element.

The -u suffix indicates it can be used for non-normalized SXML node. (’u’ stands for ’uni-
versal’).

[Function]sxml:ns-list obj
{sxml.tools} Returns the list of namespaces for given element. Analog of ((sxpath ’(@@

NAMESPACES *)) obj) Empty list is returned if there is no list of namespaces.

[Function]sxml:ns-id->nodes obj namespace-id
{sxml.tools} Returns the list of namespace-assoc’s for given namespace-id in SXML element
obj. Analog of ((sxpath ’(@@ *NAMESPACES* namespace-id)) obj). Empty list is returned
if there is no namespace-assoc with namespace-id given.

[Function]sxml:ns-id->uri obj namespace-id
{sxml.tools} Returns a URI for namespace-id given, or #f if there is no namespace-assoc
with namespace-id given.

[Function]sxml:ns-uri->id obj uri
{sxml.tools} Returns a namespace-id for namespace URI given.

[Function]sxml:ns-id ns-assoc
{sxml.tools} Returns namespace-id for given namespace-assoc list.

[Function]sxml:ns-uri ns-assoc
{sxml.tools} Returns URI for given namespace-assoc list.

[Function]sxml:ns-prefix ns-assoc
{sxml.tools} It returns namespace prefix for given namespace-assoc list. Original (as in
XML document) prefix for namespace-id given has to be strored as the third element in
namespace-assoc list if it is different from namespace-id. If original prefix is omitted in
namespace-assoc then namespace-id is used instead.

12.47.3 SXML modifiers

Constructors and mutators for normalized SXML data. These functions are optimized for nor-
malized SXML data. They are not applicable to arbitrary non-normalized SXML data.

Most of the functions are provided in two variants:

1. side-effect intended functions for linear update of given elements. Their names are ended
with exclamation mark. Note that the returned value of this variant is unspecified, unless
explicitly noted. An example: sxml:change-content!.

2. pure functions without side-effects which return modified elements. An example:
sxml:change-content.

[Function]sxml:change-content obj new-content
[Function]sxml:change-content! obj new-content

{sxml.tools} Change the content of given SXML element to new-content. If new-content is
an empty list then the obj is transformed to an empty element. The resulting SXML element
is normalized.

Chapter 12: Library modules - Utilities 709

[Function]sxml:change-attrlist obj new-attrlist
[Function]sxml:change-attrlist! obj new-attrlist

{sxml.tools} The resulting SXML element is normalized. If new-attrlist is empty, the cadr
of obj is (@).

[Function]sxml:change-name obj new-name
[Function]sxml:change-name! obj new-name

{sxml.tools} Change a name of SXML element destructively.

[Function]sxml:add-attr obj attr
{sxml.tools} Returns SXML element obj with attribute attr added, or #f if the attribute
with given name already exists. attr is (attr-name attr-value). Pure functional counter-
part to sxml:add-attr!.

[Function]sxml:add-attr! obj attr
{sxml.tools} Add an attribute attr for an element obj. Returns #f if the attribute with given
name already exists. The resulting SXML node is normalized. Linear update counterpart to
sxml:add-attr.

[Function]sxml:change-attr obj attr
{sxml.tools} Returns SXML element obj with changed value of attribute attr, or #f if
where is no attribute with given name. attr is (attr-name attr-value).

[Function]sxml:change-attr! obj attr
{sxml.tools} Change value of the attribute for element obj. attr is (attr-name attr-

value). Returns #f if where is no such attribute.

[Function]sxml:set-attr obj attr
[Function]sxml:set-attr! obj attr

{sxml.tools} Set attribute attr of element obj. If there is no such attribute the new one is
added.

[Function]sxml:add-aux obj aux-node
{sxml.tools} Returns SXML element obj with an auxiliary node aux-node added.

[Function]sxml:add-aux! obj aux-node
{sxml.tools} Add an auxiliary node aux-node for an element obj.

[Function]sxml:squeeze obj
[Function]sxml:squeeze! obj

{sxml.tools} Eliminates empty lists of attributes and aux-lists for given SXML element obj
and its descendants ("minimize" it). Returns a minimized and normalized SXML element.

[Function]sxml:clean obj
{sxml.tools} Eliminates empty lists of attributes and all aux-lists for given SXML element
obj and its descendants. Returns a minimized and normalized SXML element.

12.47.4 SXPath auxiliary utilities

These are convenience utilities to extend SXPath functionalities.

[Function]sxml:add-parents obj . top-ptr
{sxml.tools} Returns an SXML nodeset with a ’parent pointer’ added. A parent pointer is
an aux node of the form (*PARENT* thunk), where thunk returns the parent element.

Chapter 12: Library modules - Utilities 710

[Function]sxml:node-parent rootnode
{sxml.tools} Returns a fast ’node-parent’ function, i.e. a function of one argument - SXML
element - which returns its parent node using *PARENT* pointer in aux-list. ’*TOP-PTR* may
be used as a pointer to root node. It return an empty list when applied to root node.

[Function]sxml:lookup id index
{sxml.tools} Lookup an element using its ID.

12.47.5 SXML to markup conversion

Procedures to generate XML or HTML marked up text from SXML. For more advanced con-
version, see the SXML serializer (Section 12.48 [Serializing XML and HTML from SXML],
page 711).

[Function]sxml:clean-feed . fragments
{sxml.tools} Filter the ’fragments’. The fragments are a list of strings, characters, numbers,
thunks, #f – and other fragments. The function traverses the tree depth-first, and returns a
list of strings, characters and executed thunks, and ignores #f and ’().

If all the meaningful fragments are strings, then (apply string-append ...) to a result of
this function will return its string-value.

It may be considered as a variant of Oleg Kiselyov’s SRV:send-reply: While SRV:send-reply
displays fragments, this function returns the list of meaningful fragments and filter out the
garbage.

[Function]sxml:attr->xml attr
{sxml.tools} Creates the XML markup for attributes.

[Function]sxml:string->xml string
{sxml.tools} Return a string or a list of strings where all the occurrences of characters <,
>, &, ", or ’ in a given string are replaced by corresponding character entity references. See
also sxml:string->html.

[Function]sxml:sxml->xml tree
{sxml.tools} A version of dispatch-node specialized and optimized for SXML->XML trans-
formation.

[Function]sxml:attr->html attr
{sxml.tools} Creates the HTML markup for attributes.

[Function]sxml:string->html string
{sxml.tools} Given a string, check to make sure it does not contain characters <, >, &, " that
require encoding. See also html-escape-string in Section 12.53 [Simple HTML document
construction], page 721.

[Function]sxml:non-terminated-html-tag? tag
{sxml.tools} This predicate yields #t for "non-terminated" HTML 4.0 tags.

[Function]sxml:sxml->html tree
{sxml.tools} A version of dispatch-node specialized and optimized for SXML->HTML trans-
formation.

Chapter 12: Library modules - Utilities 711

12.48 sxml.serializer - Serializing XML and HTML from
SXML

[Module]sxml.serializer
This module contains a full-featured serializer from SXML into XML and HTML, partially
conforming to XSLT 2.0 and XQuery 1.0 Serialization (http://www.w3.org/TR/2005/
CR-xslt-xquery-serialization-20051103/). It’s more powerful than sxml:sxml->xml and
sxml:sxml->html from sxml.tools.

The manual entry is mainly derived from the comments in the original source code.

12.48.1 Simple SXML serializing

The SXML serializer provides some convenient high-level converters which should be enough for
most tasks.

[Function]srl:sxml->xml sxml-obj :optional port-or-↓lename
{sxml.serializer} Serializes the sxml-obj into XML, with indentation to facilitate read-
ability by a human.

If port-or-↓lename is not supplied, the functions return a string that contains the serialized
representation of the sxml-obj.

If port-or-↓lename is supplied and is a port, the functions write the serialized representation
of sxml-obj to this port and return an unspecified result.

If port-or-↓lename is supplied and is a string, this string is treated as an output filename,
the serialized representation of sxml-obj is written to that filename and an unspecified result
is returned. If a file with the given name already exists, the effect is unspecified.

[Function]srl:sxml->xml-noindent sxml-obj :optional port-or-↓lename
{sxml.serializer} Serializes the sxml-obj into XML, without indentation.

Argument port-or-↓lename works like described in srl:sxml->xml.

[Function]srl:sxml->html sxml-obj :optional port-or-↓lename
{sxml.serializer} Serializes the sxml-obj into HTML, with indentation to facilitate read-
ability by a human.

Argument port-or-↓lename works like described in srl:sxml->xml.

[Function]srl:sxml->html-noindent sxml-obj :optional port-or-↓lename
{sxml.serializer} Serializes the sxml-obj into HTML, without indentation.

Argument port-or-↓lename works like described in srl:sxml->xml.

12.48.2 Custom SXML serializing

These functions provide full access to all configuration parameters of the XML serializer.

[Function]srl:parameterizable sxml-obj :optional port-or-↓lename params*
{sxml.serializer} Generalized serialization procedure, parameterizable with all the serial-
ization parameters supported by this implementation.

sxml-obj - an SXML object to serialize

port-or-↓lename - either #f, a port or a string; works like in srl:sxml->xml (Section 12.48.1
[Simple SXML serializing], page 711).

params - each parameter is a cons of param-name (a symbol) and param-value. The available
parameter names and their values are described below:

method - Either the symbol xml or html. For a detailed explanation of the difference between
XML and HTML methods, see XSLT 2.0 and XQuery 1.0 Serialization (http://www.w3.
org/TR/2005/CR-xslt-xquery-serialization-20051103/).

http://www.w3.org/TR/2005/CR-xslt-xquery-serialization-20051103/
http://www.w3.org/TR/2005/CR-xslt-xquery-serialization-20051103/
http://www.w3.org/TR/2005/CR-xslt-xquery-serialization-20051103/
http://www.w3.org/TR/2005/CR-xslt-xquery-serialization-20051103/

Chapter 12: Library modules - Utilities 712

indent - Whether the output XML should include whitespace for human readability (#t or
#f). You can also supply a string, which will be used as the indentation unit.

omit-xml-declaration? - Whether the XML declaration should be omitted. Default: #t.

standalone - Whether to define the XML document as standalone in the XML declaration.
Should be one of the symbols yes, no or omit, the later causing standalone declaration to be
suppressed. Default: omit.

version - The XML version used in the declaration. A string or a number. Default: "1.0".

cdata-section-elements - A list of SXML element names (as symbols). The contents of
those elements will be escaped as CDATA sections.

ns-prefix-assig - A list of (cons prefix namespace-uri), where each prefix is a symbol
and each namespace-uri a string. Will serialize the given namespaces with the corresponding
prefixes. ATTENTION: If a parameter name is unexpected or a parameter value is ill-formed,
the parameter is silently ignored!

Example usage:

(srl:parameterizable

’(tag (@ (attr "value")) (nested "text node") (empty))

(current-output-port)

’(method . xml) ; XML output method is used by default

’(indent . "\t") ; use a single tabulation to indent

’(omit-xml-declaration . #f) ; add XML declaration

’(standalone . yes) ; denote a standalone XML document

’(version . "1.0")) ; XML version

param ::= (cons param-name param-value)

param-name ::= symbol

cdata-section-elements

value ::= (listof sxml-elem-name)

sxml-elem-name ::= symbol

indent

value ::= ’yes | #t | ’no | #f | whitespace-string

method

value ::= ’xml | ’html

ns-prefix-assig

value ::= (listof (cons prefix namespace-uri))

prefix ::= symbol

namespace-uri ::= string

omit-xml-declaration?

value ::= ’yes | #t | ’no | #f

standalone

value ::= ’yes | #t | ’no | #f | ’omit

version

value ::= string | number

Chapter 12: Library modules - Utilities 713

[Function]srl:sxml->string sxml-obj cdata-section-elements indent method
ns-pre↓x-assig omit-xml-declaration? standalone version

{sxml.serializer} Same as srl:parameterizable returning a string and without the over-
head of parsing parameters. This function interface may change in future versions of the
library.

[Function]srl:display-sxml sxml->obj port-or-↓lename cdata-section-elements
indent method ns-pre↓x-assig omit-xml-declaration? standalone version

{sxml.serializer} Same as srl:parameterizable writing output to port-or-↓lename and
without the overhead of parsing parameters. This function interface may change in future
versions of the library.

12.49 text.console - Text terminal control

[Module]text.console
This module provides a simple interface for character terminal control. Currently we support
vt100 compatible terminals and Windows console.

This module doesn’t depend on external library such as curses and works with Gauche alone,
but what it can do is limited; for example, you can’t get an event when shift key alone is
pressed. For finer controls, you need some extension libraries.

For an example of the features in this module, see snake.scm in the examples directory of
Gauche source distribution.

Console objects

[Class]<vt100>
{text.console} Represents a vt100-compatible terminal. An instance of this class can be
passed to the “console” argument of the following generic functions.

[Instance Variable of <vt100>]iport
Input port connected to the terminal. The default value is the standard input port.

[Instance Variable of <vt100>]oport
Output port connected to the terminal. The default value is the standard output port.

[Instance Variable of <vt100>]input-delay
The terminal send back special keys encoded in an input escape sequence. In order to
distinguish such keys from the actual ESC key, we time the input—if the subsequent
input doesn’t come within input-delay microseconds, we interpret the input as individual
keystroke, rather than a part of an escape sequence. The default value is 1000 (1ms).

[Class]<windows-console>
Represents Windows console. This class is defined on all platforms, but its useful methods
are only available on Windows-native runtime.

It doesn’t have public slots.

The application has to check the runtime to see what kind of console is available. A suggested
flow is as follows.

• If has-windows-console? returns true, create <windows-console> instance. You don’t
need cond-expand; has-windows-console? returns #f on non-Windows platforms.

• Check the environment variable TERM. If it is set and satisfies vt100-compatible?, you can
create <vt100> instance. (Note: It is possible that you end up using <vt100> console on
Windows; e.g. gosh running on MSYS shell.)

Chapter 12: Library modules - Utilities 714

• Otherwise, console isn’t available.

The following procedure packages this flow.

[Function]make-default-console :key if-not-available
{text.console} Determines a suitable console class of the running process and returns its
instance.

If no suitable console is available, the behavior depends on the if-not-available keyword argu-
ment. If it is :error, which is default, an error is signalled. If it is #f, the procedure returns
#f.

[Function]vt100-compatible? string
{text.console} Given the string value of the environment variable TERM, returns #t if the
terminal can be handled by <vt100> console, #f otherwise.

Console control

[Generic function]call-with-console console proc :key mode
{text.console} Takes over the control of the console, and calls proc with console as the only
argument. The console is set to the mode, which must be a symbol with-terminal-mode
accepts: raw, rare or cooked. By default the console is set to rare mode, which turn off the
echoing and passes most of keystrokes to the program, but it intercepts terminal controls (like
Ctrl-C for interrupt and Ctrl-Z for suspend; the actual key depends on terminal settings,
though.)

If proc raises an unhandled error, this generic function resets the terminal mode before
returning. It does not clear the screen.

[Generic function]putch console char
{text.console} Display a character at the current cursor position, and move the current
cursor position.

[Generic function]putstr console string
{text.console} Display a string from the current cursor position, and move the current
cursor position.

[Generic function]beep console
{text.console} Ring the beep, or flash the screen (visible bell) if possible.

[Generic function]getch console
{text.console} Fetch a keypress from the console. This blocks until any key is pressed.

The return value may be one of the following values:

A character
A key for the character is pressed. It may be a control code if the control key is
pressed with the key; that is, if the user presses Ctrl-A, #\x01 will be returned.

A symbol Indicates a special key; the following keys are supported: KEY_UP, KEY_DOWN, KEY_
LEFT, KEY_RIGHT, KEY_HOME, KEY_END, KEY_INS, KEY_DEL, KEY_PGDN, KEY_PGUP,
KEY_F1, KEY_F2, KEY_F3, KEY_F4, KEY_F5, KEY_F6, KEY_F7, KEY_F8, KEY_F9,
KEY_F10, KEY_F11, KEY_F12. (Note: DELETE key is usually mapped to #\x7f,
but it depends on the terminal).

A list of symbol ALT and a character.
Indicates the character key is pressed with Alt key. For example, if the user
presses Alt-a, (ALT #\a) is returned (assuming CAPSLOCK is off).

EOF Indicates the input is closed somehow.

Chapter 12: Library modules - Utilities 715

Modifier keys except ALT are not treated separately but included in the returned keycode.
Assuming CAPSLOCK is off, if the user press a, Shift+a, and Ctrl+a, the returned value is
#\a, #\A and #\x01, respectively. Ctrl+Shift+a can’t be distinguished from Ctrl+a. ALT+a,
ALT+Shift+a, and ALT+Ctrl+a will be (ALT #\a), (ALT #\A) and (ALT #\x01), respectively.

[Generic function]chready? console
{text.console} Returns true if there’s a key sequence to be read in the console’s input.

[Generic function]query-cursor-position console
{text.console} Returns two values, the current cursor’s x and y position. The top-left
corner is (0,0).

[Generic function]move-cursor-to console row column
{text.console} Move cursor to the specified position. The top-left corner is (0,0).

[Generic function]reset-terminal console
{text.console} Reset terminal. Usually this sets the character attributes to the default,
clears the screen, and moves the cursor to (0, 0).

[Generic function]clear-screen console
{text.console} Clear entire screen.

[Generic function]clear-to-eol console
{text.console} Clear characters from the current cursor position to the end of the line.

[Generic function]clear-to-eos console
{text.console} Clear characters from the current cursor position to the end of the screen.

[Generic function]hide-cursor console
[Generic function]show-cursor console

{text.console} Hide/show the cursor.

[Generic function]cursor-down/scroll-up console
{text.console} If the cursor is at the bottom line of the screen, scroll up the contents and
clear the bottom line; the cursor stays the same position. If the cursor is not at the bottom
line of the screen, move the cursor down.

[Generic function]cursor-up/scroll-down console
{text.console} If the cursor is at the top line of the screen, scroll down the contents and
clear the top line; the cursor stays the same position. If the cursor is not at the top line of
the screen, move the cursor up.

[Generic function]query-screen-size console
{text.console} Returns two values, the width and height of the screen.

Note: This may affect what’s shown in the console. It is recommended that you only call
this before redrawing the entire screen and save the result.

[Generic function]set-character-attribute console spec
{text.console} Set the console so that the subsequent characters will be written with at-
tributes specified by spec.

The character attributes spec is a list in the following format:

(<fgcolor> [<bgcolor> . <option> ...])

where:

<fgcolor> : <color> | #f ; #f means default

<bgcolor> : <color> | #f

Chapter 12: Library modules - Utilities 716

<color> : black | red | green | yellow | blue | magenta | cyan | white

<option> : bright | reverse | underscore

For example, you can set characters to be written in red with black background and under-
score, you can call:

(set-character-attribute con ’(red black underscore))

That the options may seem rather limited in the age of full-color bitmap displays. That’s
what it used to be, young lads.

[Generic function]reset-character-attribute console
{text.console} Reset character attributes to the default.

[Generic function]with-character-attribute console attrs thunk
{text.console} Sets the console’s attributes to attrs and calls thunk, then restores the
attributes. Even if thunk throws an error, attributes are restored.

Note: You should be able to nest this, but currently nesting isn’t working.

12.50 text.csv - CSV tables

[Module]text.csv
Provides a function to parse/generate CSV (comma separated value) tables, including the
format defined in RFC4180. You can customize the separator and quoter character to deal
with variations of CSV formats.

CSV table is consisted by a series of records, separated by a newline. Each record contains
number of ↓elds, separated by a separator character (by default, a comma). A field can
contain comma or newline if quoted, i.e. surrounded by double-quote characters. To include
double-quote character in a quoted field, use two consecutive double-quote character. Usually,
the whitespaces around the field are ignored.

Since use cases of CSV-like files vary, we provide layered API to be combined flexibly.

Low-level API

The bottom layer of API is to convert text into list of lists and vice versa.

[Function]make-csv-reader separator :optional (quote-char #\")
{text.csv} Returns a procedure with one optional argument, an input port. When the
procedure is called, it reads one record from the port (or, if omitted, from the current input
port) and returns a list of fields. If input reaches EOF, it returns EOF.

[Function]make-csv-writer separator :optional newline (quote-char #\")
special-char-set

{text.csv} Returns a procedure with two arguments, output port and a list of fields. When
the procedure is called, it outputs a separator-separated fields with proper escapes, to the
output port. Each field value must be a string. The separator argument can be a character
or a string.

You can also specify the record delimiter string by newline; for example, you can pass "\r\n"
to prepare a file to be read by Windows programs.

The output of field is quoted when it contains special characters— which automatically
includes characters in separator, quote-char and newline argument, plus the characters in
the char-set given to special-char-set; its default is #[;\s].

Chapter 12: Library modules - Utilities 717

Middle-level API

Occasionally, CSV files generated from spreadsheet contains superfluous rows/columns and we
need to make sense of them. Here are some utilities to help them.

A typical format of such spreadsheet-generated CSV file has the following properties:

1. There’s a “header row” near the top; not necessarily the very first row, but certainly it
comes before any real data. It signifies the meaning of each column of the data. There may
be superfluous columns inserted just for cosmetics, and sometimes the order of columns are
changed when the original spreadsheet is edited. So we need some flexibility to interpret
the input data.

2. “Record rows” follow the header row. It contains actual data. There may be superfluous
rows inserted just for cosmetics. Also, it’s often the case that the end of data isn’t marked
clearly (you find large number of rows of empty strings, for example).

The main purpose of middle-level CSV parser is to take the output of low-level parser, which
is a list of lists of strings, and find the header row, and then convert the subsequent record rows
into tuples according to the header row. A tuple is just a list of strings, but ordered in the same
way as the specified header spec.

[Function]csv-rows->tuples rows header-specs :key required-slots allow-gap?
{text.csv} Convert input rows (a list of lists of strings) to a list of tuples. A tuple is a list
of slot values.

First, it looks for a header row that matches the given header-spec. Once the header row is
found, parse the subsequent rows as record row according to the header and convert them to
tuples. If no header is found, #f is returned.

Header-specs is a list of header spec, each of which can be either a string, a regexp, or a
predicate on a string. If it’s a string, a column that exactly matches the string is picked. If
it’s a regexp, a column that matches the regexp is picked. And if it’s a predicate, as you
might have already guessed, a column that satisfies the predicate is picked.

The order fo header-specs determines the order of columns of output tuples.

Required-slots determines if the input row is a valid record row or not. The structure of
required-slots is as follows:

<required-slots> : (<spec> ...)

<spec> : <header-spec> | (<header-spec> <predicate>)

The <header-spec> compared to the elements of header-slot (by equal?) to figure out which
columns to check. A single <header-spec> in <spec> means that the column shouldn’t be
empty for a valid record row. If <spec> is a list of <header-spec> and <predicate>, then the
value of the column corresponds to the <header-spec> is passed to <predicate> to determine
if it’s a valid record row.

If required-slots is omitted or an empty list, any row with at least one non-empty column to
be included in the tuple.

If allow-gap? is #t, it keeps reading rows until the end, skipping invalid rows. If allow-gap?
is #f (default), it stops reading once it sees an invalid row after headers.

Let’s see an example. Suppose we have the following CSV file as data.csv. It has extra rows
and columns, as is often seen in spreadsheet-exported files.

,,,,,,,,

"Exported data",,,,,,,,

,,,,,,,,

,,Year,Country,,Population,GDP,,Note

,,1958,"Land of Lisp",,39994,"551,435,453",,

,,1957,"United States of Formula Translators",,115333,"4,343,225,434",,Estimated

,,1959,"People’s Republic of COBOL",,82524,"3,357,551,143",,

Chapter 12: Library modules - Utilities 718

,,1970,"Kingdom of Pascal",,3785,,,"GDP missing"

,,,,,,,,

,,1962,"APL Republic",,1545,"342,335,151",,

You can extract tuples of Country, Year, GDP and Population, as follows:
(use text.csv)

(use gauche.generator)

(call-with-input-file "data.csv"

(^p (csv-rows->tuples

(generator->list (cute (make-csv-reader #\,) p))

’("Country" "Year" "GDP" "Population"))))
⇒
(("Land of Lisp" "1958" "551,435,453" "39994")

("United States of Formula Translators" "1957" "4,343,225,434" "115333")

("People’s Republic of COBOL" "1959" "3,357,551,143" "82524")

("Kingdom of Pascal" "1970" "" "3785"))

Note that irrelevant rows are skipped, and columns in the results are ordered as specified in
the header-specs.

Since there’s a gap (empty row) after the “Kingdom of Pascal” entry, csv-rows->tuples
stops processing there by default. If you want to include “APL Republic”, you have to pass
:allow-gap? #t to csv-rows->tuples.

The next example gives :required-slots option to eliminate rows with missing some of
Year, Country or GDP—thus “Kingdom of Pascal” is omitted from the result, while “APL
Republic” is included because of :allow-gap? argument. (It also checks Year has exactly 4
digits.)

(call-with-input-file "data.csv"

(^p (csv-rows->tuples

(generator->list (cute (make-csv-reader #\,) p))

’("Country" "Year" "GDP" "Population")

:required-slots ’(("Year" #/^\d{4}$/) "Country" "GDP")

:allow-gap? #t)))
⇒
(("Land of Lisp" "1958" "551,435,453" "39994")

("United States of Formula Translators" "1957" "4,343,225,434" "115333")

("People’s Republic of COBOL" "1959" "3,357,551,143" "82524")

("APL Republic" "1962" "342,335,151" "1545"))

The following two procedures are ingredients of csv-rows->tuples:

[Function]make-csv-header-parser header-specs
{text.csv} Create a procedure that takes a row (a list of strings) and checks if if it matches
the criteria specified by header-specs. (See csv-rows->tuples above about header-specs.)
If the input satisfies the spec, it returns a permuter vector that maps the tuple positions to
the input column numbers. Otherwise, it returns #f.

The permuter vector is a vector of integers, where K-th element being I means the K-th item
of the tuple should be taken from I-th column.

Let’s see the example. Suppose we know that the input contains the following row as the
header row:

(define *input-row* ’("" "" "Year" "Country" "" "Population" "GDP" "Notes"))

We want to detect that row, but we only needs Country, Year, GDP and Population columns,
in that order. So we create a header parser as follows:

(define header-parser

(make-csv-header-parser ’("Country" "Year" "GDP" "Population")))

Applying this header parser to the input data returns the permuter vector:

(header-parser *input-row*)

Chapter 12: Library modules - Utilities 719

⇒ #(3 2 6 5)

It means, the first item of tuple (Country) is in the 3rd column of the input, the second item
of tuple (Year) is in the 2nd column of the input, and so on. This permuter vector can be
used to parse record rows to get tuples.

[Function]make-csv-record-parser header-slots permuter :optional required-slots
{text.csv} Create a procedure that converts one input row into a tuple.

Permuter is the vector returned by make-csv-header-parser.

See cvs-rows->tuples above for header-slots and required-slots arguments.

12.51 text.diff - Calculate difference of text streams

[Module]text.diff
This module calculates the difference of two text streams or strings, using util.lcs (see
Section 12.64 [The longest common subsequence], page 735).

[Function]diff src-a src-b :key reader eq-fn
{text.diff} Generates an "edit list" from text sources src-a and src-b.

Each of text sources, src-a and src-b, can be either an input port or a string. If it is a string,
it is converted to a string input port internally. Then, the text streams from both sources
are converted to sequences by calling reader repeatedly on them; the default of reader is
read-line, and those sequences are passed to lcs-edit-list to calculate the edit list. The
equality function eq-fn is also passed to lcs-edit-list.

An edit list is a set of commands that turn the text sequence from src-a to the one from
src-b. See the description of lcs-edit-list for the detailed explanation of the edit list.

(diff "a\nb\nc\nd\n" "b\ne\nd\nf\n")

⇒
(((- 0 "a"))

((- 2 "c") (+ 1 "e"))

((+ 3 "f")))

[Function]diff-report src-a src-b :key reader eq-fn writer
{text.diff} A convenience procedure to take the diff of two text sources and display the
result nicely. This procedure calls lcs-fold to calculate the difference of two text sources.
The meanings of src-a, src-b, reader and eq-fn are the same as diff’s.

Writer is a procedure that takes two arguments, the text element and a type, which is either
a symbol +, a symbol -, or #f. If the text element is only in src-a, writer is called with the
element and -. If the text element is only in src-b, it is called with the element and +. If the
text element is in both sources, it is called with the element and #f. The default procedure
of writer prints the passed text element to the current output port in unified-diff-like format:

(diff-report "a\nb\nc\nd\n" "b\ne\nd\nf\n")

displays:

- a

b

- c

+ e

d

+ f

Chapter 12: Library modules - Utilities 720

12.52 text.gettext - Localized messages

[Module]text.gettext
This module provides utilities to deal with localized messages. The API is compatible to
GNU’s gettext, and the messages are read from *.po and *.mo files, so that you can use
the GNU gettext toolchain to prepare localized messages. However, the code is written from
scratch by Alex Shinn and doesn’t depend on GNU’s gettext library.

This implementation extends GNU’s gettext API in the following ways:

• It can read from multiple message files in cascaded way, allowing applications to share a
part of message files.

• It supports multiple locale/domain simultaneously.

SRFI-29 (see Section 11.9 [Localization], page 533) provides another means of message lo-
calization. A portable program may wish to use srfi-29, but generally text.gettext is rec-
ommended in Gauche scripts because of its flexibility and compatibility to existing message
files.

Gettext-compatible API

[Function]textdomain domain-name :optional locale dirs cdir cached?
lookup-cached?

{text.gettext} Sets up the default domain and other parameters for the application. The
setting affects to the following gettext call.

Domain is a string or list of strings specifying the domain (name of .mo or .po files) as in C
gettext. You can pass #f as domain-name just to get the default domain accessor procedure.
You can alo pass multiple domains to domain-name.

(textdomain ’("myapp" "gimp")) ; search 1st myapp, then gimp

(gettext "/File/Close") ; "Close" from gimp unless overridden

Locale is a string or list of strings in the standard Unix format of LANG[_

REGION][.ENCODING]. You can also pass a list of locales to specify fallbacks.

(textdomain "myapp" ’("ru" "uk")) ; search 1st Russian then Ukranian,

(gettext "Hello, World!") ; which are somewhat similar

Dirs is the search path of directories which should hold the LOCALE/CDIR/ directories which
contain the actual message catalogs. This is always appended with the system default,
e.g. "/usr/share/locale", and may also inherit from the GETTEXT_PATH colon-delimited
environment variable.

Cdir is the category directory, defaulting to either the LC_CATEGORY environment variable or
the appropriate system default (e.g. LC_MESSAGES). You generally won’t need this.

Cached? means to cache individual messages, and defaults to #t.

Lookup-cached? means to cache the lookup dispatch generated by these parameters, and
defaults to #t.

Textdomain just passes these parameters to the internal make-gettext, and binds the result
to the global dispatch used by gettext. You may build these closures manually for conve-
nience in using multiple separate domains or locales at once (useful for server environments).
See the description of make-gettext below.

Textdomain returns an accessor procedure which packages information of the domain. See
make-gettext below for the details.

[Function]gettext msg-id
{text.gettext} Returns a translated message of msg-id. If there’s no translated message,
msg-id itself is returned.

Chapter 12: Library modules - Utilities 721

[Function]ngettext msg-id :optional msg-id2 num
{text.gettext} Similar to gettext, but it can be used to handle plural forms. Pass a singular
form to msg-id, and plural form to msg-id2. The num argument is used to determine the
plural form. If no message catalog is found, msg-id is returned when num is 1, and msg-id2
otherwise.

[Function]bindtextdomain domain dirs
{text.gettext} Sets the search path of domain domain to dirs, which may be just a single
directory name or a list of directory names.

[Function]dgettext domain msg-id
[Function]dcgettext domain msg-id locale

{text.gettext} Returns a translated message of msg-id in domain. Dcgettext takes locale
as well.

Low-level flexible API

The following procedure is more flexible interface, on top of which the gettext-compatible APIs
are written.

[Function]make-gettext :optional domain locale dirs gettext-cached?
lookup-cached?

{text.gettext} Creates and returns an accessor procedure, which encapsulates methods to
retrieve localized messages.

The meaning of arguments are the same as textdomain above. Indeed, textdomain just
calls make-gettext, and later it binds the result to the global parameter. If you wish to have
multiple independent domains within a single program, you can call make-gettext directly
and manage the created accessor procedure by yourself.

(define my-gettext (make-gettext "myapp"))

(define _ (my-gettext ’getter))

(_ "Hello, World!")

12.53 text.html-lite - Simple HTML document construction

[Module]text.html-lite
Provides procedures to construct an HTML document easily. For example, you can construct
an HTML table by the following code:

(html:table

(html:tr (html:th "Item No") (html:th "Quantity"))

(html:tr (html:td 1) (html:td 120))

(html:tr (html:td 2) (html:td 30))

(html:tr (html:td 3) (html:td 215)))

See the description of html:element below for details.

This module does little check for the constructed html documents, such as whether the
attributes are valid, and whether the content of the element matches DTD. It does not
provide a feature to parse the html document neither. Hence the name ‘lite’.

[Function]html-escape
[Function]html-escape-string string

{text.html-lite} Escapes the “unsafe” characters in HTML. html-escape reads input
string from the current input port and writes the result to the current output port.
html-escape-string takes the input from string and returns the result in a string.

Chapter 12: Library modules - Utilities 722

[Function]html-doctype :key type
{text.html-lite} Returns a doctype declaration for an HTML document. type can be
either one of the followings (default is :html-4.01-strict).

:html-4.01-strict, :html-4.01, :strict

HTML 4.01 Strict DTD

:html-4.01-transitional, :transitional

HTML 4.01 Transitional DTD

:html-4.01-frameset, :frameset

HTML 4.01 Frameset DTD

:xhtml-1.0-strict, :xhtml-1.0

XHTML 1.0 Strict DTD

:xhtml-1.0-transitional

XHTML 1.0 Transitional DTD

:xhtml-1.0-frameset

XHTML 1.0 Frameset DTD

:xhtml-1.1

XHTML 1.1 DTD

[Function]html:element args . . .
{text.html-lite} Construct an HTML element element. Right now, the following elements
are provided. (The elements defined in HTML 4.01 DTD, http://www.w3.org/TR/html4/
sgml/dtd.html).

a abbr acronym address area b

base bdo big blockquote body br

button caption cite code col colgroup

dd del dfn div dl dt

em fieldset form frame frameset

h1 h2 h3 h4 h5 h6

head hr html i iframe img

input ins kbd label legend li

link map meta nofrmaes noscript object

ol optgroup option p param pre

q samp script select small span

strong style sub sup table tbody

td textarea tfoot th thead title

tr tt ul var

The result of these functions is a tree of text segments, which can be written out to a port by
write-tree or can be converted to a string by tree->string (see Section 12.59 [Lazy text
construction], page 730).

You can specify attributes of the element by using a keyword-value notation before the actual
content.

(tree->string (html:a :href "http://foo/bar" "foobar"))

⇒
"foobar</a\n>"

(tree->string

(html:table :width "100%" :cellpading 0 "content here"))

⇒

http://www.w3.org/TR/html4/sgml/dtd.html
http://www.w3.org/TR/html4/sgml/dtd.html

Chapter 12: Library modules - Utilities 723

"<table width=\"100%\" cellpadding=\"0\">content here</table\n>"

The boolean value given to the attribute has a special meaning. If #t is given, the attribute
is rendered without a value. If #f is given, the attribute is not rendered.

(tree->string (html:table :border #t))

⇒ "<table border></table\n>"

(tree->string (html:table :border #f))

⇒ "<table></table\n>"

Special characters in attribute values are escaped by the function, but the ones in the content
are not. It is caller’s responsibility to escape them.

The functions signal an error if a content is given to the HTML element that doesn’t take a
content. They do not check if the given attribute is valid, neither if the given content is valid
for the element.

Note: You might have noticed that these procedures insert a newline before > of the closing
tag. That is, the rendered HTML would look like this:

<table><tr><td>foo</td

><td>bar</td

></tr

></table

>

We intentionally avoid inserting newlines after the closing tag, since it depends on the sur-
rounding context whether the newline is significant or not. We may be able to insert newlines
after the elements directly below a <head> element, for example, but we cannot in a <p>

element, without affecting the content.

There are three possible solutions: (1) not to insert newlines at all, (2) to insert newlines
within tags, and (3) to insert newlines only at the safe position. The first one creates one
long line of HTML, and although it is still valid HTML, it is inconvenient to handle it with
line-oriented tools. The third one requires the rendering routine to be aware of DTD. So we
took the second approach.

12.54 text.parse - Parsing input stream

[Module]text.parse
A collection of utilities that does simple parsing from the input port. The API is inspired,
and compatible with Oleg Kiselyov’s input parsing library ([OLEG1], page 764). His library
is used in lots of other libraries, notably, a full-Scheme XML parser/generator SSAX ([SSAX],
page 764).

You can use this module in place of his input-parse.scm and look-for-str.scm.

I reimplemented the functions to be efficient on Gauche. Especially, usage of string-set! is
totally avoided. I extended the interface a bit so that they can deal with character sets and
predicates, as well as a list of characters.

These functions work sequentially on the given input port, that is, they read from the port
as much as they need, without buffering extra characters.

[Function]find-string-from-port? str in-port :optional max-no-chars
{text.parse} Looks for a string str from the input port in-port. The optional argument
max-no-chars limits the maximum number of characters to be read from the port; if omitted,
the search span is until EOF.

If str is found, this function returns the number of characters it has read. The next read
from in-port returns the next char of str. If str is not found, it returns #f.

Chapter 12: Library modules - Utilities 724

Note: Although this procedure has ‘?’ in its name, it may return non-boolean value, contrary
to the Scheme convention.

[Function]peek-next-char :optional port
{text.parse} Discards the current character and peeks the next character from port. Useful
to look ahead one character. If port is omitted, the current input port is used.

In the following functions, char-list refers to one of the followings:

• A character set.

• A list of characters, character sets and/or symbol *eof*.

That denotes a set of characters. If a symbol *eof* is included, the EOF condition is also
included. Without *eof*, the EOF condition is regarded as an error.

[Function]assert-curr-char char-list string :optional port
{text.parse} Reads a character from port. If it is included in char-list, returns the character.
Otherwise, signals an error with a message containing string. If port is omitted, the current
input port is used.

[Function]skip-until char-list/number :optional port
{text.parse} char-list/number is either a char-list or a number. If it is a number; it reads
that many characters and returns #f. If the input is not long enough, an error is signaled. If
char-list/number is a char-list, it reads from port until it sees a character that belongs to the
char-list. Then the character is returned. If port is omitted, the current input port is used.

[Function]skip-while char-list :optional port
{text.parse} Reads from port until it sees a character that does not belong to char-list. The
character remains in the stream. If it reaches EOF, an EOF is returned. If port is omitted,
the current input port is used.

This example skips whitespaces from input. Next read from port returns the first non-
whitespace character.

(skip-while #[\s] port)

[Function]next-token pre↓x-char-list break-char-list :optional comment port
{text.parse} Skips any number of characters in pre↓x-char-list, then collects the characters
until it sees break-char-list. The collected characters are returned as a string. The break
character remains in the port.

If the function encounters EOF and *eof* is not included in break-char-list, an error is
signaled with comment is included in the message.

[Function]next-token-of char-list/pred :optional port
{text.parse} Reads and collects the characters as far as it belongs to char-list/pred, then
returns them as a string. The first character that doesn’t belong to char-list/pred remains
on the port.

char-list/pred may be a char-list or a predicate that takes a character. If it is a predicate,
each character is passed to it, and the character is regarded to “belong to” char-list/pred
when it returns a true value.

[Function]read-string n :optional port
{text.parse} This is like built-in read-string (see Section 6.22.7.1 [Reading data],
page 212), except that this returns "" when the input already reached EOF.

Provided for the compatibility for the code that depends Oleg’s library.

Chapter 12: Library modules - Utilities 725

12.55 text.progress - Showing progress on text terminals

[Module]text.progress
This module provides a utility to report a progress of processing on a text terminal, using
characters to display bar chart. The generic format of a progress bar consists of a single
line of text, which is splitted into several parts; a header, which displays the title; followed
by a bar, a numeric part, and a time part, as shown in the followig example (only the line
beginning with “foo” is actually displayed).

<-header-> <-------bar---------> <-num-><-time-> <---info---->

foo |############# |123/211 01:21 ETA compiling...

^

separator

Various things like the character used in the bar chart or the format of the numeric progress
can be configured.

Internally a progress bar maintains two numbers, the maximum (goal) value and the current
value. The bar shows the proportion of the current value relative to the maximum value.
The numeric progress shows the current value over the maximum value by default, but you
can configure it to show only the current value or percentage, for example.

A progress bar also has two states, “in progress” and “finished”. When it is in progress, every
time the text is displayed it is followed by #\return, so that the next display overwrites the
bar, and the time part shows ETA (estimated time of arrival). Once it becomes finished, the
last line of text is displayed with #\newline, and the time part shows the actual time it took
to finish.

This module provides only one procedure, make-text-progress-bar, which packages the
progress bar feature in a closure and returns it.

[Function]make-text-progress-bar :key header header-width bar-char bar-width
num-width num-format time-width info info-width separator-char max-value
port

{text.progress} Returns a procedure that packages operations on the progress bar. The
procedure can be called with a symbol indicating an operation, and an optional numeric
argument.

proc ’show

Redisplays the progress bar. All other operations implies redisplay, so you don’t
need to use this unless you have a specific reason to redisplay the current state.

proc ’set value

Sets the current value to value, then redisplays the progress bar. If value exceeds
the max value, it is clipped by the max value.

proc ’inc value

Increments the current value by value, then redisplays the progress bar. If the
current value exceeds the max value, it is clipped by the max value.

proc ’finish

Puts the progress bar to the “finished” state, then redisplays it. The time part
shows the total elapsed time, and the line is terminated by #\newline so that it
won’t be clobbered. Once a progress bar becomes “finished”, there’s no way to
put it back “in progress”.

proc ’set-info text

Changes the text displayed in the “info” part. To use the info part, you have to
give a positive value to info-width keyword argument of make-text-progress-
bar.

Chapter 12: Library modules - Utilities 726

proc ’set-header text

Changes the text displayed in the “header’ area.

The keyword arguments are used to customize the display:

header The text to be displayed in the header part. This can be changed later, by
sending set-header message to the created progress bar.

header-width
The width of the header part, in number of characters. The header text is
displayed left-aligned in the part. If the header text is longer than the width, the
excess characters are omitted. The default is 14.

bar-char A character used to draw a bar chart. The default is #\#.

bar-width The width of the bar chart part, in number of characters. The default is 40.

num-width
The width of the numeric part, in number of characters. The default is 9. Setting
this to 0 hides the numeric part.

num-format
A procedure to format the numeric part. Two arguments are passed; the current
value and the maximum value. It must return a string. The default is the
following procedure.

(lambda (cur max)

(format "~d/~d" cur max))

time-width
The width of the time part, in number of characters. The default is 7. Settings
this to 0 hides the time part.

info The text to be displayed in the info part. This text can be changed later by
sending set-info message to the created progress bar. Note that you have to
give a positive number to info-width keyword argument to enable the info part.

info-width The width of the info part. The default value is zero, which means the info part
is not displayed.

separator-char
A character put around the bar part. Default is #\|. You can pass #f not to
display the separators.

max-value The maximum value of the progress bar. Must be a positive real number. Default
is 100.

port An output port to which the progress bar is displayed. The default value is the
current output port when make-text-progress-bar is called.

Here’s a simple example, using customized numeric part:

(use text.progress)

(define (main args)

(define (num-format cur max)

(format "~d/~d(~3d%)" cur max

(round->exact (/. (* cur 100) max))))

(let ((p (make-text-progress-bar :header "Example"

:header-width 10

Chapter 12: Library modules - Utilities 727

:bar-char #\o

:num-format num-format

:num-width 13

:max-value 256)))

(do ((i 0 (+ i 1)))

((= i 256) (p ’finish))

(p ’inc 1)

(sys-select #f #f #f 50000))))

12.56 text.sql - SQL parsing and construction

[Module]text.sql
This module provides a utility to parse and construct SQL statement.

It is currently under development, and we only have a tokenization routine. The plan is to
define S-expression syntax of SQL and provides a routine to translate one form to the other.

Note: If you’re looking for a routine to escape strings to be safe in SQL, see dbi-escape-sql
in Section 12.16.1 [DBI user API], page 619.

[Function]sql-tokenize sql-string
{text.sql} Tokenize a SQL statement sql-string. The return value is a list of tokens, where
each token is represented by one of the following forms.

<symbol> Special delimiter. One of the followings:

+ - * / < = > <> <= >= ||

<character> Special delimiter. One of the followings:

#\, #\. #\(#\) #\;

<string> Regular identifier

(delimited <string>) Delimited identifier

(parameter <num>) Positional parameter (?)

(parameter <string>) Named parameter (:foo)

(string <string>) Character string literal

(number <string>) Numeric literal

(bitstring <string>) Binary string. <string> is like "01101"

(hexstring <string>) Binary string. <string> is like "3AD20"

If it encounters an untokenizable string, it raises an <sql-parse-error> condition.

[Condition Type]<sql-parse-error>
{text.sql} A condition to indicate an SQL parse error. Inherits <error>.

[Instance Variable of <sql-parse-error>]sql-string
Holds the source SQL string.

12.57 text.template - Simple template expander

[Module]text.template
This module lifts Gauche’s built-in string interpolation feature to be more general template
engine.

Gauche’s string interpolation syntax is expanded at read time and then handled by macro
expanders, and becomes a simple Scheme code fragment. For example, if you have this:

(let ([x 10])

#"The square of x is ~(* x x).")

Chapter 12: Library modules - Utilities 728

It is eventually converted to this after macro expansion:

(let ([x 10])

(string-append ’"The square of x is " (x->string (* x.0 x.0)) ’"."))

It is a kind of template expansion, but you have to have the template string as a literal, so
it’s restricted. With this module, you can feed template string and the bindings of the value
at the runtime:

(define *template* "The square of x is ~(* x x).")

(expand-template-string *template*

(make-template-environment :bindings ’(x 10)))

⇒ "The square of x is 100."

The syntax of template strings is the same as string interpolation (see Section 6.12.4 [String
interpolation], page 142); that is, tokens following ~ is read as a Scheme expression. In case
if the token is a symbol and you need to delimit it from subsequent characters, you can use
symbol escape by |.

You also need to provide a template environment, where the expressions in the template is
evaluated. Note that, unlike string interpolation, those expressions can’t refer to the local
bindings.

[Function]expand-template-string template env
Expands a template string template with a template environment env, and returns the result
string.

[Function]expand-template-file ↓lename env :optional paths
Reads a template string from a file named by ↓lename, expands it with a template environ-
ment env, and returns the result string.

If ↓lename is not an absolute path, it is looked in the directories listed in paths.

[Function]make-template-environment :key extends imports bindings
Creates and returns a template environment. A template environment is like a module (see
Section 4.13 [Modules], page 67): It maps symbols to values, and it can import bindings from
other modules, or extend other modules.

The keyword arguments extends and imports must be a list of symbols; they specify names
of modules to inherit from or to import from.

The keyword arguments bindings must either be a dictionary (anything that inherits
<dictonary>), or a key-value list. The mappings represented by it are incorporated to
the environment.

12.58 text.tr - Transliterate characters

[Module]text.tr
This module implements a transliterate function, that substitutes characters of the input
string. This functionality is realized in Unix tr(1) command, and incorporated in various
programs such as sed(1) and perl.

Gauche’s tr is aware of multibyte characters.

[Function]tr from-list to-list :key :complement :delete :squeeze :table-size :input
:output

{text.tr} Reads from input and writes to output, with transliterating characters in from-list
to the corresponding ones in to-list. Characters that doesn’t appear in from-list are passed
through.

Chapter 12: Library modules - Utilities 729

The default values of input and output are current input port and current output port,
respectively.

Both from-list and to-list must be strings. They may contain the following special syntax.
Other characters that doesn’t fits in the syntax are taken as they are.

x-y Expanded to the increasing sequence of characters from x to y, inclusive. The
order is determined by the internal character encoding system; generally it is safer
to limit use of this within the range of the same character class. The character
x must be before y.

x*n Repeat x for n times. n is a decimal number notation. Meaningful only in to-list;
it is an error to use this form in from-list. If n is omitted or zero, x is repeated
until to-list matches the length of from-list (any character after it is ignored).

\x Represents x itself. Use this escape to avoid a special character to be interpreted
as itself. Note that if you place a backslash in a string, you must write \\, for
the Scheme reader also interprets backslash as a special character.

There’s no special sequence to represent non-graphical characters, for you can
put such characters by the string syntax.

Here’s some basic examples.

;; swaps case of input
(tr "A-Za-z" "a-zA-Z")

;; replaces 7-bit non-graphical characters to ‘?’
(tr "\x00-\x19\x7f" "?*")

If to-list is shorter than from-list, the behavior depends on the keyword argument delete.
If a true value is given, characters that appear in from-list but not in to-list are deleted.
Otherwise, the extra characters in from-list are just passed through.

When a true value is specified to complement, the character set in from-list is complemented.
Note that it implies huge set of characters, so it is not very useful unless either output
character set is a single character (using ‘*’) or used with delete keyword.

When a true value is specified to squeeze, the sequence of the same replaced characters
is squeezed to one. If to-list is empty, the sequence of the same characters in from-list is
squeezed.

Internally, tr builds a table to map the characters for efficiency. Since Gauche can deal with
potentially huge set of characters, it limits the use of the table for only smaller characters
(<256 by default). If you want to transliterate multibyte characters on the large text, however,
you might want to use larger table, trading off the memory usage. You can specify the internal
table size by table-size keyword argument. For example, if you transliterate lots of EUC-JP
hiragana text to katakana, you may want to set table size greater than 42483 (the character
code of the last katakana).

Note that the pre-calculation to build the transliterate table needs some overhead. If you
want to call tr many times inside loop, consider to use build-transliterator described
below.

[Function]string-tr string from-list to-list :key :complement :delete :squeeze
:table-size

{text.tr} Works like tr, except that input is taken from a string string.

Chapter 12: Library modules - Utilities 730

[Function]build-transliterator from-list to-list :key :complement :delete
:squeeze :table-size :input :output

{text.tr} Returns a procedure that does the actual transliteration. This effectively “pre-
compiles” the internal data structure. If you want to run tr with the same sets repeatedly, you
may build the procedure once and apply it repeatedly, saving the overhead of initialization.

A note for an edge case: When input and/or output keyword arguments are omitted, the
created transliterator is set up to use current-input-port and/or current-output-port at the
time transliterator is called.

(with-input-from-file "huge-file.txt"

(lambda ()

(let loop ((line (read-line)))

(unless (eof-object? line) (tr "A-Za-z" "a-zA-Z")))))

;; runs more efficiently...

(with-input-from-file "huge-file.txt"

(lambda ()

(let ((ptr (build-transliterator "A-Za-z" "a-zA-Z")))

(let loop ((line (read-line)))

(unless (eof-object? line) (ptr))))))

12.59 text.tree - Lazy text construction

[Module]text.tree
Defines simple but commonly used functions for a text construction.

When you generate a text by a program, It is a very common operation to concatenate text
segments. However, using string-append repeatedly causes unnecessary copying of intermedi-
ate strings, and sometimes such intermediate strings are discarded due to the error situation
(for example, think about constructing an HTML document in the CGI script).

The efficient technique is to delay concatenation of those text segments until it is needed.
In Scheme it is done very easily by just consing the text segments together, thus forming
a tree of text, and then traverse the tree to construct a text. You can even directly writes
out the text during traversal, avoiding intermediate string buffer. (Hans Boehm’s “cord”
library, which comes with his garbage collector library, uses this technique and proves it is
very efficient for editor-type application).

Although the traversal of the tree can be written in a few lines of Scheme, I provide this
module in the spirits of OnceAndOnlyOnce. Also it’s easier if we have a common interface.

[Generic Function]write-tree tree :optional out
{text.tree} Writes out an tree as a tree of text, to the output port out. If out is omitted,
the current output port is used.

Two methods are defined for this generic function, as shown below. If you have more complex
behavior, you can define more methods to customize the behavior.

[Method]write-tree ((tree <list>) out)
[Method]write-tree ((tree <top>) out)

{text.tree} Default methods. For a list, write-tree is recursively called for each element.
Any objects other than list is written out using display.

[Function]tree->string tree
{text.tree} Just calls the write-tree method for tree using an output string port, and
returns the result string.

Chapter 12: Library modules - Utilities 731

12.60 util.combinations - Combination library

[Module]util.combinations
This module implements several useful procedures of combinations, permutations and related
operations.

Most procedures in the module have two variants: a procedure without star (e.g.
permutations) treats all elements in the given set distinct, while a procedure with star (e.g.
permutations*) considers duplication. The procedures with star take optional eq argument
that is used to test equality, which defaults to eqv?.

[Function]permutations set
[Function]permutations* set :optional eq

{util.comibinations} Returns a list of all permutations of a list set.

(permutations ’(a b c))

⇒ ((a b c) (a c b) (b a c) (b c a) (c a b) (c b a))

(permutations ’(a a b))

⇒ ((a a b) (a b a) (a a b) (a b a) (b a a) (b a a))

(permutations* ’(a a b))

⇒ ((a a b) (a b a) (b a a))

The number of possible permutations explodes if set has more than several elements. Use with
care. If you want to process each permutation at a time, consider permutations-for-each
below.

[Function]permutations-for-each proc set
[Function]permutations*-for-each proc set :optional eq

{util.comibinations} For each permutation of a list set, calls proc. Returns an undefined
value.

[Function]combinations set n
[Function]combinations* set n :optional eq

{util.comibinations} Returns a list of all possible combinations of n elements out of a list
set.

(combinations ’(a b c) 2)

⇒ ((a b) (a c) (b c))

(combinations ’(a a b) 2)

⇒ ((a a) (a b) (a b))

(combinations* ’(a a b) 2)

⇒ ((a a) (a b))

Watch out the explosion of combinations when set is large.

[Function]combinations-for-each proc set n
[Function]combinations*-for-each proc set n :optional eq

{util.comibinations} Calls proc for each combination of n elements out of set. Returns
an undefined value.

[Function]power-set set
[Function]power-set* set :optional eq

{util.comibinations} Returns power set (all subsets) of a list set.

(power-set ’(a b c))

Chapter 12: Library modules - Utilities 732

⇒ (() (a) (b) (c) (a b) (a c) (b c) (a b c))

(power-set* ’(a a b)

⇒ (() (a) (b) (a a) (a b) (a a b))

[Function]power-set-for-each proc set
[Function]power-set*-for-each proc set :optional eq

{util.comibinations} Calls proc for each subset of set.

[Function]power-set-binary set
{util.comibinations} Returns power set of set, like power-set, but in different order.
Power-set-binary traverses subset space in depth-first order, while power-set in breadth-
first order.

(power-set-binary ’(a b c))

⇒ (() (c) (b) (b c) (a) (a c) (a b) (a b c))

[Function]cartesian-product list-of-sets
[Function]cartesian-product-right list-of-sets

{util.comibinations} Returns a cartesian product of sets in list-of-sets.
Cartesian-product construct the result in left fixed order (the rightmost element
varies first), while cartesian-product-right in right fixed order (the leftmost element
varies first).

(cartesian-product ’((a b c) (0 1)))

⇒ ((a 0) (a 1) (b 0) (b 1) (c 0) (c 1))

(cartesian-product-right ’((a b c) (0 1)))

⇒ ((a 0) (b 0) (c 0) (a 1) (b 1) (c 1))

12.61 util.digest - Message digester framework

[Module]util.digest
This module provides a base class and common interface for message digest algorithms, such
as MD5 (see Section 12.37 [MD5 message digest], page 671) and SHA (see Section 12.40 [SHA
message digest], page 678).

[Class]<message-digest-algorithm-meta>
{util.digest} A metaclass of message digest algorithm implementation.

[Instance Variable of <message-digest-algorithm-meta>]hmac-block-size
Specifies the block size (in bytes), which is specific to each algorithm. (This is a slot for
each class object that implements the algorithm, not for instance of such classes. Only
the author of such digest classes needs to care. See ext/digest/sha.scm in the source
tree for more details.)

[Class]<message-digest-algorithm>
{util.digest} A base class of message digest algorithm implementation.

The concrete subclass of message digest algorithm has to implement the following methods.

[Generic function]digest-update! algorithm data
{util.digest} Takes the instance of massage-digest algorithm, and updates it with the data
data, represented in a (possibly incomplete) string.

Chapter 12: Library modules - Utilities 733

[Generic function]digest-final! algorithm
{util.digest} Finalizes the instance of message-digest algorithm, and returns the digest
result in an incomplete string.

[Generic function]digest class
{util.digest} A wrapper of digest routines. Given message-digest algorithm class, this
function reads the input data from current input port until EOF, and returns the digest
result in an incomplete string.

[Generic function]digest-string class string
{util.digest} A wrapper of digest routines. Given message-digest algorithm class, this
function reads the input data from string, and returns the digest result in an incomplete
string.

[Function]digest-hexify digest-result
{util.digest} An utility procedure. Given the result of digest, digest-result, converts it to
a hexified string.

12.62 util.dominator - Calculate dominator tree

[Module]util.dominator
Dominator tree is an auxiliary structure for control flow graphs. It is frequently used in the
flow analysis of compilers, but also useful for handling general directed graphs.

[Function]calculate-dominators start upstreams downstreams node-comparator
{util.dominator} The four arguments represent a directed, possibly cyclic, graph. Here,
we use Node to denote an abstract type of a node of the graph. It can be anything—the
algorithm is oblivious on the actual type of nodes.

start :: Node

The start node, or the enter node, of the graph.

upstreams :: Node -> (Node ...)

A procedure that takes a node, and returns its upstream (immediate ancestor)
nodes.

downstreams :: Node -> (Node ...)

A procedure that takes a node, and returns its downstream (immediate descen-
dant) nodes.

node-comparator
A comparator that is used to determine if two nodes are equal to each other. It
doesn’t need to have comparison procedure (we don’t need to see which is smaller
than the other), but it has to have hash function, for we use hashtables internally.
(See Section 6.2.4 [Basic comparators], page 95, for the details of comparators.)

The procedure returns a list of (node1 node2), where node2 is the immediate dominator of
node1.

If there are node in the given graph that are unreachable from start, such nodes are ignored
and not included in the result.

(A bit of explanation: Suppose you want to go to node X from start. There may be multiple
routes, but if you have to pass node Y no matter which route you take, then Y is a dominator
of X. There may be many dominators of X. Among them, there’s always one domniator such
that all other X’s dominators are also its dominators—in other words, the closest dominator
of X—which is called the immediate dominator of X.)

Chapter 12: Library modules - Utilities 734

Let’s see an example. You have this directed graph:

A (start)

|

v

B <-------+

| |

------+----- |

| | |

v v |

C -------> D ---+

| |

v v

E <------- F

Let’s represent the graph by a list of (x y z ...) where x can directly go to either y z

(define *graph* ’((A B)

(B C D)

(C D E)

(D F B)

(F E)))

Then you can calculate the immediate dominator of each node as follows:

(calculate-dominators ’A

(^n (filter-map (^g (and (memq n (cdr g)) (car g))) *graph*))

(^n (assoc-ref *graph* n ’()))

eq-comparator)

⇒ ((E B) (F D) (D B) (C B) (B A))

That is, E’s immediate dominator is B, F’s is D, and so on.

The result itself can be viewed as a tree. It is called a dominator tree.

F

|

v

E D C

| | |

| v |

+---> B <---+

|

v

A

12.63 util.isomorph - Determine isomorphism

[Module]util.isomorph
Provides a procedure that determines whether two structures are isomorphic.

[Function]isomorphic? obj1 obj2 :optional context
{util.isomorph} Returns #t if obj1 and obj2 are isomorphic.

context is used if you want to call isomorphic? recursively inside object-isomorphic?

described below.

(isomorphic? ’(a b) ’(a b)) ⇒ #t

(define x (cons 0 0))

Chapter 12: Library modules - Utilities 735

(define y (cons 0 0))

(isomorphic? (cons x x)

(cons x y))

⇒ #f

(isomorphic? (cons x x)

(cons y y))

⇒ #t

[Generic Function]object-isomorphic? obj1 obj2 context
{util.isomorph} With this method, you can customize how to determine isomorphism of
two objects. Basically, you will call isomorphic? recursively for each slots of object you want
to traverse; the method should return #t if all of the test succeeds, or return #f otherwise.
context is an opaque structure that keeps the traversal context, and you should pass it to
isomorphic? as is.

The default method returns #t if obj1 and obj2 are equal (in the sense of equal?).

12.64 util.lcs - The longest common subsequence

[Module]util.lcs
This module implements the algorithm to find the longest common subsequence of two
given sequences. The implemented algorithm is based on Eugene Myers’ O(ND) algorithm
([Myers86], page 762).

One of the applications of this algorithm is to calculate the difference of two text streams;
see Section 12.51 [Calculate difference of text streams], page 719.

[Function]lcs seq-a seq-b :optional eq-fn
{util.lcs} Calculates and returns the longest common sequence of two lists, seq-a and seq-b.
Optional eq-fn specifies the comparison predicate; if omitted, equal? is used.

(lcs ’(x a b y) ’(p a q b))

⇒ (a b)

[Function]lcs-with-positions seq-a seq-b :optional eq-fn
{util.lcs} This is the detailed version of lcs. The arguments are the same.

Returns a list of the following structure:

(length ((elt a-pos b-pos) ...))

Length is an integer showing the length of the found LCS. What follows is a list of elements
of LCS; each sublist consists of the element, the integer position of the element in seq-a, then
the integer position of the element in seq-b.

(lcs-with-positions ’(a) ’(a))

⇒ (1 ((a 0 0)))

(lcs-with-positions ’(x a b y) ’(p q a b))

⇒ (2 ((a 1 2) (b 2 3)))

(lcs-with-positions ’(x a b y) ’(p a q b))

⇒ (2 ((a 1 1) (b 2 3)))

(lcs-with-positions ’(x y) ’(p q))

⇒ (0 ())

Chapter 12: Library modules - Utilities 736

[Function]lcs-fold a-proc b-proc both-proc seed a b :optional eq-fn
{util.lcs} A fundamental iterator over the "edit list" derived from two lists a and b.

A-proc, b-proc, both-proc are all procedures that take two arguments. The second argument
is a intermediate state value of the calculation. The first value is an element only in a for
a-proc, or an element only in b for b-proc, or an element in both a and b for both-proc.
The return value of each procedure is used as the state value of the next call of either one
of the procedures. Seed is used as the initial value of the state value. The last state value is
returned from lcs-fold.

The three procedures are called in the following order: Suppose the sequence a consists of
a’ca", and b consists of b’cb", where a’, b’, a", and b" are subsequences, and c is the head of
the LCS of a and b. Then a-proc is called first on each element in a’, b-proc is called second
on each element in b’, then both-proc is called on c. Afterwards, the process is repeated
using a" and b".

[Function]lcs-edit-list a b :optional eq-fn
{util.lcs} Calculates ’edit-list’ from two lists a and b, which is the smallest set of commands
(additions and deletions) that changes a into b. This procedure is built on top of lcs-fold
above.

Returns a list of hunks, which is a contiguous section of additions and deletions. Each hunk
consists of a list of directives, which is a form of:

(+|- position element)

Here’s an example. Suppose a and b are the following lists, respectively.

a ≡ ("A" "B" "C" "E" "H" "J" "L" "M" "N" "P")

b ≡ ("B" "C" "D" "E" "F" "J" "K" "L" "M" "R" "S" "T")

Then, (lcs-edit-list a b equal?) returns the following list.

(((- 0 "A"))

((+ 2 "D"))

((- 4 "H") (+ 4 "F"))

((+ 6 "K"))

((- 8 "N") (- 9 "P") (+ 9 "R") (+ 10 "S") (+ 11 "T"))

)

The result consists of five hunks. The first hunk consists of one directive, (- 0 "A"), which
means the element "A" at the position 0 of list a has to be deleted. The second hunk also
consists of one directive, (+ 2 "D"), meaning the element "D" at the position 2 of list b has
to be added. The third hunk means "H" at the position 4 of list a should be removed and
"F" at the position 4 of list b should be added, and so on.

If you are familiar with Perl’s Algorithm::Diff module, you may notice that this is the same
structure that its diff procedure returns.

12.65 util.levenshtein - Levenshtein edit distance

[Module]util.levenshtein
This module provides procedures to calculate edit distance between two sequences. Edit
distance is the minimum number of edit operations required to match one sequence to another.
Three algorithms are implemented:

Levenshtein distance
Count deletion of one element, insertion of one element, and susbstitution of one
element.

Chapter 12: Library modules - Utilities 737

Damerau-Levenshtein distance
Besides deletion, insertion and substitution, we allow transposition of adjacent
elements.

Restricted edit distance
Also called optimal string alignment distance. Like Damerau-Levenshtein, but
once transposition is applied, no further editing on those elements are allowed.

These algorithms are often used to compare strings, but the procedures in this module can
handle any type of sequence (see Section 9.28 [Sequence framework], page 412).

[Function]l-distance seq-A seq-B :key elt= cuto↑
[Function]l-distances seq-A seq-Bs :key elt= cuto↑
[Function]re-distance seq-A seq-B :key elt= cuto↑
[Function]re-distances seq-A seq-Bs :key elt= cuto↑
[Function]dl-distance seq-A seq-B :key elt= cuto↑
[Function]dl-distances seq-A seq-Bs :key elt= cuto↑

{util.levenshtein} Calculates Levenshtein distance (l-*), restricted edit distance (re-*)
and Damerau-Levenshtein distance (dl-*) between sequences, respectively. Each algorithm
comes in two flavors: The singular form *-distance takes two sequences, seq-A and seq-B,
and calculates distance between them. The plural form *-distances takes a sequence seq-A
and a list of sequences seq-Bs, and calculates distances between seq-A and each in seq-Bs.

If you need to calculate distances from a single sequence to many sequences, using the plural
version is much faster than repeatedly calling the singular version, for the plural version can
reuse internal data structures and save allocation and setup time.

Sequences can be any object that satisfy the <sequence> protocol (see Section 9.28 [Sequence
framework], page 412).

The keyword argument elt= is used to compare elements in the sequences. Its default is
eqv?.

The keyword argument cuto↑ must be, if given, a nonnegative exact integer. Once the
possible minimum distance between two sequences becomes greater than this number, the
algorithm stops and gives #f as the result, and moves on to the next calculation. This is
useful when you run the algorithm on large set of sequences and you only need to look for
the pairs closer than the certain limit.

In our implementation, Levenshtein is the fastest, Damerau-Levenshtein is the slowest and
Restricted edit is somewhere inbetween. If you don’t need to take into account of trans-
positions, use Levenshtein; it counts 2 for cat -> act, while other algorithms yield 1 for
it. If you need to consider transpositions, choose either re- or dl-. The catch in re- is
that it does not satisfy triangular inequality, i.e. for given three sequences X, Y and Z,
(Damerau-)Levenshtein distance L always satisfy L(X;Z) <= L(X;Y) + L(Y;Z), but restricted
edit distance doesn’t guarantee that.

(l-distance "cat" "act") ⇒ 2

(l-distances "cat" ’("Cathy" "scathe" "stack")

:elt= char-ci=?)

⇒ (2 3 4)

(re-distance "cat" "act") ⇒ 1

(re-distances "pepper"

’("peter" "piper" "picked" "peck" "pickled" "peppers")

:cutoff 4)

⇒ (2 2 4 4 #f 1)

Chapter 12: Library modules - Utilities 738

(dl-distance ’(a b c d e) ’(c d a b e)) ⇒ 4

Note: If you pass list of sequences to the second argument of the singular version by accident,
you might not get an error immediately because a list is also a sequence.

12.66 util.match - Pattern matching

[Module]util.match
This module is a port of Andrew Wright’s pattern matching macro library. It is widely used in
Scheme world, and ported to various Scheme implementations, including Chez Scheme, PLT
Scheme, Scheme48, Chicken, and SLIB. It is similar to, but more powerful than Common
Lisp’s destructuring-bind.

This version retains compatibility of the original Wright’s macro, except (1) box is not sup-
ported since Gauche doesn’t have one, and (2) structure matching is integrated to Gauche’s
object system.

We show a list of APIs first, then the table of complete syntax of patterns, followed by
examples.

Pattern matching API

[Macro]match expr clause . . .
{util.match} Each clause is either one of the followings:

(pat body ...)

(pat (=> identifier) body ...)

First, the expr is matched against pat of each clauses. The detailed syntax of the pattern is
explained below.

If a matching pat is found, the pattern variables in pat are bound to the corresponding
elements in expr, then body . . . are evaluated. Then match returns the value(s) of the last
expression of body

If the clause is the second form, identi↓er is also bound to the failure continuation of the
clause. It is a procedure with no arguments, and when called, it jumps back to the matcher
as if the matching of pat is failed, and match continues to try the rest of clauses. So you can
perform extra tests within body . . . and if you’re not satisfied you can reject the match by
calling (identifier). See the examples below for more details.

If no pat matches, match reports an error.

[Macro]match-lambda clause . . .
{util.match} Creates a function that takes one argument and performs match on it, using
clause It’s functionally equivalent to the following expression:

(lambda (expr) (match expr clause ...))

Example:

(map (match-lambda

((item price-per-lb (quantity ’lbs))

(cons item (* price-per-lb quantity)))

((item price-per-lb (quantity ’kg))

(cons item (* price-per-lb quantity 2.204))))

’((apple 1.23 (1.1 lbs))

(orange 0.68 (1.4 lbs))

(cantaloupe 0.53 (2.1 kg))))

⇒ ((apple . 1.353) (orange . 0.952)

(cantaloupe . 2.4530520000000005))

Chapter 12: Library modules - Utilities 739

[Macro]match-lambda* clause . . .
{util.match} Like match-lambda, but performs match on the list of whole arguments. It’s
functionally equivalent to the following expression:

(lambda expr (match expr clause ...))

[Macro]match-let ((pat expr) . . .) body-expr . . .
[Macro]match-let name ((pat expr) . . .) body-expr . . .
[Macro]match-let* ((pat expr) . . .) body-expr . . .
[Macro]match-letrec ((pat expr) . . .) body-expr . . .

{util.match} Generalize let, let*, and letrec to allow patterns in the binding position
rather than just variables. Each expr is evaluated, and then matched to pat, and the bound
pattern variables are visible in body-expr

(match-let (

(((ca . cd) ...) ’((a . 0) (b . 1) (c . 2)))

)

(list ca cd))

⇒ ((a b c) (0 1 2))

If you’re sick of parenthesis, try match-let1 below.

[Macro]match-let1 pat expr body-expr . . .
{util.match} This is a Gauche extension and isn’t found in the original Wright’s code. This
one is equivalent to the following code:

(match-let ((pat expr)) body-expr ...)

Syntactically, match-let1 is very close to the Common Lisp’s destructuring-bind.

(match-let1 (’let ((var val) ...) body ...)

’(let ((a b) (c d)) foo bar baz)

(list var val body))

⇒ ((a c) (b d) (foo bar baz))

[Macro]match-define pat expr
{util.match} Like toplevel define, but allows a pattern instead of variables.

(match-define (x . xs) (list 1 2 3))

x ⇒ 1

xs ⇒ (2 3)

Pattern syntax

Here’s a summary of pattern syntax. The asterisk (*) after explanation means Gauche’s exten-
sion which does not present in the original Wright’s code.

pat : patvar ;; anything, and binds pattern var

| ;; anything

| () ;; the empty list

| #t ;; #t

| #f ;; #f

| string ;; a string

| number ;; a number

| character ;; a character

| keyword ;; a keyword (*)

| ’sexp ;; an s-expression

| ’symbol ;; a symbol (special case of s-expr)

| (pat1 ... patN) ;; list of n elements

Chapter 12: Library modules - Utilities 740

| (pat1 ... patN . patN+1) ;; list of n or more

| (pat1 ... patN patN+1 ooo) ;; list of n or more, each element

;; of remainder must match patN+1

| #(pat1 ... patN) ;; vector of n elements

| #(pat1 ... patN patN+1 ooo) ;; vector of n or more, each element

;; of remainder must match patN+1

| ($ class pat1 ... patN) ;; an object (patK matches in slot order)

| (struct class pat1 ... patN) ;; ditto (*)

| (@ class (slot1 pat1) ...) ;; an object (using slot names) (*)

| (object class (slot1 pat1) ...) ;; ditto (*)

| (= proc pat) ;; apply proc, match the result to pat

| (and pat ...) ;; if all of pats match

| (or pat ...) ;; if any of pats match

| (not pat ...) ;; if all pats don’t match at all

| (? predicate pat ...) ;; if predicate true and all pats match

| (set! patvar) ;; anything, and binds setter

| (get! patvar) ;; anything, and binds getter

| ‘qp ;; a quasi-pattern

patvar : a symbol except , quote, $, struct, @, object, =, and, or,
not, ?, set!, get!, quasiquote, ..., , ..k, k.

ooo : ... ;; zero or more

| ___ ;; zero or more

| ..k ;; k or more, where k is an integer.

;; Example: ..1, ..2 ...

| __k ;; k or more, where k is an integer.

;; Example: __1, __2 ...

• A bare symbol is a "pattern variable"; it matches anything, and the matched part of the
expression is bound to the symbol. The following symbols have special meanings and cannot
be used as a pattern variable: _, quote, $, struct, @, object, =, and, or, not, ?, set!,
get!, quasiquote, ..., ___, and ..k and __k where k is an integer.

• A symbol _ matches anything, without binding a pattern variable. It can be used to show
"don’t care" placeholder.

• Literals such as emptylist, booleans, strings, numbers, characters and keywords match the
same object (in the sense of equal?).

• Quoted expression matches the same expression (in the sense of equal?). You can use a
quoted symbol to match the symbol itself.

• A list and a vector in general match a list or a vector whose elements matches the elements
in the pattern recursively, unless the first element of the list is one of the special symbols
listed above, it has a special meaning.

As a special case, the last element of a vector or a list can be followed by a symbol
In that case, the pattern just before the symbol ... can be applied repeatedly until it
consumes all the elements in the given expression. A symbol ___ can be used in place of
...; it is useful when you want to produce a pattern by syntax-rules macro.

For a list pattern, you can also use a symbol ..1, ..2, . . . , which specifies the minimum
number of repetition.

• ($ class pat1 ...) matches an instance of a class class. Each pattern pat1 . . . matches

Chapter 12: Library modules - Utilities 741

each value of slots, in order of (class-slots class) by default. (Records are exception;
they match the same order as their default constructor since 0.9.6.)

(struct class pat1 ...) has the same meaning. Although the original Wright’s code
doesn’t have struct, PLT Scheme has it in its extended match feature, and it is more
descriptive.

This is an adaptation of the original feature that can match structures. It is useful to match
a simple instance that you know the order of slots; for example, a simple record created by
define-record-type (see Section 9.25 [Record types], page 404) would be easy to match
by positioned values.

If the instance’s class uses inheritances, it is a bit difficult to match by positions. You can
use @ or object pattern below to match using slot names.

• (object class (slot1 pat1) ...) matches an instance of a class class whose value of
slot1 . . . matches pat1 This is Gauche’s extension. @ can be used in place of object,
but object is recommended because of descriptiveness.

• (= proc pat) first applies proc to the corresponding expression, then match the result with
pat.

• (and pat ...), (or pat ...), and (not pat ...) are boolean operations of patterns.

• (? predicate pat ...) first applies a predicate to the corresponding expression, and if it
returns true, applies each pat . . . to the expression.

• (set! patvar) matches anything, and binds an one-argument procedure to a pattern vari-
able patvar. If the procedure is called, it replaces the value of matched pattern for the given
argument.

• (get! patvar) matches anything, and binds a zero-argument procedure to a pattern vari-
able patvar. If the procedure is called, it returns the matched value.

• ‘qp is a quasipattern. qp is quoted, in the sense that it matches itself, except the pattern
that is unquoted. (Don’t confuse quasipattern to quasiquote, though the functions are
similar. Quasiquote turns off evaluation except unquoted subtree. Quasiquote turns off the
special pattern syntax except unquoted subtree. See the examples below).

Pattern examples

A simple structure decomposition:

(match ’(0 (1 2) (3 4 5))

[(a (b c) (d e f))

(list a b c d e f)])

⇒ (0 1 2 3 4 5)

Using predicate patterns:

(match 123

[(? string? x) (list ’string x)]

[(? number? x) (list ’number x)])

⇒ (number 123)

Extracting variables and expressions from let. Uses repetition and predicate patterns:

(define let-analyzer

(match-lambda

[(’let (? symbol?)

((var expr) ...)

body ...)

(format "named let, vars=~s exprs=~s" var expr)]

[(’let ((var expr) ...)

Chapter 12: Library modules - Utilities 742

body ...)

(format "normal let, vars=~s exprs=~s" var expr)]

[_

(format "malformed let")]))

(let-analyzer ’(let ((a b) (c d)) e f g))

⇒ "normal let, vars=(a c) exprs=(b d)"

(let-analyzer ’(let foo ((x (f a b)) (y (f c d))) e f g))

⇒ "named let, vars=(x y) exprs=((f a b) (f c d))"

(let-analyzer ’(let (a) b c d))

⇒ "malformed let"

Using = function application. The pattern variable m is matched to the result of application
of the regular expression.

(match "gauche-ref.texi"

((? string? (= #/(.*)\.([^.]+)$/ m))

(format "base=~a suffix=~a" (m 1) (m 2))))

⇒ "base=gauche-ref suffix=texi"

An example of quasipattern. In the first expression, the pattern except value is quoted,
so the symbols the, answer, and is are not pattern variables but literal symbols. The second
expression shows that; input symbol was does not match the literal symbol is in the pattern.
If we don’t use quasiquote, all symbols in the pattern are pattern variables, so any four-element
list matches as the third expression shows.

(match ’(the answer is 42)

[‘(the answer is ,value) value]

[else #f])

⇒ 42

(match ’(the answer was 42)

[‘(the answer is ,value) value]

[else #f])

⇒ #f

(match ’(a b c d)

[(the answer is value) value]

[else #f])

⇒ d

An example of matching records. The following code implements “rotation” operation to
balance a red-black tree.

(define-record-type T #t #t

color left value right)

(define (rbtree-rotate t)

(match t

[(or ($ T ’B ($ T ’R ($ T ’R a x b) y c) z d)

($ T ’B ($ T ’R a x ($ T ’R b y c)) z d)

($ T ’B a x ($ T ’R ($ T ’R b y c) z d))

($ T ’B a x ($ T ’R b y ($ T ’R c z d))))

(make-T ’R (make-T ’B a x b) y (make-T ’B c z d))]

[else t]))

Chapter 12: Library modules - Utilities 743

12.67 util.record - SLIB-compatible record type

[Module]util.record
This module provides a Guile and SLIB compatible record type API. It is built on top of
Gauche’s object system.

See also Section 9.25 [Record types], page 404, which provides a convenience macro
define-record-type.

[Function]make-record-type type-name ↓eld-names
{util.record} Returns a new class which represents a new record type. (It is what is called
record-type descriptor in SLIB). In Gauche, the new class is a subclass of <record> (see
Section 9.25 [Record types], page 404).

type-name is a string that is used for debugging purposes. It is converted to a symbol and
set as the name of the new class. ↓eld-names is a list of symbols of the names of fields. Each
field is implemented as a slot of the new class.

In the following procedures, rtd is the record class created by make-record-type.

[Function]record-constructor rtd :optional ↓eld-names
{util.record} Returns a procedure that constructs an instance of the record type of given
rtd. The returned procedure takes exactly as many arguments as ↓eld-names, which defaults
to ’(). Each argument sets the initial value of the corresponding field in ↓eld-names.

[Function]record-predicate rtd
{util.record} Returns a procedure that takes one argument, which returns #t iff the given
argument is of type of rtd.

[Function]record-accessor rtd ↓eld-name
{util.record} Returns an accessor procedure for the field named by ↓eld-name of type rtd.
The accessor procedure takes an instance of rtd, and returns the value of the field.

[Function]record-modifier rtd ↓eld-name
{util.record} Returns a modifier procedure for the field named by ↓eld-name of type rtd.
The modifier procedure takes two arguments, an instance of rtd and a value, and sets the
value to the specified field.

(define rtd (make-record-type "my-record" ’(a b c)))

rtd ⇒ #<class my-record>

(define make-my-record (record-constructor rtd ’(a b c)))

(define obj (make-my-record 1 2 3))

obj ⇒ #<my-record 0x819d9b0>

((record-predicate? rtd) obj) ⇒ #t

((record-accessor rtd ’a) obj) ⇒ 1

((record-accessor rtd ’b) obj) ⇒ 2

((record-accessor rtd ’c) obj) ⇒ 3

((record-modifier rtd ’a) obj -1)

((record-accessor rtd ’a) obj) ⇒ -1

Chapter 12: Library modules - Utilities 744

12.68 util.relation - Relation framework

[Module]util.relation
Provides a set of common operations for relations.

Given set of values S1, S2, ..., Sn, a relation R is a set of tuples such that the first element
of a tuple is from S1, the second from S2, ..., and the n-th from Sn. In another word, R is
a subset of Cartesian product of S1, ..., Sn. (The definition, as well as the term relation,
is taken from the Codd’s 1970 paper, "A Relational Model of Data for Large Shared Data
Banks", in CACM 13(6) pp.377–387.)

This definition can be applied to various datasets: A set of Gauche object system instances
is a relation, if you view each instance as a tuple and each slot value as the actual values. A
list of lists can be a relation. A stream that reads from CSV table produces a relation. Thus
it would be useful to provide a module that implements generic operations on relations, no
matter how the actual representation is.

From the operational point of view, we can treat any datastructure that provides the
following four methods; relation-rows, which retrieves a collection of tuples (rows);
relation-column-names, relation-accessor, and relation-modifier, which provide the
means to access meta-information. All the rest of relational operations are built on top of
those primitive methods.

A concrete implementation of relation can use duck typing, i.e. it doesn’t need to inherit
a particular base class to use the relation methods. However, for the convenience, a base
class <relation> is provided in this module. It works as a mixin class—a concrete class
typically wants to inherit <relation> and <collection> or <sequence>. Check out the
sample implementations in the lib/util/relation.scm in the source tree, if you’re curious.

This module is still under development. The plan is to build useful relational operations on
top of the common methods.

Basic class and methods

[Class]<relation>
{util.relation} An abstract base class of relations.

[Method]relation-column-names (r <relation>)
{util.relation} A subclass must implement this method. It should return a sequence of
names of the columns. The type of column names is up to the relation; we don’t place any
restriction on it, as far as they are different each other in terms of equal?.

[Method]relation-accessor (r <relation>)
{util.relation} A subclass must implement this method. It should return a procedure
that takes two arguments, a row from the relation r and a column name, and returns the
value of the specified column.

[Method]relation-modifier (r <relation>)
{util.relation} A subclass must implement this method. It should returns a procedure
that takes three arguments, a row from the relation r, a column name, and a value to set.

If the relation is read-only, this method returns #f.

[Method]relation-rows (r <relation>)
{util.relation} A subclass must implement this method. It should return the underlying
instance of <collection> or its subclass (e.g. <sequence>)

The rest of method are built on top of the above four methods. A subclass of <relation>
may overload some of the methods below for better performance, though.

Chapter 12: Library modules - Utilities 745

[Method]relation-column-name? (r <relation>) column
{util.relation} Returns true iff column is a valid column name for the relation r.

[Method]relation-column-getter (r <relation>) column
[Method]relation-column-setter (r <relation>) column

{util.relation} Returns a procedure to access the specified column of a row from the
relation r. Relation-column-getter should return a procedure that takes one argument, a
row. Relation-column-setter should return a procedure that takes two arguments, a row
and a new value to set.

If the relation is read-only, relation-column-setter returns #f.

[Method]relation-ref (r <relation>) row column :optional default
{util.relation} Row is a row from the relation r. Returns value of the column in row. If
column is not a valid column name, default is returned if it is given, otherwise an error is
signaled.

[Method]relation-set! (r <relation>) row column value
{util.relation} Row is a row from the relation r. Sets value as the value of column in row.
This may signal an error if the relation is read-only.

[Method]relation-column-getters (r <relation>)
[Method]relation-column-setters (r <relation>)

{util.relation} Returns full list of getters and setters. Usually the default method is
sufficient, but the implementation may want to cache the list of getters, for example.

[Method]relation-coercer (r <relation>)
{util.relation} Returns a procedure that coerces a row into a sequence. If the relation
already uses a sequence to represent a row, it can return row as is.

[Method]relation-insertable? (r <relation>)
{util.relation} Returns true iff new rows can be inserted to the relation r.

[Method]relation-insert! (r <relation>) row
{util.relation} Insert a row row to the relation r.

[Method]relation-deletable? (r <relation>)
{util.relation} Returns true iff rows can be deleted from the relation r.

[Method]relation-delete! (r <relation>) row
{util.relation} Deletes a row row from the relation r.

[Method]relation-fold (r <relation>) proc seed column . . .
{util.relation} Applies proc to the values of column . . . of each row, passing seed as the
state value. That is, for each row in r, proc is called as follows:

(proc v_0 v_1 ... v_i seed)

where v_k = (relation-ref r row column_k)

The result of the call becomes a new seed value, and the final result is returned from relation-
fold.

For example, if a relation has a column named amount, and you want to sum up all of them
in a relation r, you can write like this:

(relation-fold r + 0 ’amount)

Chapter 12: Library modules - Utilities 746

Concrete classes

[Class]<simple-relation>
{util.relation}

[Class]<object-set-relation>
{util.relation}

12.69 util.stream - Stream library

[Module]util.stream
This module provides a library of lazy streams, including the functions and syntaxes defined
in srfi-40.

[Function]stream? obj
[SRFI-40] {util.stream} Returns #t iff obj is a stream created by a procedure of
util.stream.

[Variable]stream-null
[SRFI-40] {util.stream} The singleton instance of NULL stream.

[Macro]stream-cons object stream
[SRFI-40] {util.stream} A fundamental constructor of a stream. Adds object to the head
of a stream, and returns a new stream.

[Function]stream-null? obj
[SRFI-40] {util.stream} Returns #t iff obj is the null stream.

[Function]stream-pair? obj
[SRFI-40] {util.stream} Returns #t iff obj is a non-null stream.

[Function]stream-car s
[SRFI-40] {util.stream} Returns the first element of the stream s.

[Function]stream-cdr s
[SRFI-40] {util.stream} Returns the remaining elements of the stream s, as a stream.

[Macro]stream-delay expr
[SRFI-40] {util.stream} Returns a stream which is a delayed form of expr.

As a rule of thumb, any stream-producing functions should wrap the resulting expression by
stream-delay.

[Function]stream obj . . .
[SRFI-40] {util.stream} Returns a new stream whose elements are obj

[Function]stream-unfoldn generator seed n
[SRFI-40] {util.stream} Creates n streams related each other, whose contents are generated
by generator and seed.

The generator is called with the current seed value, and returns n+1 values:

(generator seed)

=> seed result_0 result_1 ... result_n-1

The first value is to be the next seed value. Result k must be one of the following forms:

(val) val will be the next car of k-th stream.

#f No new information for k-th stream.

Chapter 12: Library modules - Utilities 747

() The end of k-th stream has been reached.

The following example creates two streams, the first one produces an infinite series of odd
numbers and the second produces evens.

gosh> (define-values (s0 s1)

(stream-unfoldn (lambda (i)

(values (+ i 2) ;; next seed

(list i) ;; for the first stream

(list (+ i 1)))) ;; for the second stream

0 2))

#<undef>

gosh> (stream->list (stream-take s0 10))

(0 2 4 6 8 10 12 14 16 18)

gosh> (stream->list (stream-take s1 10))

(1 3 5 7 9 11 13 15 17 19)

[Function]stream-map func . streams
[SRFI-40] {util.stream} Returns a new stream, whose elements are calculated by applying
func to each element of streams.

[Function]stream-for-each func . streams
[SRFI-40] {util.stream} Applies func for each element of streams. Terminates if one of
streams reaches the end.

[Function]stream-filter pred? stream
[SRFI-40] {util.stream} Returns a new stream including only elements passing pred?.

The following procedures are taken from the library written by Alejandro Forero Cuervo
for Chicken Scheme. They follow the naming conventions of srfi-1 (Section 11.1 [List library],
page 517).

[Function]stream-xcons a b
{util.stream} (stream-cons b a). Just for convenience.

[Function]stream-cons* elt . . . stream
{util.stream} Creates a new stream which appends elt . . . before stream.

[Function]make-stream n :optional init
{util.stream} Creates a new stream of n elements of init. If init is omitted, #f is used.
Specifying a negative number to n creates an infinite stream.

[Function]stream-tabulate n init-proc
{util.stream} Creates a new stream of n elements. The k-th element is obtained by applying
init-proc to k. Specifying a negative number to n creates an infinite stream. Creates a new
stream of integers, starting from start and incrementing step. The length of stream is count
if it is positive, or infinite if count is negative. The default values of start and step are 0 an
1, respectively.

[Function]stream-format fmt arg . . .
{util.stream} Returns a stream which is a result of applying string->stream to (format

fmt arg ...).

[Function]stream->list stream
[Function]stream->string stream

{util.stream} Converts a stream to a list or a string. All of stream’s elements are forced;
if stream is infinite, these procedures won’t terminate. For stream->string, all stream must
be characters, or an error is signaled.

Chapter 12: Library modules - Utilities 748

[Function]list->stream list
{util.stream} Converts a list to a stream of its elements.

[Function]string->stream string :optional stream
{util.stream} Convers a string to a stream of characters. If an optional stream is given, it
becomes the tail of the resulting stream.

(stream->list (string->stream "abc" (list->stream ’(1 2 3)))) ⇒ (#\a #\b #\c 1 2 3)

[Function]port->stream :optional iport reader closer
{util.stream} Creates a stream, whose elements consist of the items read from the input
port iport. The default iport is the current input port. The default reader is read-char.

The result stream terminates at the point where reader returns EOF (EOF itself is not
included in the stream). If closer is given, it is called with iport as an argument just after
reader reads EOF.

[Function]iterator->stream iter
{util.stream} A generic procedure to turn an internal iterator iter into a stream of iterated
results.

The iter argument is a procedure that takes two arguments, next and end, where next is a
procedure that takes one argument and end is a thunk. Iter is supposed to iterate over some
set and call next for each argument, then call end to indicate the end of the iteration. Here’s
a contrived example:

(stream->list

(iterator->stream

(lambda (next end) (for-each next ’(1 2 3 4 5)) (end))))

⇒ (1 2 3 4 5)

Internally iterator->stream uses the “inversion of iterator” technique, so that iter only
iterates to the element that are needed by the stream. Thus iter can iterate over an infinite
set. In the following example, iter is an infinite loop calling next with increasing integers,
but only the first 10 elements are calculated because of stream-take:

(stream->list

(stream-take

(iterator->stream

(lambda (next end)

(let loop ((n 0)) (next n) (loop (+ n 1)))))

10))

⇒ (0 1 2 3 4 5 6 7 8 9)

[Function]stream-lines stream
{util.stream} Splits stream where its element equals to #\n, and returns a stream of splitted
streams.

(stream->list

(stream-map stream->string

(stream-lines (string->stream "abc\ndef\nghi"))))

⇒ ("abc" "def" "ghi")

[Function]stream= elt= stream . . .
{util.stream} Returns true iff each corresponding element of stream . . . are the same in
terms of elt=. This procedure won’t terminate if any of streams is infinite.

[Function]stream-prefix= stream pre↓x :optional elt=
{util.stream} Compares initial elements of stream against a list pre↓x by elt=. Only as
many elements of stream as pre↓x has are checked.

Chapter 12: Library modules - Utilities 749

[Function]stream-caar s
[Function]stream-cadr s

. . .

[Function]stream-cdddar s
[Function]stream-cddddr s

{util.stream} (stream-caar s) = (stream-car (stream-car s)) etc.

[Function]stream-ref stream pos
{util.stream} Returns the pos-th element in the stream. Pos must be a nonnegative exact
integer.

[Function]stream-first s
[Function]stream-second s
[Function]stream-third s
[Function]stream-fourth s
[Function]stream-fifth s
[Function]stream-sixth s
[Function]stream-seventh s
[Function]stream-eighth s
[Function]stream-ninth s
[Function]stream-tenth s

{util.stream} (stream-first s) = (stream-ref s 0) etc.

[Function]stream-take stream count
[Function]stream-take-safe stream count

{util.stream} Returns a new stream that consists of the first count elements of the given
stream. If the given stream has less than count elements, the stream returned by stream-take
would raise an error when the elements beyond the original stream is accessed. On the other
hand, the stream returned by stream-take-safe will return a shortened stream when the
given stream has less than count elements.

(stream->list (stream-take (stream-iota -1) 10))

⇒ (0 1 2 3 4 5 6 7 8 9)

(stream-take (stream 1 2) 5)

⇒ stream

(stream->list (stream-take (stream 1 2) 5))

⇒ error

(stream->list (stream-take-safe (stream 1 2) 5))

⇒ (1 2)

[Function]stream-drop stream count
[Function]stream-drop-safe stream count

{util.stream} Returns a new stream that consists of the elements in the given stream except
the first count elements. If the given stream has less than count elements, stream-drop
returns a stream that raises an error if its element is accessed, and stream-drop-safe returns
an empty stream.

[Function]stream-intersperse stream element
{util.stream} Returns a new stream in which element is inserted between elements of
stream.

Chapter 12: Library modules - Utilities 750

[Function]stream-split stream pred
{util.stream}

[Function]stream-last stream
{util.stream}

[Function]stream-last-n stream count
{util.stream}

[Function]stream-butlast stream
{util.stream}

[Function]stream-butlast-n stream count
{util.stream}

[Function]stream-length stream
{util.stream}

[Function]stream-length>= stream n
{util.stream}

[Function]stream-append stream . . .
{util.stream}

[Function]stream-concatenate streams
{util.stream}

[Function]stream-reverse stream :optional tail-stream
{util.stream}

[Function]stream-count pred stream . . .
{util.stream}

[Function]stream-remove pred stream
{util.stream}

[Function]stream-partition pred stream
{util.stream}

[Function]stream-find pred stream
{util.stream}

[Function]stream-find-tail pred stream
{util.stream}

[Function]stream-take-while pred stream
{util.stream}

[Function]stream-drop-while pred stream
{util.stream}

[Function]stream-span pred stream
{util.stream}

[Function]stream-break pred stream
{util.stream}

[Function]stream-any pred stream . . .
{util.stream}

Chapter 12: Library modules - Utilities 751

[Function]stream-every pred stream . . .
{util.stream}

[Function]stream-index pred stream . . .
{util.stream}

[Function]stream-member obj stream :optional elt=
[Function]stream-memq obj stream
[Function]stream-memv obj stream

{util.stream}

[Function]stream-delete obj stream :optional elt=
{util.stream}

[Function]stream-delete-duplicates stream :optional elt=
{util.stream}

[Function]stream-grep re stream
{util.stream}

[Function]write-stream stream :optional oport writer
{util.stream}

12.70 util.toposort - Topological sort

[Module]util.toposort
Implements topological sort algorithm.

[Function]topological-sort graph :optional eqproc
{util.toposort} Graph represents a directed acyclic graph (DAG) by a list of connections,
where each connection is the form

(<node> <downstream> <downstream2> ...)

that means a node <node> is connected to other nodes <downstream> etc. <node> can be
arbitrary object, as far as it can be compared by the procedure eqproc, which is eqv? by
default (see Section 6.2.1 [Equality], page 89). Returns a list of <node>s sorted topologically.

If the graph contains circular reference, an error is signaled.

12.71 util.unification - Unification

[Module]util.unification
Implements unification algorithm.

The base API operates on abstract trees, while it is agnostic to the actual representation of
the tree. The caller passes comparators and operators along the trees to unify.

We assume the abstract tree has the following structure:

Tree : Variable | Value | Tuple

Tuple : { Tree ... }

Here, {...} just represents a sequence of trees.

A variable can be bound to a tree. A value can only match itself.

To operate on this tree, we need the following comparators and procedures, which the API
takes as arguments:

Variable comparator: var-cmpr
A comparator to see if an item is a variable, and also check equality of two
variables. It must be hashable. See Section 6.2.4 [Basic comparators], page 95,
for the defails of comparators.

Chapter 12: Library modules - Utilities 752

Value comparator: val-cmpr
A comparator to see if an item is a value, and also check equality of two vaues.
Note that if a tree satisfies neither var-cmpr nor val-compr, it is regarded as a
tuple.

Tuple folder: tuple-fold
A procedure (tuple-folde proc seed tuple1 [tuple2]). This procedure
should work like fold (see Section 6.6.5 [Walking over lists], page 121) over the
elements in the tuple(s). It is only called with either one or two tuples.

Tuple constructor: make-tuple
A procedure (make-tuple proto elements), where proto is a tuple and elements
are a list of trees. It must return a new tuple with the given elements, while all
other properties are the same as proto. This procedure isn’t needed by unify.

[Function]unify a b var-cmpr val-cmpr tuple-fold
{util.unification} Unify two trees a and b and returns a substitution dictionary, which
is a dictionary that maps variables to its bounded trees.

See the entry of util.unification above for the description of var-cmpr, val-cmpr and
tuple-fold.

(dict->alist (unify ’(a 3 (c b)) ’(c b (2 e))

symbol-comparator

number-comparator

fold))

⇒ ((e . 3) (a . c) (b . 3) (c . 2))

As you can see in the example above, a variable may be mapped to another variable, or even
to a tree that contains variables. If you apply the substitution to the original tree, you must
do it recursively until all the variables in the dictionary is eliminated.

If two trees cannot be unified, #f is returned.

(unify ’(a (a)) ’(x x) symbol-comparator number-comparator fold)

⇒ #f

[Function]unify-merge a b var-cmpr val-cmpr tuple-fold make-tuple
{util.unification} Unify two trees a and b, and apply the result substitutions to create a
new tree eliminating variables.

See the entry of util.unification above for the description of var-cmpr, val-cmpr, tuple-
fold and make-tuple.

(unify-merge ’(a 3 (c b)) ’(c b (2 e))

symbol-comparator

number-comparator

fold

(^[_ elts] elts))

⇒ (2 3 (2 3))

If two trees can’t be unified, #f is returned.

12.72 www.cgi - CGI utility

[Module]www.cgi
Provides a few basic functions useful to write a CGI script.

In order to write CGI script easily, you may want to use other modules, such as rfc.uri (see
Section 12.42 [URI parsing and construction], page 679), text.html-lite (see Section 12.53

Chapter 12: Library modules - Utilities 753

[Simple HTML document construction], page 721) and text.tree (see Section 12.59 [Lazy
text construction], page 730).

Note: it seems that there is no active formal specification for CGI. See http://w3c.org/

CGI/ for more information.

Metavariables

[Parameter]cgi-metavariables :optional metavariables
{www.cgi} Normally, httpd passes a cgi program various information via environment vari-
ables. Most procedures in www.cgi refer to them (meta-variables). However, it is sometimes
inconvenient to require environment variable access while you’re developing cgi-related pro-
grams. With this parameter, you can overrides the information of meta-variables.

Metavariables should be a list of two-element lists. Car of each inner list names the variable,
and its cadr gives the value of the variable by string.

For example, the following code overrides REQUEST_METHOD and QUERY_STRINGmeta-variables
during execution of my-cgi-procedure. (See Section 9.21 [Parameters], page 383, for the
details of parameterize).

(parameterize ((cgi-metavariables ’(("REQUEST_METHOD" "GET")

("QUERY_STRING" "x=foo"))))

(my-cgi-procedure))

[Function]cgi-get-metavariable name
{www.cgi} Returns a value of cgi metavariable name. This function first searches the param-
eter cgi-metavariables, and if the named variable is not found, calls sys-getenv.

CGI scripts may want to use cgi-get-metavariable instead of directly calling sys-getenv;
doing so makes reuse of the script easier.

Parameter extraction

[Function]cgi-parse-parameters :key :query-string :merge-cookies :part-handlers
{www.cgi} Parses query string and returns associative list of parameters. When a keyword
argument query-string is given, it is used as a source query string. Otherwise, the function
checks the metavariable REQUEST_METHOD and obtain the query string depending on the value
(either from stdin or from the metavariable QUERY_STRING). If such a metavariable is not
defined and the current input port is a terminal, the function prompts the user to type
parameters; it is useful for interactive debugging.

If REQUEST_METHOD is POST, this procedure can handle both application/x-www-form-

urlencoded and multipart/form-data as the enctype. The latter is usually used if the
form has file-uploading capability.

When the post data is sent by multipart/form-data, each content of the part is treated as
a value of the parameter. That is, the content of uploaded file will be seen as one big chunk
of a string. The other information, such as the original file name, is discarded. If it is not
desirable to read entire file into a string, you can customize the behavior by the part-handler
argument. The details are explained in the "Handling file uploads" section below.

When a true value is given tomerge-cookies, the cookie values obtained from the metavariable
HTTP_COOKIE are appended to the result.

Note that the query parameter may have multiple values, so cdr of each element in the result
is a list, not an atom. If no value is given to the parameter, #t is placed as its value. See the
following example:

(cgi-parse-parameters

:query-string "foo=123&bar=%22%3f%3f%22&bar=zz&buzz")

⇒ (("foo" "123") ("bar "\"??\"" "zz") ("buzz" #t))

http://w3c.org/CGI/
http://w3c.org/CGI/

Chapter 12: Library modules - Utilities 754

[Function]cgi-get-parameter name params :key :default :list :convert
{www.cgi} A convenient function to obtain a value of the parameter name from parsed query
string params, which is the value cgi-parse-parameters returns. Name should be a string.

Unless true value is given to list, the returned value is a scalar value. If more than one value
is associated to name, only the first value is returned. If list is true, the returned value is
always a list, even name has only one value.

After the value is retrieved, you can apply a procedure to convert the string value to the
appropriate type by giving a procedure to the convert argument. The procedure must take
one string argument. If list is true, the convert procedure is applied to each values.

If the parameter name doesn’t appear in the query, a value given to the keyword argument
default is returned; the default value of default is #f if list is false, or () otherwise.

Output generation

[Function]cgi-header :key status content-type location cookies
{www.cgi} Creates a text tree (see Section 12.59 [Lazy text construction], page 730) for the
HTTP header of the reply message. The most simple form is like this:

(tree->string (cgi-header))

⇒ "Content-type: text/html\r\n\r\n"

You can specify alternative content-type by the keyword argument content-type. If you
want to set cookies to the client, specify a list of cookie strings to the keyword argument
cookies. You can use construct-cookie-string (see Section 12.30 [HTTP cookie handling],
page 658) to build such a list of cookie strings.

The keyword argument location may be used to generate a Location: header to redirect
the client to the specified URI. You can also specify the Status: header by the keyword
argument status. A typical way to redirect the client is as follows:

(cgi-header :status "302 Moved Temporarily"

:location target-uri)

[Parameter]cgi-output-character-encoding :optional encoding
{www.cgi} The value of this parameter specifies the character encoding scheme (CES) used
for CGI output by cgi-main defined below. The default value is Gauche’s native encoding. If
the parameter is set other than the native encoding, cgi-main converts the output encoding
by gauche.charconv module (see Section 9.4 [Character code conversion], page 318).

Convenience procedures

[Function]cgi-main proc :key on-error merge-cookies output-proc part-handlers
{www.cgi} A convenient wrapper function for CGI script. This function calls cgi-parse-

parameters, then calls proc with the result of cgi-parse-parameters. The keyword argu-
ment merge-cookies is passed to cgi-parse-parameters.

proc has to return a tree of strings (see Section 12.59 [Lazy text construction], page 730),
including the HTTP header. cgi-main outputs the returned tree to the current output port
by write-tree, then returns zero.

If an error is signaled in proc, it is caught and an HTML page reporting the error is generated.
You can customize the error page by providing a procedure to the on-error keyword argument.
The procedure takes an <condition> object (see Section 6.20.4 [Conditions], page 198), and
has to return a tree of string for the error reporting HTML page, including an HTTP header.

When output the result, cgi-main refers to the value of the parameter cgi-output-

character-encoding, and converts the character encoding if necessary.

Chapter 12: Library modules - Utilities 755

The output behavior of cgi-main can be customized by a keyword argument output-proc; if
it is given, the text tree (either the normal return value of proc, or an error page constructed
by the error handler) is passed to the procedure given to output-proc. The procedure is
responsible to format and output a text to the current output port, including character
conversions, if necessary.

The keyword argument part-handlers are simply passed to cgi-parse-parameters, by which
you can customize how the file uploads should be handled. See the "Handling file uploads"
section below for the details.

If you specify to use temporary file(s) by it, cgi-main makes sure to clean up them whenever
proc exits, even by error. See cgi-add-temporary-file below to utilize this feature for
other purpose.

Before calling proc, cgi-main changes the buffering mode of the current error port to :line

(See port-buffering in Section 6.22.3 [Common port operations], page 204, for the details
about the buffering mode). This makes the error output easier for web servers to capture.

The following example shows the parameters given to the CGI program.

#!/usr/local/bin/gosh

(use text.html-lite)

(use www.cgi)

(define (main args)

(cgi-main

(lambda (params)

‘(,(cgi-header)

,(html-doctype)

,(html:html

(html:head (html:title "Example"))

(html:body

(html:table

:border 1

(html:tr (html:th "Name") (html:th "Value"))

(map (lambda (p)

(html:tr

(html:td (html-escape-string (car p)))

(html:td (html-escape-string (x->string (cdr p))))))

params))))

))))

[Function]cgi-add-temporary-file ↓lename
{www.cgi} This is supposed to be called inside proc of cgi-main. It registers ↓lename as a
temporary file, which should be unlinked when proc exits. It is a convenient way to ensure
that your cgi script won’t leave garbages even if it throws an error. It is OK in proc to unlink
or rename ↓lename after calling this procedure.

[Parameter]cgi-temporary-files
{www.cgi} Keeps a list of filenames registered by cgi-add-temporary-file.

Handling file uploads

As explained in cgi-parse-parameters above, file uploads are handled transparently by default,
taking the file content as the value of the parameter. Sometimes you might want to change this
behavior, for the file might be quite big and you don’t want to keep around a huge chunk of a

Chapter 12: Library modules - Utilities 756

string in memory. It is possible to customize handling of file uploads of cgi-parse-parameters
and cgi-main by part-handlers argument. (The argument is only effective for the form data
submitted by multipart/form-data enctype)

The part-handlers argument is, if given, a list of lists; each inner list is a form of (name-
pattern action kv-list ...). Each uploaded file with a matching parameter name with name-
pattern is handled according to action. (Here, a parameter name is the ’name’ attribute given
to the input element in the submitted form, not the name of the uploaded file).

Name-pattern must be either a list of string (matches one of them), a regexp, or #t (matches
anything).

Action must be either one of the followings:

#f Default action, i.e. the content of the uploaded file is turned into a string and
becomes the value of the parameter.

ignore The uploaded content is discarded.

file The uploaded content is saved in a temporary file. The value of the parameter is
the pathname of the temporary file.

For this action, you can write an entry like (name-pattern file prefix), to spec-
ify the prefix of the pathname of the temporary file. For example, if you specify
("image" file "/var/mycgi/incoming/img"), the file uploaded as "image" pa-
rameter will be stored as something like /var/mycgi/incoming/img49g2Ua.

The application should move the temporary file to appropriate location; if you’re
using cgi-main, the temporary files created by this action will be unlinked when
cgi-main exits.

file+name

Like file, but the value of the parameter is a list of temporary filename and the
filename passed by the client. It is useful if you want to use client’s filename (but
do not blindly assume the client sends a valid pathname; for example, you shouldn’t
use it to rename the uploaded file without validating it).

procedure

In this case, procedure is called to handle the uploaded contents. It is called with
four arguments: (procedure name filename part-info iport).

Name is the name of the parameter. Filename is the name of the original file
(pathname in the client). Part-info is a <mime-part> object that keeps information
about this mime part, and iport is where the body can be read from. For the details
about these arguments, see Section 12.38 [MIME message handling], page 672; you
might be able to use procedures provided by rfc.mime, such as mime-retrieve-

body, to construct your own procedure.

If you create a temporary file in procedure, you can call cgi-add-temporary-file
to make sure it is removed even if an error occurs during cgi processing.

If kv-list is given after action, it must be a keyword-value list and further modifies action.
The following keywords are supported.

:prefix Valid only if action is either file or file+name. Specifies the prefix of the temporary
file. If you give :prefix "/tmp/foo", for example, the file is saved as something
like /tmp/fooxAgjeQ.

:mode Valid only if action is either file or file+name. Specifies the mode of the temporary
file in unix-style integer. By default it is #o600.

Chapter 12: Library modules - Utilities 757

Note that the parameters that are not file uploads are not the subject of part-handlers; such
parameter values are always turned into a string.

Here’s a short example. Suppose you have a form like this:

<form enctype="multipart/form-data" method="POST" action="mycgi.cgi">

<input type="file" name="imagefile" />

<input type="text" name="description" />

<input type="hidden" name="mode" value="normal" />

</form>

If you use cgi-parse-parameters in mycgi.cgi without part-handlers argument, you’ll get
something like the following as the result. (The actual values depend on how the web client
filled the form).

(("imagefile" #*".....(image file content as a string)....")

("description" "my image")

("mode" "normal"))

If you pass ’(("imagefile" file :prefix "/tmp/mycgi")) to part-handlers instead,
you might get something like the following, with the content of uploaded file saved in
/tmp/mycgi7gq0B

(("imagefile" "/tmp/mycgi7gq0B")

("description" "my image")

("mode" "normal"))

If you use a symbol file+name instead of file above, you’ll get something like
("/tmp/mycgi7gq0B" "logo.jpg") as the value of "imagefile", where "logo.jpg" is the
client-side filename. (Note: the client can send any string as the name of the file, so never
assume it is a valid pathname).

12.73 www.cgi.test - CGI testing

[Module]www.cgi.test
This module defines a useful procedures to test CGI script. The test actually runs the
named script, with specified enviornment variable settings, and retrieve the output. Your
test procedure then examine whether the output is as expected or not.

[Function]cgi-test-enviornment-ref envvar-name
[Function](setter cgi-test-enviornment-ref) envvar-name value

{www.cgi.test} The module keeps a table of default values of enviornment variables with
which the cgi script will be run. These procedures allow the programmer to get/set those
default values.

Note that you can override these default values and/or pass additional environment variables
for each call of cgi script. The following environment variables are set by default.

Name Value
SERVER_SOFTWARE cgitest/1.0

SERVER_NAME localhost

GATEWAY_INTERFACE CGI/1.1

SERVER_PROTOCOL HTTP/1.1

SERVER_PORT 80

REQUEST_METHOD GET

REMOTE_HOST remote

REMOTE_ADDR 127.0.0.1

Chapter 12: Library modules - Utilities 758

[Function]call-with-cgi-script script proc :key (environment ()) (parameters #f)
{www.cgi.test} Runs a script with given enviornment, and calls proc with one argument,
an input port which is connected to the pipe of script’s standard output. The argument
script should be a list of program name and its arguments. Each element are passed to
x->string first to stringify. The script is run under the enviornment given by enviornment
variable and the default test environment described above. The environment argument must
be an associative list, in which each key (car) is the name of the enviornment variable and
its cdr is the value. Both are passed to x->string first. If the same environment variable
appears in environment and the default test enviornment, the one in environment is used.
Additionally, if an associative list is given to the parameters argument, a query string is built
from it and passed the script. The actual method to pass the query string depends on the
value of REQUEST_METHOD environment variable in the setting. If REQUEST_METHOD is either
GET or HEAD, the query string is put in an environment variable QUERY_STRING. If it is POST,
the query string is fed to the standard input of the script. In the latter case, CONTENT_TYPE
is set to application/x-www-form-urlencoded and CONTENT_LENGTH are set to the length
of QUERY_STRING automatically. If REQUEST_METHOD is other values, parameters is ignored.
You can bypass this mechanism and set up enviornment variable QUERY_STRING directly, if
you wish.

[Function]run-cgi-script->header&body script reader :key environment
parameters

{www.cgi.test} A convenient wrapper of call-with-cgi-script. The script, environment
and parameters are passed to call-with-cgi-script as they are. The output of the script
is parsed by run-cgi-script->header&body. First, the RFC2822 header fields are parsed by
rfc822-read-headers (see Section 12.28 [RFC822 message parsing], page 653). Then, the
reader is called with an input port which is piped to the script’s output. Run-cgi-script-
>header&body returns two values, the list of headers (as parsed by rfc822-read-headers),
and the return value of reader.

[Function]run-cgi-script->sxml script :key environment parameters
{www.cgi.test} This is a procedure that uses ssax:xml->sxml (see Section 12.45 [Functional
XML parser], page 688) as the reader in run-cgi-script->header&body. Useful when you’re
testing a cgi script that produces well-formed HTML and/or XML document.

[Function]run-cgi-script->string script :key environment parameters
[Function]run-cgi-script->string-list script :key environment parameters

{www.cgi.test} These procedures use port->string and port->string-list (see
Section 6.22.7.4 [Input utility functions], page 216) as the reader in run-cgi-script-

>header&body, respectively.

An example:

(run-cgi-script->string-list "bbs.cgi"

:environment ’((REMOTE_ADDR . "12.34.56.78"))

:parameters ’((command . "view")

(page . 1234)))

12.74 www.css - CSS parsing and construction

[Module]www.css
This module provides tools to convert between S-expression and CSS.

The S-expression CSS (SxCSS) is a convenient way to manipulate CSS in Scheme.

Chapter 12: Library modules - Utilities 759

For example, the following CSS and SxCSS are equivalent, and can be converted back and
forth:

CSS:

body { padding-left: 11em;

font-family: Georgia, "Times New Roman", Times, serif;

color: purple;

background-color: #d8da3d }

ul.navbar li { background: white;

margin: 0.5em 0;

padding: 0.3em;

border-right: 1em solid black }

ul#spec > a { text-decoration: none }

a:visited { color: purple !important }

SxCSS:

((style-rule body

(padding-left (11 em))

(font-family (:or Georgia "Times New Roman" Times serif))

(color purple)

(background-color (color "d8da3d")))

(style-rule ((ul (class navbar)) li)

(background white)

(margin #((0.5 em) 0))

(padding (0.3 em))

(border-right #((1 em) solid black)))

(style-rule ((ul (id spec)) > a) (text-decoration none))

(style-rule (a (: visited)) (color purple !important)))

See the “CSS in S-expression” section below for the complete specification.

Constructing CSS

[Function]construct-css sxcss :optional oport
{www.css} Take SxCSS and writes out CSS to the given port, defaulted to the current output
port.

Parsing CSS

[Function]parse-css :optional iport
{www.css} Read CSS from the given port, defaulted to the current input port, and returns
SxCSS.

When it encounters unparsable CSS (either a malformed CSS, or unsupported syntax), it
emits a warning message, ignore the unparsable part and tries to continue reading the rest.

NB: Currently we don’t handle @charset directive; we assume the text is already in the
port’s encoding. We may support it in future versions.

[Function]parse-css-file ↓le :key encoding
{www.css} Read the CSS text from the given file and parse it using parse-css. Again, we
don’t handle @charset directive yet, and you have to pass encoding argument if the CSS
text isn’t in the Gauche’s native character encoding.

[Function]parse-css-selector-string str
{www.css} This parses the selector part of the CSS.

(parse-css-selector-string "ul li.item span#foo")

Chapter 12: Library modules - Utilities 760

⇒ (ul (li (class item)) (span (id foo)))

(parse-css-selector-string "h1,h2")

⇒ (:or h1 h2)

CSS in S-expression

The following is the complete rules of SxCSS syntax.

<sxcss> : ({<style-rule> | <at-rule>} ...)

<style-rule> : (style-rule <pattern> <declaration> ...)

| (style-decls <declaration> ...)

<pattern> : <selector> | (:or <selector> ...)

<seletor> : <simple-selector>

| <chained-selector>

<chained-selector> : (<simple-selector> . (<op>? . <chained-selector>))

<op> : > | + | ~

<simple-selector> : <element-name>

| (<element-name> <option> ...)

<option> : (id <name>) ; E#id

| (class <ident>) ; E.class

| (has <ident>) ; E[attrib]

| (= <ident> <attrib-value>) ; E[attrib=val]

| (~= <ident> <attrib-value>) ; E[attrib~=val]

| (:= <ident> <attrib-value>) ; E[attrib|=val]

| (*= <ident> <attrib-value>) ; E[attrib*=val]

| (^= <ident> <attrib-value>) ; E[attrib^=val]

| ($= <ident> <attrib-value>) ; E[attrib$=val]

| (:not <negation-arg>) ; E:not(s)

| (: <ident>) ; E:pseudo-class

| (: (<fn> <ident> ...)) ; E:pseudl-class(arg)

| (:: <ident>) ; E::pseudo-element

<element-name> : <ident> | *

<attrib-value> : <ident> | <string>

<negation-arg> | <element-name> | * | <option> ; except <negation-arg>

<declaration> : (<ident> <expr> <expr2> ... <important>?)

<important> : !important

<expr> : <term>

| (/ <term> <term> ...)

| (:or <term> <term> ...)

| #(<term> <term> ...) ; juxtaposition

<term> : <quantity> | (- <quantity>) | (+ <quantity>)

| <string> | <ident> | <url> | <hexcolor> | <function>

<quantity> : <number>

| (<number> %)

| (<number> <ident>)

<url> | (url <string>)

<hexcolor> | (color <string>) ; <string> must be hexdigits

<function> | (<fn> <arg> ...)

<arg> | <term> | #(<term> ...) | (/ <term> <term> ...)

761

<at-rule> : <at-media-rule> | <at-import-rule>

; NB: Other at-rules are not supported yet

<at-media-rule> : (@media (<symbol> ...) <style-rule> ...)

<at-import-rule> : (@import <string> (<symbol> ...))

NB: Negation op is :not instead of not, since (not <negation-arg>) would be ambiguous
from the simple node named "not" with one option.

NB: style-decls selector rule is currently won’t appear in the parse-css output; it can
be used in SxCSS to make construct-css render declarations only, which can be used in the
style attribute of the document, for example.

762

Appendix A References

[R5RS] R. Kelsey, W. Clinger, J. Rees (eds.), Revised^5 Report on the Algorithmic Lan-
guage Scheme, Higher-Order and Symbolic Computation, 11(1), September, 1998
and ACM SIGPLAN Notices, 33(9), October, 1998.
http://www.schemers.org/Documents/Standards/R5RS/.

[R7RS] A. Shinn, J. Cowan, A. A. Greckler (eds.), Revised^7 Report on the Algorithmic
Language Scheme
http://trac.sacrideo.us/wg/raw-attachment/wiki/WikiStart/r7rs.pdf.

[1CC] Carl Bruggeman, Oscar Waddell and R. Kent Dybvig, Representing control in the
presence of one-shot continuations, in Proceedings of SIGPLAN ’96, pp. 99–107,
1996.

[Myers86] Eugene Myers, An O(ND) Difference Algorithm and Its Variations, Algorithmica
Vol. 1 No. 2, pp. 251-266, 1986.

[MOP] Gregor Kiczales, Jim Des Rivieres, Daniel Bobrow, The Art of Metaobject Protocol,
The MIT Press.

[Dylan] Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith Playford, P. Tucker
Withington, A Monotonic Superclass Linearization for Dylan, in Proceedings of
OOPSLA 96, October 1996.
http://dl.acm.org/citation.cfm?id=236343.

[FairThreads]
F. Boussinot, Java Fair Threads,
http://www-sop.inria.fr/mimosa/rp/FairThreads/html/FairThreads.html.

[RFC1321]
R. Rivest, The MD5 Message-Digest Algorithm.
April 1992.
http://www.ietf.org/rfc/rfc1321.txt.

[RFC2045]
N. Freed, N. Borenstein: Multipurpose Internet Mail Extension (MIME) Part One:
Format of Internet Message Bodies, November 1996.
http://www.ietf.org/rfc/rfc2045.txt.

[RFC2396]
T. Berners-Lee, R. Fielding, L. Masinter, Uniform Resource Identifiers (URI):
Generic Syntax, August 1998.
http://www.ietf.org/rfc/rfc2396.txt.

[RFC2616]
R. Fielding et al, Hypertext Transfer Protocol – HTTP/1.1, June 1999.
http://www.ietf.org/rfc/rfc2616.txt.

[RFC2822]
P. Resnick (ed.), Internet Message Format, April 2001.
http://www.ietf.org/rfc/rfc2822.txt.

[RFC2965]
D. Kristol, L. Montulli, HTTP State Management Mechanism, October 2000.
http://www.ietf.org/rfc/rfc2965.txt.

[RFC3174]
D. Eastlake, 3rd and P. Jones, US Secure Hash Algorithm 1 (SHA1).
September 2001.
http://www.ietf.org/rfc/rfc3174.txt.

http://www.schemers.org/Documents/Standards/R5RS/
http://trac.sacrideo.us/wg/raw-attachment/wiki/WikiStart/r7rs.pdf
http://dl.acm.org/citation.cfm?id=236343
http://www-sop.inria.fr/mimosa/rp/FairThreads/html/FairThreads.html
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2822.txt
http://www.ietf.org/rfc/rfc2965.txt
http://www.ietf.org/rfc/rfc3174.txt

Appendix A: References 763

[RFC4648]
S. Josefsson, Ed.: The Base16, Base32, and Base64 Data Encodings October 2006.
http://www.ietf.org/rfc/rfc4648.txt.

[SRFI-0] Marc Feeley, Feature-based conditional expansion construct, May 1999.
http://srfi.schemers.org/srfi-0/srfi-0.html.

[SRFI-1] Olin Shivers, List Library, October 1999.
http://srfi.schemers.org/srfi-1/srfi-1.html.

[SRFI-2] Oleg Kiselyov, AND-LET*: an AND with local bindings, a guarded LET* special form,
March 1998.
http://srfi.schemers.org/srfi-2/srfi-2.html.

[SRFI-4] Marc Feeley, Homogeneous numeric vector types, May 1999.
http://srfi.schemers.org/srfi-4/srfi-4.html.

[SRFI-6] William D Clinger, Basic String Ports, July 1999.
http://srfi.schemers.org/srfi-6/srfi-6.html.

[SRFI-8] John David Stone, receive: Binding to multiple values, August 1999.
http://srfi.schemers.org/srfi-8/srfi-8.html.

[SRFI-9] Richard Kelsey, Defining Record Types, September 1999.
http://srfi.schemers.org/srfi-9/srfi-9.html.

[SRFI-10] Oleg Kiselyov, #, external form, January 2000.
http://srfi.schemers.org/srfi-10/srfi-10.html.

[SRFI-11] Lars T Hansen, Syntax for receiving multiple values, March 2000.
http://srfi.schemers.org/srfi-11/srfi-11.html.

[SRFI-13] Olin Shivers, String Libraries, December 2000.
http://srfi.schemers.org/srfi-13/srfi-13.html.

[SRFI-14] Olin Shivers, Character-set Library, December 2000.
http://srfi.schemers.org/srfi-14/srfi-14.html.

[SRFI-17] Per Bothner, Generalized set!, July 2000.
http://srfi.schemers.org/srfi-17/srfi-17.html.

[SRFI-18] Marc Feeley, Multithreading Support, April 2000.
http://srfi.schemers.org/srfi-18/srfi-18.html.

[SRFI-19] Will Fitzgerald, Time Data Types and Procedures, August 2000.
http://srfi.schemers.org/srfi-19/srfi-19.html.

[SRFI-21] Marc Feeley, Readl-time Multithreading Support, April 2000.
http://srfi.schemers.org/srfi-21/srfi-21.html.

[SRFI-22] Martin Gasbichler and Michael Sperber, Running Scheme Scripts on Unix, January
2002.
http://srfi.schemers.org/srfi-22/srfi-22.html.

[SRFI-23] Stephan Housen, Error reporting mechanism, April 2001.
http://srfi.schemers.org/srfi-23/srfi-23.html.

[SRFI-25] Jussi Piitulainen, Multi-dimensional Array Primitives, June 2002.
http://srfi.schemers.org/srfi-25/srfi-25.html.

[SRFI-26] Sebastian Egner, Notation for Specializing Parameters without Currying, June 2002.
http://srfi.schemers.org/srfi-26/srfi-26.html.

http://www.ietf.org/rfc/rfc4648.txt
http://srfi.schemers.org/srfi-0/srfi-0.html
http://srfi.schemers.org/srfi-1/srfi-1.html
http://srfi.schemers.org/srfi-2/srfi-2.html
http://srfi.schemers.org/srfi-4/srfi-4.html
http://srfi.schemers.org/srfi-6/srfi-6.html
http://srfi.schemers.org/srfi-8/srfi-8.html
http://srfi.schemers.org/srfi-9/srfi-9.html
http://srfi.schemers.org/srfi-10/srfi-10.html
http://srfi.schemers.org/srfi-11/srfi-11.html
http://srfi.schemers.org/srfi-13/srfi-13.html
http://srfi.schemers.org/srfi-14/srfi-14.html
http://srfi.schemers.org/srfi-17/srfi-17.html
http://srfi.schemers.org/srfi-18/srfi-18.html
http://srfi.schemers.org/srfi-19/srfi-19.html
http://srfi.schemers.org/srfi-21/srfi-21.html
http://srfi.schemers.org/srfi-22/srfi-22.html
http://srfi.schemers.org/srfi-23/srfi-23.html
http://srfi.schemers.org/srfi-25/srfi-25.html
http://srfi.schemers.org/srfi-26/srfi-26.html

Appendix A: References 764

[SRFI-27] Sebastian Egner, Sources of Random Bits, June 2002.
http://srfi.schemers.org/srfi-27/srfi-27.html.

[SRFI-28] Scott G. Miller, Basic Format Strings, June 2002.
http://srfi.schemers.org/srfi-28/srfi-28.html.

[SRFI-37] Anthony Carrico, Args-fold: a program argument processor, Jan. 2003.
http://srfi.schemers.org/srfi-37/srfi-37.html.

[SSAX] Oleg Kiselyov, XML and Scheme,
http://pobox.com/~oleg/ftp/Scheme/xml.html.
The SSAX distribution is also available at sourceforge:
http://ssax.sourceforge.net/.

[MT] M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally equidis-
tributed uniform pseudorandom number generator", ACM Trans. on Modeling and
Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.
http://dl.acm.org/citation.cfm?id=272995

[OLEG1] Oleg Kiselyov, Making sense of an input stream,
http://pobox.com/~oleg/ftp/Scheme/parsing.html.

[OLEG2] Oleg Kiselyov, General ways to traverse collections,,
http://pobox.com/~oleg/ftp/Scheme/enumerators-callcc.html. 2000.

http://srfi.schemers.org/srfi-27/srfi-27.html
http://srfi.schemers.org/srfi-28/srfi-28.html
http://srfi.schemers.org/srfi-37/srfi-37.html
http://pobox.com/~oleg/ftp/Scheme/xml.html
http://ssax.sourceforge.net/
http://dl.acm.org/citation.cfm?id=272995
http://pobox.com/~oleg/ftp/Scheme/parsing.html
http://pobox.com/~oleg/ftp/Scheme/enumerators-callcc.html

765

Appendix B C to Scheme mapping

For the convenience of the programmers familiar to C, I composed a simple table of C operators
and library functions with the corresponding Scheme functions.

+ R7RS arithmetic procedure +. See Section 6.3.4 [Arithmetics], page 103.

+= Gauche inc! macro. See Section 4.4 [Assignments], page 45.

- R7RS arithmetic procedure -. See Section 6.3.4 [Arithmetics], page 103.

-= Gauche dec! macro. See Section 4.4 [Assignments], page 45.

-> Gauche slot-ref is something close to this. See Section 7.3.2 [Accessing instance],
page 282.

* (binary)

R7RS arithmetic procedure *. See Section 6.3.4 [Arithmetics], page 103.

* (unary) No equivalent procedure. Scheme doesn’t have explicit notation of pointers.

*= No equivalent procedure.

/ In C, it has two different meanings depending on the types of operands. For real
division, use /. For integer quotient, use quotient. See Section 6.3.4 [Arithmetics],
page 103.

/= No equivalent procedure.

& (binary)

Gauche logand. See Section 11.32 [Bitwise operations], page 572.

& (unary) No equivalent procedure. Scheme doesn’t have explicit notation of pointers.

&& R7RS syntax and. See Section 4.5 [Conditionals], page 47.

&= No equivalent procedure.

| Gauche logior. See Section 11.32 [Bitwise operations], page 572.

|| R7RS syntax or. See Section 4.5 [Conditionals], page 47.

|= No equivalent procedure.

^ Gauche logxor. See Section 11.32 [Bitwise operations], page 572.

= R7RS syntax set!. See Section 4.4 [Assignments], page 45.

== R7RS equivalence procedure, eq?, eqv? and equal?. See Section 6.2.1 [Equality],
page 89.

<

<= R7RS arithmetic procedure < and <=. See Section 6.3.3 [Numerical comparison],
page 103. Unlike C operator, Scheme version is transitive.

<< Gauche ash. See Section 11.32 [Bitwise operations], page 572.

<<= No equivalent procedure.

>

>= R7RS arithmetic procedure > and >=. See Section 6.3.3 [Numerical comparison],
page 103. Unlike C operator, Scheme version is transitive.

>> Gauche ash. See Section 11.32 [Bitwise operations], page 572.

>>= No equivalent procedure.

Appendix B: C to Scheme mapping 766

% R7RS operator modulo and remainder. See Section 6.3.4 [Arithmetics], page 103.

%= No equivalent procedure.

[] R7RS vector-ref (see Section 6.14 [Vectors], page 160) is something close. Or
you can use Gauche’s generic function ref (see Section 9.28 [Sequence framework],
page 412) for arbitrary sequences.

. Gauche slot-ref is something close to this. See Section 7.3.2 [Accessing instance],
page 282.

~ Gauche lognot. See Section 11.32 [Bitwise operations], page 572.

~= No equivalent procedure.

! R7RS procedure not. See Section 6.4 [Booleans], page 115.

!= No equivalent procedure.

abort Gauche sys-abort. See Section 6.25.1 [Program termination], page 232.

abs R7RS abs. See Section 6.3.4 [Arithmetics], page 103.

access Gauche sys-access. See Section 6.25.4.4 [File stats], page 240.

acos R7RS acos. See Section 6.3.4 [Arithmetics], page 103.

alarm Gauche sys-alarm. See Section 6.25.13 [Miscellaneous system calls], page 261.

asctime Gauche sys-asctime. See Section 6.25.9 [Time], page 254.

asin R7RS asin. See Section 6.3.4 [Arithmetics], page 103.

assert No equivalent function in Gauche.

atan

atan2 R7RS atan. See Section 6.3.4 [Arithmetics], page 103.

atexit No equivalent function in Gauche, but the "after" thunk of active dynamic handlers
are called when exit is called. See Section 6.25.1 [Program termination], page 232,
and See Section 6.18.7 [Continuations], page 181.

atof

atoi

atol You can use string->number. See Section 6.3.5 [Numerical conversions], page 110.

bsearch You can use SRFI-133’s vector-binary-search. See Section 11.28 [Vector library],
page 559.

calloc Allocation is handled automatically in Scheme.

ceil R7RS ceiling. See Section 6.3.4 [Arithmetics], page 103.

cfgetispeed

cfgetospeed

cfsetispeed

cfsetospeed

Gauche’s sys-cfgetispeed, sys-cfgetospeed, sys-cfsetispeed,
sys-cfsetospeed. See Section 9.30 [Terminal control], page 421.

chdir Gauche’s sys-chdir. See Section 6.25.4.5 [Other file operations], page 243.

chmod Gauche’s sys-chmod. See Section 6.25.4.4 [File stats], page 240.

chown Gauche’s sys-chown. See Section 6.25.4.4 [File stats], page 240.

Appendix B: C to Scheme mapping 767

clearerr Not supported yet.

clock No equivalent function in Gauche. You can use sys-times to get information about
CPU time.

close You can’t directly close the file descriptor, but when you use close-input-port or
close-output-port, underlying file is closed. Some port-related functions, such as
call-with-output-file, automatically closes the file when operation is finished.
The file is also closed when its governing port is garbage collected. See Section 6.22.3
[Common port operations], page 204.

closedir No equivalent function in Gauche. You can use sys-readdir to read the directory
entries at once. See Section 6.25.4.1 [Directories], page 236.

cos

cosh cos and cosh. See Section 6.3.4 [Arithmetics], page 103.

creat A file is implicitly created by default when you open it for writing. See Section 6.22.4
[File ports], page 207, for more control over the creation of files.

ctermid Gauche sys-ctermid. See Section 6.25.8 [System inquiry], page 251.

ctime Gauche sys-ctime. See Section 6.25.9 [Time], page 254.

cuserid No equivalent function. This is removed from the newer POSIX. You can use alter-
native functions, such as sys-getlogin or sys-getpwuid with sys-getuid.

difftime Gauche sys-difftime. See Section 6.25.9 [Time], page 254.

div You can use R7RS quotient and remainder. See Section 6.3.4 [Arithmetics],
page 103.

dup

dup2 Not directly supported, but you can use port-fd-dup!.

execl

execle

execlp

execv

execve

execvp Gauche sys-exec. See Section 6.25.10 [Process management], page 256. For higher
level interface, Section 9.24 [High Level Process Interface], page 393.

exit

_exit Use exit or sys-exit, depends on what you need. See Section 6.25.1 [Program
termination], page 232.

exp R7RS exp. See Section 6.3.4 [Arithmetics], page 103.

fabs R7RS abs. See Section 6.3.4 [Arithmetics], page 103.

fclose You can’t directly close the file stream, but when you use close-input-port or
close-output-port, underlying file is closed. Some port-related functions, such as
call-with-output-file, automatically closes the file when operation is finished.
The file is also closed when its governing port is garbage collected.

fcntl Implemented as sys-fcntl in gauche.fcntl module. See Section 9.9 [Low-level file
operations], page 342.

fdopen Gauche’s open-input-fd-port or open-output-fd-port. See Section 6.22.4 [File
ports], page 207.

Appendix B: C to Scheme mapping 768

feof No equivalent operation, but you can check if an input port have reached to the end
by peek-char or peek-byte. See Section 6.22.7.1 [Reading data], page 212.

ferror Not supported yet.

fflush Gauche’s flush. See Section 6.22.8 [Output], page 217.

fgetc Use read-char or read-byte. See Section 6.22.7 [Input], page 212.

fgetpos Use Gauche’s port-tell (see Section 6.22.3 [Common port operations], page 204)

fgets Use read-line or read-string. See Section 6.22.7 [Input], page 212.

fileno port-file-numer. See Section 6.22.3 [Common port operations], page 204.

floor R7RS floor. See Section 6.3.4 [Arithmetics], page 103.

fmod Gauche’s fmod.

fopen R7RS open-input-file or open-output-file corresponds to this operation. See
Section 6.22.4 [File ports], page 207.

fork Gauche’s sys-fork. See Section 6.25.10 [Process management], page 256.

forkpty Use sys-forkpty. See Section 9.30 [Terminal control], page 421.

fpathconf

Not supported.

fprintf Not directly supported, but Gauche’s format provides similar functionality. See
Section 6.22.8 [Output], page 217. SLIB has printf implementation.

fputc Use write-char or write-byte. See Section 6.22.8 [Output], page 217.

fputs Use display. See Section 6.22.8 [Output], page 217.

fread Not directly supported. To read binary numbers, see Section 12.1 [Binary I/O],
page 581. If you want to read a chunk of bytes, you may be able to use
read-uvector!. See Section 9.35.4 [Uvector block I/O], page 458.

free You don’t need this in Scheme.

freopen Not supported.

frexp Gauche’s frexp

fscanf Not supported. For general case, you have to write a parser. If you can keep the
data in S-exp, you can use read. If the syntax is very simple, you may be able
to utilize string-tokenize in srfi-14 (Section 11.5 [String library], page 518),
and/or regular expression stuff (Section 6.13 [Regular expressions], page 149).

fseek Use Gauche’s port-seek (see Section 6.22.3 [Common port operations], page 204)

fsetpos Use Gauche’s port-seek (see Section 6.22.3 [Common port operations], page 204)

fstat Gauche’s sys-stat. See Section 6.25.4.4 [File stats], page 240.

ftell Use Gauche’s port-tell (see Section 6.22.3 [Common port operations], page 204)

fwrite Not directly supported. To write binary numbers, see Section 12.1 [Binary I/O],
page 581. If you want to write a chunk of bytes, you can simply use display or
write-uvector (see Section 9.35.4 [Uvector block I/O], page 458).

getc

getchar Use read-char or read-byte. See Section 6.22.7 [Input], page 212.

getcwd Gauche’s sys-getcwd. See Section 6.25.8 [System inquiry], page 251.

Appendix B: C to Scheme mapping 769

getdomainname

Gauche’s sys-getdomainname. See Section 6.25.8 [System inquiry], page 251.

getegid Gauche’s sys-getegid. See Section 6.25.8 [System inquiry], page 251.

getenv Gauche’s sys-getenv. See Section 6.25.3 [Environment Inquiry], page 234.

geteuid Gauche’s sys-geteuid. See Section 6.25.8 [System inquiry], page 251.

gethostname

Gauche’s sys-gethostname. See Section 6.25.8 [System inquiry], page 251.

getgid Gauche’s sys-getgid. See Section 6.25.8 [System inquiry], page 251.

getgrgid

getgrnam Gauche’s sys-getgrgid and sys-getgrnam. See Section 6.25.5 [Unix groups and
users], page 243.

getgroups

Gauche’s sys-getgroups. See Section 6.25.8 [System inquiry], page 251.

getlogin Gauche’s sys-getlogin. See Section 6.25.8 [System inquiry], page 251.

getpgrp Gauche’s sys-getpgrp. See Section 6.25.8 [System inquiry], page 251.

getpid

getppid Gauche’s sys-getpid. See Section 6.25.8 [System inquiry], page 251.

getpwnam

getpwuid Gauche’s sys-getpwnam and sys-getpwuid. See Section 6.25.5 [Unix groups and
users], page 243.

gets Use read-line or read-string. See Section 6.22.7 [Input], page 212.

gettimeofday

Gauche’s sys-gettimeofday. See Section 6.25.9 [Time], page 254.

getuid Gauche’s sys-getuid. See Section 6.25.8 [System inquiry], page 251.

gmtime Gauche’s sys-gmtime. See Section 6.25.9 [Time], page 254.

isalnum Not directly supported, but you can use R7RS char-alphabetic? and
char-numeric?. See Section 6.10 [Characters], page 133. You can also use
character set. See Section 6.11 [Character set], page 137, also Section 11.6
[Character-set library], page 527.

isalpha R7RS char-alphabetic?. See Section 6.10 [Characters], page 133. See also
Section 6.11 [Character set], page 137, and Section 11.6 [Character-set library],
page 527.

isatty Gauche’s sys-isatty. See Section 6.25.4.5 [Other file operations], page 243.

iscntrl Not directly supported, but you can use (char-set-contains? char-set:iso-

control c) with srfi-14. See Section 11.6 [Character-set library], page 527.

isdigit R7RS char-numeric?. See Section 6.10 [Characters], page 133. You can also
use (char-set-contains? char-set:digit c) with srfi-14. See Section 11.6
[Character-set library], page 527.

isgraph Not directly supported, but you can use (char-set-contains? char-set:graphic

c) with srfi-14. See Section 11.6 [Character-set library], page 527.

islower R7RS char-lower-case?. See Section 6.10 [Characters], page 133. You can also use
(char-set-contains? char-set:lower-case c) with srfi-14. See Section 11.6
[Character-set library], page 527.

Appendix B: C to Scheme mapping 770

isprint Not directly supported, but you can use (char-set-contains? char-

set:printing c) with srfi-14. See Section 11.6 [Character-set library],
page 527.

ispunct Not directly supported, but you can use (char-set-contains? char-

set:punctuation c) with srfi-14. See Section 11.6 [Character-set library],
page 527.

isspace R7RS char-whitespace?. See Section 6.10 [Characters], page 133. You can also use
(char-set-contains? char-set:whitespace c) with srfi-14. See Section 11.6
[Character-set library], page 527.

isupper R7RS char-upper-case?. See Section 6.10 [Characters], page 133. You can also use
(char-set-contains? char-set:upper-case c) with srfi-14. See Section 11.6
[Character-set library], page 527.

isxdigit Not directly supported, but you can use (char-set-contains? char-set:hex-

digit c) with srfi-14. See Section 11.6 [Character-set library], page 527.

kill Gauche’s sys-kill. See Section 6.25.7 [Signal], page 245.

labs R7RS abs. See Section 6.3.4 [Arithmetics], page 103.

ldexp Gauche’s ldexp.

ldiv Use R7RS quotient and remainder. See Section 6.3.4 [Arithmetics], page 103.

link Gauche’s sys-link. See Section 6.25.4.2 [Directory manipulation], page 238.

localeconv

Gauche’s sys-localeconv. See Section 6.25.6 [Locale], page 245.

localtime

Gauche’s sys-localtime. See Section 6.25.9 [Time], page 254.

log R7RS log. See Section 6.3.4 [Arithmetics], page 103.

log10 Not directly supported. log10(z) ≡ (/ (log z) (log 10)).

longjmp R7RS call/cc provides similar (superior) mechanism. See Section 6.18.7 [Contin-
uations], page 181.

lseek Use Gauche’s port-seek (see Section 6.22.3 [Common port operations], page 204)

malloc Not necessary in Scheme.

mblen

mbstowcs

mbtowc Gauche handles multibyte strings internally, so generally you don’t need to care
about multibyte-ness of the string. string-length always returns a number of
characters for a string in supported encoding. If you want to convert the character
encoding, see Section 9.4 [Character code conversion], page 318.

memcmp

memcpy

memmove

memset No equivalent functions.

mkdir Gauche’s sys-mkdir. See Section 6.25.4.2 [Directory manipulation], page 238.

mkfifo Gauche’s sys-mkfifo.

mkstemp Gauche’s sys-mkstemp. See Section 6.25.4.2 [Directory manipulation], page 238.
Use this instead of tmpnam.

Appendix B: C to Scheme mapping 771

mktime Gauche’s sys-mktime. See Section 6.25.9 [Time], page 254.

modf Gauche’s modf.

open Not directly supported. R7RS open-input-file or open-output-file corresponds
to this operation. See Section 6.22.4 [File ports], page 207.

opendir Not directly supported. You can use sys-readdir to read the directory entries at
once. See Section 6.25.4.1 [Directories], page 236.

openpty Use sys-openpty. See Section 9.30 [Terminal control], page 421.

pathconf Not supported.

pause Gauche’s sys-pause. See Section 6.25.13 [Miscellaneous system calls], page 261.

perror No equivalent function in Gauche. System calls generally throws an error
(<system-error>), including the description of the reason of failure.

pipe Gauche’s sys-pipe. See Section 6.25.4.5 [Other file operations], page 243.

pow R7RS expt. See Section 6.3.4 [Arithmetics], page 103.

printf Not directly supported, but Gauche’s format provides similar functionality. See
Section 6.22.8 [Output], page 217. SLIB has printf implementation.

putc

putchar Use write-char or write-byte. See Section 6.22.8 [Output], page 217.

puts Use display. See Section 6.22.8 [Output], page 217.

qsort Gauche’s sort and sort! provides a convenient way to sort list of items. See
Section 6.24 [Sorting and merging], page 230.

raise No equivalent function in Gauche. Scheme function raise (SRFI-18) is to raise an
exception. You can use (sys-kill (sys-getpid) SIG) to send a signal SIG to the
current process.

rand Not supported directly, but on most platforms a better RNG is available as
sys-random. See Section 6.25.13 [Miscellaneous system calls], page 261.

read Not supported directly, but you may be able to use read-uvector or read-uvector!
(see Section 9.35.4 [Uvector block I/O], page 458).

readdir Not supported directly. Gauche’s sys-readdir reads the directory at once. See
Section 6.25.4.1 [Directories], page 236.

readlink Gauche’s sys-readlink. See Section 6.25.4.2 [Directory manipulation], page 238.
This function is available on systems that support symbolink links.

realloc Not necessary in Scheme.

realpath Gauche’s sys-normalize-pathname or sys-realpath. See Section 6.25.4.3 [Path-
names], page 239.

remove Gauche’s sys-remove. See Section 6.25.4.2 [Directory manipulation], page 238.

rename Gauche’s sys-rename. See Section 6.25.4.2 [Directory manipulation], page 238.

rewind Not directly supported, but you can use port-seek instead. See Section 6.22.3
[Common port operations], page 204.

rewinddir

Not supported directly. You can use sys-readdir to read the directory entries at
once. See Section 6.25.4.1 [Directories], page 236.

Appendix B: C to Scheme mapping 772

rmdir Gauche’s sys-rmdir. See Section 6.25.4.2 [Directory manipulation], page 238.

scanf Not supported. For general case, you have to write a parser. If you can keep the
data in S-exp, you can use read. If the syntax is very simple, you may be able
to utilize string-tokenize in srfi-14 (Section 11.5 [String library], page 518),
and/or regular expression stuff (Section 6.13 [Regular expressions], page 149).

select Gauche’s sys-select. See Section 6.25.11 [I/O multiplexing], page 259.

setbuf Not necessary.

setgid Gauche’s sys-setgid.

setjmp R7RS call/cc provides similar (superior) mechanism. See Section 6.18.7 [Contin-
uations], page 181.

setlocale

Gauche’s sys-setlocale. See Section 6.25.6 [Locale], page 245.

setpgid Gauche’s sys-setpgid. See Section 6.25.8 [System inquiry], page 251.

setsid Gauche’s sys-setsid. See Section 6.25.8 [System inquiry], page 251.

setuid Gauche’s sys-setuid. See Section 6.25.8 [System inquiry], page 251.

setvbuf Not necessary.

sigaction

You can use set-signal-handler! to install signal handlers. See Section 6.25.7.3
[Handling signals], page 247.

sigaddset

sigdelset

sigemptyset

sigfillset

Gauche’s sys-sigset-add! and sys-sigset-delete!. See Section 6.25.7.1 [Signals
and signal sets], page 246.

sigismember

Not supported yet.

siglongjmp

R7RS call/cc provides similar (superior) mechanism. See Section 6.18.7 [Contin-
uations], page 181.

signal You can use with-signal-handlers to install signal handlers. See Section 6.25.7.3
[Handling signals], page 247.

sigpending

Not supported yet.

sigprocmask

Signal mask is handled internally. See Section 6.25.7.3 [Handling signals], page 247.

sigsetjmp

R7RS call/cc provides similar (superior) mechanism. See Section 6.18.7 [Contin-
uations], page 181.

sigsuspend

Gauche’s sys-sigsuspend. See Section 6.25.7.4 [Masking and waiting signals],
page 250.

sigwait Gauche’s sys-sigwait. See Section 6.25.7.4 [Masking and waiting signals],
page 250.

Appendix B: C to Scheme mapping 773

sin

sinh Use sin and sinh. See Section 6.3.4 [Arithmetics], page 103.

sleep Gauche’s sys-sleep. See Section 6.25.13 [Miscellaneous system calls], page 261.

sprintf Not directly supported, but Gauche’s format provides similar functionality. See
Section 6.22.8 [Output], page 217. SLIB has printf implementation.

sqrt R7RS sqrt. See Section 6.3.4 [Arithmetics], page 103.

srand Not supported directly, but on most platforms a better RNG is available as
sys-srandom (see Section 6.25.13 [Miscellaneous system calls], page 261). The
math.mt-randommodule provides much superior RNG (see Section 12.25 [Mersenne-
Twister random number generator], page 646).

sscanf Not supported. For general case, you have to write a parser. If you can keep the
data in S-exp, you can use read. If the syntax is very simple, you may be able
to utilize string-tokenize in srfi-14 (Section 11.5 [String library], page 518),
and/or regular expression stuff (Section 6.13 [Regular expressions], page 149).

stat Gauche’s sys-stat. See Section 6.25.4.4 [File stats], page 240.

strcasecmp

R7RS string-ci=? and other comparison functions. See Section 6.12.6 [String
Comparison], page 144.

strcat R7RS string-append. See Section 6.12.7 [String utilities], page 145.

strchr SRFI-13 string-index. See Section 11.5.7 [SRFI-13 String searching], page 523.

strcmp R7RS string=? and other comparison functions. See Section 6.12.6 [String Com-
parison], page 144.

strcoll Not supported yet.

strcpy R7RS string-copy. See Section 6.12.7 [String utilities], page 145.

strcspn Not directly supported, but you can use SRFI-13 string-skip with a character set.
See Section 11.5.7 [SRFI-13 String searching], page 523.

strerror Gauche’s sys-strerror. See Section 6.25.8 [System inquiry], page 251.

strftime Gauche’s sys-strftime. See Section 6.25.9 [Time], page 254.

strlen R7RS string-length. See Section 6.12.5 [String Accessors & Modifiers], page 143.

strncat Not directly supported, but you can use string-append and substring.

strncasecmp

SRFI-13 string-compare-ci provides the most flexible (but a bit difficult to use)
functionality. See Section 11.5.5 [SRFI-13 String Comparison], page 521. If what
you want is just to check the fixed-length prefixes of two string matches, you can
use SRFI-13 string-prefix-ci?.

strncmp SRFI-13 string-compare provides the most flexible (but a bit difficult to use)
functionality. See Section 11.5.5 [SRFI-13 String Comparison], page 521. If what
you want is just to check the fixed-length prefixes of two string matches, you can use
SRFI-13 string-prefix?. See Section 11.5.6 [SRFI-13 String Prefixes & Suffixes],
page 522.

strncpy SRFI-13 substring. See Section 6.12.7 [String utilities], page 145.

strpbrk Not directly supported, but you can use SRFI-13 string-skip with a character set.
See Section 11.5.7 [SRFI-13 String searching], page 523.

Appendix B: C to Scheme mapping 774

strrchr SRFI-13 string-index-right. See Section 11.5.7 [SRFI-13 String searching],
page 523.

strspn Not directly supported, but you can use SRFI-13 string-index with a character
set. See Section 11.5.7 [SRFI-13 String searching], page 523.

strstr SRFI-13 string-contains. See Section 11.5.7 [SRFI-13 String searching], page 523.

strtod You can use R7RS string->number. See Section 6.3.5 [Numerical conversions],
page 110.

strtok SRFI-13 string-tokenize. See Section 11.5.12 [SRFI-13 other string operations],
page 526.

strtol

strtoul You can use R7RS string->number. See Section 6.3.5 [Numerical conversions],
page 110.

strxfrm Not supported yet.

symlink Gauche’s sys-symlink. See Section 6.25.4.2 [Directory manipulation], page 238.
This function is available on systems that support symbolink links.

sysconf Not supported yet.

system Gauche’s sys-system. See Section 6.25.10 [Process management], page 256. It is
generally recommended to use the process library (Section 9.24 [High Level Process
Interface], page 393).

tan

tanh R7RS tan and Gauche tanh. See Section 6.3.4 [Arithmetics], page 103.

tcdrain

tcflow

tcflush

tcgetattr

tcgetpgrp

tcsendbreak

tcsetattr

tcsetpgrp

Corresponding functions are: sys-tcdrain, sys-tcflow, sys-tcflush,
sys-tcgetattr, sys-tcgetpgrp, sys-tcsendbreak, sys-tcsetattr,
sys-tcsetpgrp. See Section 9.30 [Terminal control], page 421.

time Gauche’s sys-time. See Section 6.25.9 [Time], page 254.

times Gauche’s sys-times. See Section 6.25.8 [System inquiry], page 251.

tmpfile Not exactly supported. See sys-mkstemp instead. See Section 6.25.4.2 [Directory
manipulation], page 238.

tmpnam Gauche’s sys-tmpnam. This function is provided since it is in POSIX, but its
use is discouraged for the potential security risk. Use sys-mkstemp instead. See
Section 6.25.4.2 [Directory manipulation], page 238.

tolower

toupper R7RS char-upcase and char-downcase. See Section 6.10 [Characters], page 133.

ttyname Gauche’s sys-ttyname. See Section 6.25.4.5 [Other file operations], page 243.

tzset Not supported yet.

Appendix B: C to Scheme mapping 775

umask Gauche’s sys-umask. See Section 6.25.4.2 [Directory manipulation], page 238.

uname Gauche’s sys-uname. See Section 6.25.8 [System inquiry], page 251.

ungetc Not directly supported. You can use peek-char to look one character ahead, instead
of pushing back.

unlink Gauche’s sys-unlink. See Section 6.25.4.2 [Directory manipulation], page 238.

utime Gauche’s sys-utime. See Section 6.25.4.4 [File stats], page 240.

va_arg

va_end

va_start Not necessary, for Scheme handles variable number of arguments naturally.

vfprintf

vprintf

vsprintf Not directly supported, but Gauche’s format provides similar functionality. See
Section 6.22.8 [Output], page 217. SLIB has printf implementation.

wait Gauche’s sys-wait. See Section 6.25.10 [Process management], page 256.

waitpid Gauche’s sys-waitpid. See Section 6.25.10 [Process management], page 256.

wcstombs

wctomb Gauche handles multibyte strings internally, so generally you don’t need to care
about multibyte-ness of the string. string-length always returns a number of
characters for a string in supported encoding. If you want to convert the character
encoding, see Section 9.4 [Character code conversion], page 318.

write R7RS display (see Section 6.22.8 [Output], page 217). Or write-uvector (see
Section 9.35.4 [Uvector block I/O], page 458).

776

Appendix C Function and Syntax Index

$
$. 43

%
%macroexpand . 86
%macroexpand-1 . 86

(

(setter ~) . 175
(setter cgi-test-enviornment-ref) 757
(setter dict-get) . 339
(setter object-apply) . 181
(setter port-buffering) . 205
(setter random-data-seed) . 602
(setter ref) . 165, 176, 282, 413
(setter subseq) . 414

*
* . 103
*. 104

+

+ . 103
+. 104

–
- . 104
-. 104
->char-set . 502

.

.$. 177

/

/ . 104
/. 104

:
: . 539
:char-range . 540
:dispatched . 541
:do . 541
:generator . 541
:integers . 540
:let . 541
:list . 540
:parallel . 541
:port . 540
:range . 540
:real-range . 540
:string . 540
:until . 541
:vector . 540
:while . 541

<
< . 103
<= . 103
<=? . 97
<? . 97
<gauche-package-description> 383

=
= . 103
=? . 97

>
> . 103
>= . 103
>=? . 97
>? . 97

^
^ . 40
^_ . 42
^a . 42
^b . 42
^c . 42
^d . 42
^e . 42
^f . 42
^g . 42
^h . 42
^i . 42
^j . 42
^k . 42
^l . 42
^m . 42
^n . 42
^o . 42
^p . 42
^q . 42
^r . 42

Appendix C: Function and Syntax Index 777

^s . 42
^t . 42
^u . 42
^v . 42
^w . 42
^x . 42
^y . 42
^z . 42

~
~ . 175

A
abandoned-mutex-exception? 439
abs . 104
absolute-path? . 638
acons . 126
acos . 108
acosh . 108
add-duration . 529
add-duration! . 529
add-hook! . 356
add-job! . 589
add-load-path . 225
address-family . 551
address-info . 551
adler32 . 688
alist->bag . 499
alist->hash-table . 165, 506, 546
alist->hashmap . 571
alist->hashmap! . 571
alist->imap . 597
alist->mapping . 566
alist->mapping! . 567
alist->mapping/ordered . 567
alist->mapping/ordered! . 567
alist->rbtree . 299
alist->tree-map . 171
alist-cons . 485
alist-copy . 126
alist-delete . 126
alist-delete! . 126
all-modules . 73
allocate-instance . 281
and . 49, 541
and-let* . 51
and-let1 . 51
angle . 110
any . 124
any$. 177
any-bit-set? . 574
any-bits-set? . 544
any-in-queue . 601
any-pred . 177
any?-ec . 539
append . 125
append! . 125
append-ec . 538
append-map . 122
append-map! . 122
append-reverse . 125
append-reverse! . 125

applicable? . 174
apply . 174
apply$. 176
apply-generic . 293
apply-method . 293
apply-methods . 293
apropos . 356
args-fold . 535
arithmetic-shift . 573
arity . 180
arity-at-least-value . 180
arity-at-least? . 180
array . 302
array->list . 305
array->vector . 305
array-add-elements . 307
array-add-elements! . 307
array-concatenate . 305
array-div-elements . 307
array-div-elements! . 307
array-div-left . 307
array-div-right . 307
array-end . 303
array-expt . 307
array-flip . 306
array-flip! . 306
array-for-each-index . 304
array-inverse . 306
array-length . 303
array-map . 305
array-map! . 305
array-mul . 307
array-mul-elements . 307
array-mul-elements! . 307
array-rank . 303
array-ref . 303
array-retabulate! . 305
array-rotate-90 . 306
array-set! . 303
array-shape . 303
array-size . 303
array-start . 303
array-sub-elements . 307
array-sub-elements! . 307
array-transpose . 306
array? . 302
as-nodeset . 699
ash . 112
asin . 108
asinh . 108
assert-curr-char . 724
assoc . 126
assoc$. 177
assoc-ref . 127
assoc-set! . 127
assq . 126
assq-ref . 127
assq-set! . 127
assume . 49
assume-type . 49
assv . 126
assv-ref . 127
assv-set! . 127
atan . 108
atanh . 108

Appendix C: Function and Syntax Index 778

atom . 437
atom-ref . 437
atom? . 437
atomic . 437
atomic-update! . 438
attlist->alist . 691
attlist-add . 691
attlist-fold . 691
attlist-null? . 691
attlist-remove-top . 691
autoload . 228

B
bag . 494
bag->alist . 499
bag->list . 498
bag->set . 499
bag-adjoin . 495
bag-adjoin! . 496
bag-any? . 497
bag-contains? . 495
bag-copy . 498
bag-count . 497
bag-decrement! . 501
bag-delete . 496
bag-delete! . 496
bag-delete-all . 496
bag-delete-all! . 496
bag-difference . 500
bag-difference! . 500
bag-disjoint? . 495
bag-element-comparator . 495
bag-element-count . 501
bag-empty? . 495
bag-every? . 497
bag-filter . 497
bag-filter! . 498
bag-find . 497
bag-fold . 497
bag-fold-unique . 501
bag-for-each . 497
bag-for-each-unique . 501
bag-increment! . 501
bag-intersection . 499
bag-intersection! . 500
bag-map . 497
bag-member . 495
bag-partition . 498
bag-partition! . 498
bag-product . 500
bag-product! . 500
bag-remove . 498
bag-remove! . 498
bag-replace . 495
bag-replace! . 496
bag-search! . 496
bag-size . 497
bag-sum . 500
bag-sum! . 500
bag-unfold . 494
bag-union . 499
bag-union! . 500
bag-unique-size . 501
bag-xor . 500

bag-xor! . 500
bag<=? . 499
bag<? . 499
bag=? . 499
bag>=? . 499
bag>? . 499
balanced-quotient . 560
balanced-remainder . 560
balanced/ . 560
base64-decode . 658
base64-decode-string . 658
base64-encode . 657
base64-encode-string . 658
bcrypt-gensalt . 591
bcrypt-hashpw . 590
beep . 714
begin . 53, 541
begin0 . 54
bignum? . 103
bimap-left . 341
bimap-left-delete! . 342
bimap-left-exists? . 342
bimap-left-get . 341
bimap-put! . 342
bimap-right . 341
bimap-right-delete! . 342
bimap-right-exists? . 342
bimap-right-get . 341
binary-heap-clear! . 595
binary-heap-copy . 595
binary-heap-delete! . 596
binary-heap-empty? . 595
binary-heap-find . 596
binary-heap-find-max . 596
binary-heap-find-min . 596
binary-heap-num-entries . 595
binary-heap-pop-max! . 596
binary-heap-pop-min! . 596
binary-heap-push! . 595
binary-heap-remove! . 596
binary-heap-swap-max! . 596
binary-heap-swap-min! . 596
binary-port? . 475
bindtextdomain . 721
bit-count . 573
bit-field . 113
bit-field-any? . 574
bit-field-clear . 574
bit-field-every? . 574
bit-field-replace . 574
bit-field-replace-same . 574
bit-field-reverse . 575
bit-field-rotate . 574
bit-field-set . 574
bit-set? . 573
bit-swap . 574
bits . 575
bits->generator . 346
bits->list . 575
bits->vector . 575
bitwise-and . 573
bitwise-andc1 . 573
bitwise-andc2 . 573
bitwise-eqv . 573
bitwise-fold . 575

Appendix C: Function and Syntax Index 779

bitwise-for-each . 575
bitwise-if . 573
bitwise-ior . 573
bitwise-merge . 544
bitwise-nand . 573
bitwise-nor . 573
bitwise-not . 572
bitwise-orc1 . 573
bitwise-orc2 . 573
bitwise-unfold . 575
bitwise-xor . 573
blob->sint-list . 549
blob->u8-list . 549
blob->uint-list . 549
blob-copy . 549
blob-copy! . 549
blob-length . 547
blob-s16-native-ref . 548
blob-s16-native-set! . 548
blob-s16-ref . 548
blob-s16-set! . 548
blob-s32-native-ref . 548
blob-s32-native-set! . 548
blob-s32-ref . 548
blob-s32-set! . 548
blob-s64-native-ref . 548
blob-s64-native-set! . 548
blob-s64-ref . 548
blob-s64-set! . 548
blob-s8-ref . 548
blob-s8-set! . 548
blob-sint-ref . 547
blob-sint-set! . 548
blob-u16-native-ref . 548
blob-u16-native-set! . 548
blob-u16-ref . 548
blob-u16-set! . 548
blob-u32-native-ref . 548
blob-u32-native-set! . 548
blob-u32-ref . 548
blob-u32-set! . 548
blob-u64-native-ref . 548
blob-u64-native-set! . 548
blob-u64-ref . 548
blob-u64-set! . 548
blob-u8-ref . 548
blob-u8-set! . 548
blob-uint-ref . 547
blob-uint-set! . 548
blob=? . 548
blob? . 547
boolean . 115
boolean-hash . 94
boolean=? . 115
boolean? . 115
booleans . 604
booleans->integer . 544
box . 513
box? . 513
bpsw-prime? . 648
break . 485
break! . 485
break-list-by-sequence . 415
break-list-by-sequence! . 415
build-binary-heap . 595

build-path . 638
build-transliterator . 730
byte-ready? . 214
bytevector . 474
bytevector->generator . 345
bytevector-accumulator . 579
bytevector-accumulator! . 580
bytevector-append . 474
bytevector-copy . 474
bytevector-copy! . 474
bytevector-length . 474
bytevector-u8-ref . 474
bytevector-u8-set! . 474
bytevector? . 474

C
caaaar . 118
caaadr . 118
caaar . 118
caadar . 118
caaddr . 118
caadr . 118
caar . 118
cache-check! . 593
cache-clear! . 593
cache-compact-queue! . 594
cache-comparator . 594
cache-evict! . 593
cache-lookup! . 593
cache-populate-queue! . 594
cache-register! . 593
cache-renumber-entries! . 594
cache-storage . 594
cache-through! . 593
cache-write! . 593
cadaar . 118
cadadr . 118
cadar . 118
caddar . 118
cadddr . 118
caddr . 118
cadr . 118
calculate-dominators . 733
call-with-builder . 329
call-with-cgi-script . 758
call-with-client-socket . 375
call-with-console . 714
call-with-current-continuation 181
call-with-ftp-connection . 660
call-with-input-conversion 321
call-with-input-file . 209
call-with-input-process . 402
call-with-input-string . 211
call-with-iterator . 328
call-with-iterators . 328
call-with-output-conversion 321
call-with-output-file . 209
call-with-output-process . 403
call-with-output-string . 211
call-with-port . 205
call-with-process-io . 403
call-with-string-io . 211
call-with-values . 183
call/cc . 181

Appendix C: Function and Syntax Index 780

call/pc . 390
car . 118
car+cdr . 483
car-sxpath . 703
cartesian-product . 732
cartesian-product-right . 732
case . 48
case-lambda . 44
cdaaar . 118
cdaadr . 118
cdaar . 118
cdadar . 118
cdaddr . 118
cdadr . 118
cdar . 118
cddaar . 118
cddadr . 118
cddar . 118
cdddar . 118
cddddr . 118
cdddr . 118
cddr . 118
cdr . 118
ceiling . 107
ceiling->exact . 108
ceiling-quotient . 560
ceiling-remainder . 560
ceiling/ . 560
ces-conversion-supported? . 318
ces-convert . 321
ces-convert-to . 321
ces-equivalent? . 319
ces-guess-from-string . 320
ces-upper-compatible? . 319
cf$. 335
cf-arg-enable . 333
cf-arg-var . 335
cf-arg-with . 333
cf-check-header . 337
cf-check-headers . 337
cf-check-prog . 336
cf-define . 335
cf-echo . 335
cf-feature-ref . 334
cf-have-subst? . 335
cf-help-string . 334
cf-includes-default . 337
cf-init . 332
cf-lang . 337
cf-lang-call . 338
cf-lang-io-program . 338
cf-lang-program . 338
cf-make-gpd . 338
cf-msg-checking . 334
cf-msg-error . 335
cf-msg-result . 334
cf-msg-warn . 335
cf-output . 338
cf-package-ref . 334
cf-path-prog . 336
cf-prog-cxx . 336
cf-ref . 335
cf-show-variables . 338
cf-subst . 335
cf-try-compile . 338

cf-try-compile-and-link . 338
cgen-add! . 313
cgen-body . 310
cgen-box-expr . 316
cgen-cexpr . 313
cgen-current-unit . 310
cgen-decl . 310
cgen-emit-body . 313
cgen-emit-c . 310
cgen-emit-decl . 313
cgen-emit-h . 310
cgen-emit-init . 313
cgen-emit-xtrn . 313
cgen-extern . 310
cgen-init . 310
cgen-literal . 313
cgen-pred-expr . 316
cgen-safe-comment . 311
cgen-safe-name . 311
cgen-safe-name-friendly . 311
cgen-safe-string . 311
cgen-type-from-name . 316
cgen-unbox-expr . 316
cgen-unit-c-file . 310
cgen-unit-h-file . 310
cgen-unit-init-name . 310
cgen-with-cpp-condition . 312
cgi-add-temporary-file . 755
cgi-get-metavariable . 753
cgi-get-parameter . 754
cgi-header . 754
cgi-main . 754
cgi-metavariables . 753
cgi-output-character-encoding 754
cgi-parse-parameters . 753
cgi-temporary-files . 755
cgi-test-enviornment-ref . 757
change-class . 283
change-object-class . 283
char->integer . 136
char->ucs . 136
char-alphabetic? . 134
char-ci-hash . 94
char-ci<=? . 134
char-ci<? . 134
char-ci=? . 134
char-ci>=? . 134
char-ci>? . 134
char-downcase . 136
char-east-asian-width . 447
char-foldcase . 136
char-general-category . 134
char-hash . 94
char-lower-case? . 134
char-numeric? . 134
char-ready? . 214
char-set . 139
char-set->list . 503
char-set->string . 503
char-set-adjoin . 503
char-set-adjoin! . 503
char-set-any . 503
char-set-complement . 139
char-set-complement! . 139
char-set-contains? . 139

Appendix C: Function and Syntax Index 781

char-set-copy . 139
char-set-count . 503
char-set-cursor . 503
char-set-cursor-next . 503
char-set-delete . 503
char-set-delete! . 503
char-set-diff+intersection 504
char-set-diff+intersection! 504
char-set-difference . 504
char-set-difference! . 504
char-set-every . 503
char-set-filter . 502
char-set-filter! . 502
char-set-fold . 503
char-set-for-each . 503
char-set-hash . 502
char-set-immutable? . 139
char-set-intersection . 504
char-set-intersection! . 504
char-set-map . 503
char-set-ref . 503
char-set-size . 139
char-set-unfold . 503
char-set-unfold! . 503
char-set-union . 504
char-set-union! . 504
char-set-xor . 504
char-set-xor! . 504
char-set<= . 502
char-set= . 502
char-set? . 138
char-titlecase . 136
char-upcase . 136
char-upper-case? . 134
char-whitespace? . 134
char<=? . 134
char<? . 134
char=? . 134
char>=? . 134
char>? . 134
char? . 134
chars$. 604
check-directory-tree . 638
check-substring-spec . 527
chready? . 715
circular-generator . 345
circular-list . 482
circular-list? . 116
cise-ambient-copy . 317
cise-ambient-decl-strings . 317
cise-default-ambient . 317
cise-lookup-macro . 318
cise-register-macro! . 318
cise-render . 317
cise-render-rec . 317
cise-render-to-string . 317
cise-translate . 317
clamp . 108
class-direct-methods . 277
class-direct-slots . 277
class-direct-subclasses . 277
class-direct-supers . 277
class-name . 276
class-of . 88
class-post-initialize . 289

class-precedence-list . 276
class-slot-accessor . 277
class-slot-bound? . 283
class-slot-definition . 277
class-slot-ref . 283
class-slot-set! . 283
class-slots . 277
clear-screen . 715
clear-to-eol . 715
clear-to-eos . 715
close-input-port . 205
close-output-port . 205
close-port . 205
code . 518
codepoints->grapheme-clusters 445
codepoints->words . 445
codepoints-downcase . 446
codepoints-foldcase . 446
codepoints-titlecase . 446
codepoints-upcase . 446
coerce-to . 328
combinations . 731
combinations* . 731
combinations*-for-each . 731
combinations-for-each . 731
combinations-of . 606
combine-hash-value . 94
command-line . 234
common-prefix . 418
common-prefix-to . 419
comparator-check-type . 97
comparator-compare . 98
comparator-comparison-procedure 97
comparator-comparison-procedure? 554
comparator-equal? . 554
comparator-equality-predicate 97
comparator-flavor . 97
comparator-hash . 98
comparator-hash-function . 97
comparator-hash-function? . 554
comparator-hashable? . 97
comparator-max . 558
comparator-min . 558
comparator-ordered? . 97
comparator-ordering-predicate 97
comparator-register-default! 98
comparator-test-type . 97
comparator-type-test-procedure 97, 554
comparator? . 96
compare . 91
complement . 177
complete-sexp? . 363
complex? . 101
compose . 177
compute-cpl . 289
compute-get-n-set . 289, 291
compute-slot-accessor . 291
compute-slots . 289, 291
concatenate . 125
concatenate! . 125
cond . 47
cond-expand . 64
cond-list . 117
condition . 202
condition-has-type? . 201

Appendix C: Function and Syntax Index 782

condition-ref . 201
condition-type? . 201
condition-variable-broadcast! 437
condition-variable-name . 436
condition-variable-signal! 437
condition-variable-specific 437
condition-variable-specific-set! 437
condition-variable? . 436
cons . 117
cons* . 117
console-device . 640
construct-cookie-string . 658
construct-css . 759
construct-json . 671
construct-json-string . 671
continued-fraction . 107
copy-bit . 113
copy-bit-field . 113
copy-directory* . 637
copy-file . 642
copy-port . 206
copy-queue . 600
copy-time . 528
cos . 108
cosh . 108
count . 124
count$. 176
count-accumulator . 580
cpu-architecture . 552
crc32 . 688
create-directory* . 637
create-directory-tree . 637
csv-rows->tuples . 717
current-class-of . 283
current-country . 534
current-date . 528
current-directory . 635
current-error-port . 204
current-exception-handler . 197
current-input-port . 204
current-jiffy . 480
current-julian-day . 528
current-language . 534
current-load-history . 226
current-load-next . 226
current-load-path . 226
current-load-port . 226
current-locale-details . 534
current-modified-julian-day 528
current-module . 69
current-output-port . 204
current-second . 480
current-thread . 431
current-time . 256, 528
cursor-down/scroll-up . 715
cursor-up/scroll-down . 715
cut . 42
cute . 42

D
d . 356
date->julian-day . 530
date->modified-julian-day . 530
date->rfc822-date . 657
date->string . 531
date->time-monotonic . 530
date->time-tai . 530
date->time-utc . 530
date-day . 530
date-hour . 530
date-minute . 530
date-month . 530
date-nanosecond . 530
date-second . 530
date-week-day . 530
date-week-number . 530
date-year . 530
date-year-day . 530
date-zone-offset . 530
date? . 530
dbi-close . 620, 621, 622, 624
dbi-connect . 620
dbi-do . 622, 624
dbi-escape-sql . 622, 624
dbi-execute . 622
dbi-execute-using-connection 624
dbi-list-drivers . 620
dbi-make-connection . 623
dbi-make-driver . 621
dbi-open? . 620, 621, 622, 624
dbi-parse-dsn . 624
dbi-prepare . 621, 623
dbi-prepare-sql . 624
dbm-close . 627
dbm-closed? . 627
dbm-db-copy . 628
dbm-db-exists? . 628
dbm-db-move . 628
dbm-db-remove . 628
dbm-delete! . 627
dbm-exists? . 627
dbm-fold . 627
dbm-for-each . 628
dbm-get . 627
dbm-map . 628
dbm-open . 626
dbm-put! . 627
dbm-type->class . 627
dcgettext . 721
debug-funcall . 262
debug-label . 263
debug-print . 262
debug-print-width . 262
debug-source-info . 262
dec! . 47
declare-bundle! . 534
decode-float . 110
decompose-path . 638
default-endian . 115
default-hash . 92
default-sizer . 607
default-tls-class . 679
define . 59

Appendix C: Function and Syntax Index 783

define-cise-expr . 318
define-cise-macro . 318
define-cise-stmt . 318
define-cise-toplevel . 318
define-class . 272
define-condition-type . 201
define-constant . 61
define-dict-interface . 340
define-generic . 285
define-in-module . 62
define-inline . 61
define-library . 472
define-macro . 85
define-method . 285
define-module . 69
define-reader-ctor . 215
define-record-type . 405
define-syntax . 79
define-values . 60
deflate-string . 687
deflating-port-full-flush . 687
delay . 185
delay-force . 478
delete . 124
delete! . 124
delete$. 177
delete-directory* . 637
delete-duplicates . 125
delete-duplicates! . 125
delete-file . 643
delete-files . 643
delete-hook! . 356
delete-keyword . 130
delete-keyword! . 130
delete-keywords . 130
delete-keywords! . 130
delete-neighbor-dups . 417
delete-neighbor-dups! . 418
delete-neighbor-dups-squeeze! 418
denominator . 107
dequeue! . 601
dequeue-all! . 601
dequeue/wait! . 602
describe . 356
determinant . 307
determinant! . 307
dgettext . 721
dict->alist . 340
dict-clear! . 339
dict-comparator . 339
dict-delete! . 339
dict-exists? . 339
dict-fold . 339
dict-fold-right . 339
dict-for-each . 339
dict-get . 339
dict-keys . 340
dict-map . 340
dict-pop! . 340
dict-push! . 340
dict-put! . 339
dict-update! . 340
dict-values . 340
diff . 719
diff-report . 719

digest . 733
digest-final! . 733
digest-hexify . 733
digest-string . 733
digest-update! . 732
digit->integer . 136
digit-value . 477
directory-fold . 636
directory-list . 635
directory-list2 . 636
disasm . 263
display . 220
div . 105
div-and-mod . 105
div0 . 105
div0-and-mod0 . 105
dl-distance . 737
dl-distances . 737
do . 54
do-ec . 538
do-generator . 355
do-pipeline . 398
do-process . 393
do-process! . 393
dolist . 55
dotimes . 55
dotted-list? . 116
drop . 119
drop* . 119
drop-right . 120
drop-right! . 120
drop-right* . 120
drop-while . 485
dynamic-load . 227
dynamic-wind . 182

E
ecase . 48
ed . 358
eighth . 482
emergency-exit . 479
encode-float . 110
end-of-char-set? . 503
endianness . 547
enqueue! . 600
enqueue-unique! . 600
enqueue/wait! . 602
environment . 477
eof-object . 214
eof-object? . 214
eq-compare . 92
eq-hash . 92
eq? . 89
equal? . 90
eqv-hash . 92
eqv? . 89
er-macro-transformer . 82
error . 193
error-object-irritants . 475
error-object-message . 475
error-object? . 475
errorf . 193
euclidean-quotient . 560
euclidean-remainder . 560

Appendix C: Function and Syntax Index 784

euclidean/ . 560
eval . 202, 477
even? . 103
every . 124
every$. 177
every-bit-set? . 574
every-in-queue . 602
every-pred . 178
every?-ec . 539
exact . 111
exact->inexact . 111
exact-integer-sqrt . 109
exact-integer? . 102
exact? . 102
exit . 232
exit-handler . 233
exp . 108
expand-path . 638
expand-template-file . 728
expand-template-string . 728
export . 70
export-all . 70
expt . 109
expt-mod . 109
extend . 72
extract-condition . 201

F
f16array . 302
f16vector . 448
f16vector->list . 453
f16vector->vector . 454
f16vector-add . 456
f16vector-add! . 456
f16vector-append . 452
f16vector-clamp! . 457
f16vector-compare . 450
f16vector-copy . 450
f16vector-copy! . 451
f16vector-div . 456
f16vector-div! . 456
f16vector-dot . 457
f16vector-fill! . 450
f16vector-length . 449
f16vector-mul . 456
f16vector-mul! . 456
f16vector-multi-copy! . 451
f16vector-range-check . 457
f16vector-ref . 449
f16vector-set! . 450
f16vector-sub . 456
f16vector-sub! . 456
f16vector=? . 450
f16vector? . 448
f32array . 303
f32vector . 448
f32vector->list . 453
f32vector->vector . 454
f32vector-add . 456
f32vector-add! . 456
f32vector-append . 452
f32vector-clamp . 457
f32vector-clamp! . 457
f32vector-compare . 450

f32vector-copy . 450
f32vector-copy! . 451
f32vector-div . 456
f32vector-div! . 456
f32vector-dot . 457
f32vector-fill! . 450
f32vector-length . 449
f32vector-mul . 456
f32vector-mul! . 456
f32vector-multi-copy! . 451
f32vector-range-check . 457
f32vector-ref . 449
f32vector-set! . 450
f32vector-sub . 456
f32vector-sub! . 456
f32vector=? . 450
f32vector? . 448
f64array . 303
f64vector . 448
f64vector->list . 453
f64vector->vector . 454
f64vector-add . 456
f64vector-add! . 456
f64vector-append . 452
f64vector-clamp . 457
f64vector-clamp! . 457
f64vector-compare . 450
f64vector-copy . 450
f64vector-copy! . 451
f64vector-div . 456
f64vector-div! . 456
f64vector-dot . 457
f64vector-fill! . 450
f64vector-length . 449
f64vector-mul . 456
f64vector-mul! . 456
f64vector-multi-copy! . 451
f64vector-range-check . 457
f64vector-ref . 449
f64vector-set! . 450
f64vector-sub . 456
f64vector-sub! . 456
f64vector=? . 450
f64vector? . 448
feature-cond . 518
features . 476
fifth . 482
file->byte-generator . 347
file->char-generator . 347
file->generator . 347
file->line-generator . 347
file->list . 643
file->sexp-generator . 347
file->sexp-list . 643
file->string . 643
file->string-list . 643
file-atime . 640
file-atime<=? . 641
file-atime<? . 641
file-atime=? . 641
file-atime>=? . 641
file-atime>? . 641
file-ctime . 640
file-ctime<=? . 641
file-ctime<? . 641

Appendix C: Function and Syntax Index 785

file-ctime=? . 641
file-ctime>=? . 641
file-ctime>? . 641
file-dev . 640
file-eq? . 641
file-equal? . 641
file-eqv? . 641
file-error? . 475
file-exists? . 240
file-filter . 633
file-filter-fold . 634
file-filter-for-each . 634
file-filter-map . 634
file-gid . 640
file-ino . 640
file-is-directory? . 240
file-is-executable? . 640
file-is-readable? . 640
file-is-regular? . 240
file-is-symlink? . 641
file-is-writable? . 640
file-mode . 640
file-mtime . 640
file-mtime<=? . 641
file-mtime<? . 641
file-mtime=? . 641
file-mtime>=? . 641
file-mtime>? . 641
file-nlink . 640
file-perm . 640
file-rdev . 640
file-size . 640
file-type . 640
file-uid . 640
files . 518
filter . 124, 326
filter! . 124
filter$. 176
filter-map . 124
filter-to . 326
find . 124, 325
find$. 176
find-file-in-paths . 639
find-gauche-package-description 383
find-in-queue . 601
find-index . 414
find-max . 326
find-min . 326
find-min&max . 326
find-module . 72
find-string-from-port? . 723
find-tail . 124
find-tail$. 176
find-with-index . 414
finite? . 102
first . 482
first-ec . 539
first-set-bit . 574
fixnum-width . 109
fixnum? . 103
fixnums . 603
floor . 107
floor->exact . 108
floor-quotient . 106
floor-remainder . 106

floor/ . 106
fluid-let . 52
flush . 225
flush-all-ports . 225
flush-output-port . 476
fmod . 110
fold . 122, 323
fold$. 176, 325
fold-ec . 539
fold-left . 123
fold-right . 123, 415
fold-right$. 176
fold-with-index . 414
fold2 . 324
fold3 . 324
fold3-ec . 539
for-each . 122, 325
for-each$. 176, 325
for-each-with-index . 414
force . 185
format . 221, 534
fourth . 482
frexp . 110
ftp-chdir . 660
ftp-current-directory . 661
ftp-get . 661
ftp-help . 660
ftp-list . 661
ftp-login . 660
ftp-mdtm . 661
ftp-mkdir . 660
ftp-mtime . 661
ftp-noop . 661
ftp-passive? . 660
ftp-put . 662
ftp-put-unique . 662
ftp-quit . 660
ftp-remove . 660
ftp-rename . 662
ftp-rmdir . 661
ftp-site . 661
ftp-size . 661
ftp-stat . 661
ftp-system . 661
ftp-transfer-type . 660
fx* . 561
fx*/carry . 562
fx+ . 561
fx+/carry . 562
fx- . 561
fx-/carry . 562
fx<=? . 561
fx<? . 561
fx=? . 561
fx>=? . 561
fx>? . 561
fxabs . 562
fxand . 562
fxarithmetic-shift . 562
fxbit-count . 562
fxbit-field . 562
fxbit-field-rotate . 562
fxbit-set? . 562
fxcopy-bit . 562
fxeven? . 561

Appendix C: Function and Syntax Index 786

fxfirst-set-bit . 562
fxif . 562
fxior . 562
fxlength . 562
fxmax . 561
fxmin . 561
fxneg . 562
fxnegative? . 561
fxnot . 562
fxodd? . 561
fxpositive? . 561
fxquotient . 562
fxremainder . 562
fxsqrt . 562
fxsquare . 562
fxxor . 562
fxzero? . 561

G
gamma . 109
gappend . 348
gauche-architecture . 235
gauche-architecture-directory 235
gauche-character-encoding . 137
gauche-config . 330
gauche-library-directory . 235
gauche-package-description-paths 383
gauche-site-architecture-directory 235
gauche-site-library-directory 235
gauche-thread-type . 429
gauche-version . 235
gbuffer-filter . 351
gc . 260
gc-stat . 260
gcd . 107
gcombine . 350
gconcatenate . 348
gcons* . 348
gdbm-close . 631
gdbm-closed? . 631
gdbm-delete . 631
gdbm-errno . 632
gdbm-exists? . 631
gdbm-fetch . 631
gdbm-firstkey . 631
gdbm-nextkey . 631
gdbm-open . 630
gdbm-reorganize . 631
gdbm-setopt . 631
gdbm-store . 631
gdbm-strerror . 631
gdbm-sync . 631
gdbm-version . 632
gdelete . 350
gdelete-neighbor-dups . 350
gdrop . 351
gdrop-while . 351
generate . 345
generator . 347
generator->bytevector . 354
generator->bytevector! . 354
generator->ideque . 510
generator->list . 353
generator->lseq . 186

generator->reverse-list . 353
generator->string . 353
generator->uvector . 354
generator->uvector! . 354
generator->vector . 353
generator->vector! . 354
generator-any . 355
generator-count . 355
generator-every . 355
generator-find . 184
generator-fold . 183
generator-fold-right . 184
generator-for-each . 184
generator-map . 184
generator-map->list . 353
generator-unfold . 355
gensym . 128
get-environment-variable . 549
get-environment-variables . 549
get-f16 . 582
get-f16be . 583
get-f16le . 583
get-f32 . 582
get-f32be . 583
get-f32le . 583
get-f64 . 583
get-f64be . 583
get-f64le . 583
get-keyword . 130
get-keyword* . 130
get-optional . 179
get-output-bytevector . 475
get-output-string . 211
get-output-uvector . 465
get-remaining-input-generator 467
get-remaining-input-list . 466
get-remaining-input-string 210
get-s16 . 582
get-s16be . 583
get-s16le . 583
get-s32 . 582
get-s32be . 583
get-s32le . 583
get-s64 . 582
get-s64be . 583
get-s64le . 583
get-s8 . 582
get-signal-handler . 249
get-signal-handler-mask . 249
get-signal-handlers . 249
get-signal-pending-limit . 249
get-sint . 583
get-u16 . 582
get-u16be . 583
get-u16le . 583
get-u32 . 582
get-u32be . 583
get-u32le . 583
get-u64 . 582
get-u64be . 583
get-u64le . 583
get-u8 . 582
get-uint . 583
getch . 714
getter-with-setter . 46

Appendix C: Function and Syntax Index 787

gettext . 720
gfilter . 350
gfilter-map . 350
gflatten . 349
ggroup . 352
gindex . 352
giota . 345
glet* . 354
glet1 . 355
glob . 236
glob-fold . 237
global-variable-bound? . 73
global-variable-ref . 74
gmap . 349
gmap-accum . 349
gmerge . 349
grange . 345
greatest-fixnum . 109
gremove . 350
group-collection . 327
group-contiguous-sequence . 417
group-sequence . 416
grxmatch . 352
gselect . 353
gslices . 352
gstate-filter . 350
gtake . 351
gtake* . 351
gtake-while . 351
guard . 194
gunfold . 347
gzip-decode-string . 687
gzip-encode-string . 687

H
has-setter? . 46
has-windows-console? . 423
hash . 94, 508, 547
hash-bound . 94
hash-by-identity . 508, 547
hash-salt . 94
hash-table . 164, 505
hash-table->alist . 165
hash-table-clear! . 166
hash-table-comparator . 163
hash-table-compare-as-sets 167
hash-table-contains? . 166
hash-table-copy . 164
hash-table-count . 507
hash-table-delete! . 166, 506
hash-table-delete!-r7 . 166
hash-table-difference! . 168
hash-table-empty-copy . 164
hash-table-equivalence-function 508, 546
hash-table-exists? . 166
hash-table-find . 167, 506
hash-table-fold . 167, 507
hash-table-for-each . 167, 507
hash-table-from-pairs . 163
hash-table-get . 165
hash-table-hash-function 508, 546
hash-table-intern! . 506
hash-table-intern!-r7 . 165
hash-table-intersection! . 168

hash-table-keys . 167
hash-table-map . 167, 507
hash-table-map! . 507
hash-table-map->list . 507
hash-table-merge! . 508, 547
hash-table-mutable? . 163
hash-table-num-entries . 163
hash-table-pop! . 166, 506
hash-table-pop!-r7 . 166
hash-table-prune! . 508
hash-table-push! . 166
hash-table-put! . 165
hash-table-r7 . 164
hash-table-ref . 165, 546
hash-table-ref/default 165, 546
hash-table-set! . 165, 546
hash-table-size . 163, 546
hash-table-type . 163
hash-table-union! . 168
hash-table-update! . 506, 546
hash-table-update!-r7 . 167
hash-table-update!/default 167, 546
hash-table-values . 167
hash-table-walk . 546
hash-table-xor! . 168
hash-table=? . 168
hash-table? . 163
hash-talbe-unfold . 164
hashmap . 568
hashmap->alist . 571
hashmap-adjoin . 570
hashmap-adjoin! . 570
hashmap-any? . 571
hashmap-contains? . 569
hashmap-copy . 571
hashmap-count . 571
hashmap-delete . 570
hashmap-delete! . 570
hashmap-delete-all . 570
hashmap-delete-all! . 570
hashmap-difference . 572
hashmap-difference! . 572
hashmap-disjoint? . 569
hashmap-empty? . 569
hashmap-entries . 571
hashmap-every? . 571
hashmap-filter . 571
hashmap-filter! . 571
hashmap-find . 570
hashmap-fold . 571
hashmap-for-each . 571
hashmap-intern . 570
hashmap-intern! . 570
hashmap-intersection . 572
hashmap-intersection! . 572
hashmap-key-comparator . 569
hashmap-keys . 571
hashmap-map . 571
hashmap-map->list . 571
hashmap-partition . 571
hashmap-partition! . 571
hashmap-pop . 570
hashmap-pop! . 570
hashmap-ref . 569
hashmap-ref/default . 569

Appendix C: Function and Syntax Index 788

hashmap-remove . 571
hashmap-remove! . 571
hashmap-replace . 570
hashmap-replace! . 570
hashmap-search . 570
hashmap-search! . 570
hashmap-set . 570
hashmap-set! . 570
hashmap-size . 570
hashmap-unfold . 569
hashmap-union . 572
hashmap-union! . 572
hashmap-update . 570
hashmap-update! . 570
hashmap-update!/default . 570
hashmap-update/default . 570
hashmap-values . 571
hashmap-xor . 572
hashmap-xor! . 572
hashmap<=? . 572
hashmap<? . 572
hashmap=? . 572
hashmap>=? . 572
hashmap>? . 572
hashmap? . 569
hide-cursor . 715
hmac-digest . 662
hmac-digest-string . 662
hmac-final! . 662
hmac-update! . 662
home-directory . 635
hook->list . 356
hook-empty? . 356
hook? . 355
html-doctype . 722
html-escape . 721
html-escape-string . 721
html:a . 722
html:abbr . 722
html:acronym . 722
html:address . 722
html:area . 722
html:b . 722
html:base . 722
html:bdo . 722
html:big . 722
html:blockquote . 722
html:body . 722
html:br . 722
html:button . 722
html:caption . 722
html:cite . 722
html:code . 722
html:col . 722
html:colgroup . 722
html:dd . 722
html:del . 722
html:dfn . 722
html:div . 722
html:dl . 722
html:dt . 722
html:em . 722
html:fieldset . 722
html:form . 722
html:frame . 722

html:frameset . 722
html:h1 . 722
html:h2 . 722
html:h3 . 722
html:h4 . 722
html:h5 . 722
html:h6 . 722
html:head . 722
html:hr . 722
html:html . 722
html:i . 722
html:iframe . 722
html:img . 722
html:input . 722
html:ins . 722
html:kbd . 722
html:label . 722
html:legend . 722
html:li . 722
html:link . 722
html:map . 722
html:meta . 722
html:noframes . 722
html:noscript . 722
html:object . 722
html:ol . 722
html:optgroup . 722
html:option . 722
html:p . 722
html:param . 722
html:pre . 722
html:q . 722
html:samp . 722
html:script . 722
html:select . 722
html:small . 722
html:span . 722
html:strong . 722
html:style . 722
html:sub . 722
html:sup . 722
html:table . 722
html:tbody . 722
html:td . 722
html:textarea . 722
html:tfoot . 722
html:th . 722
html:thead . 722
html:title . 722
html:tr . 722
html:tt . 722
html:ul . 722
html:var . 722
http-compose-form-data . 667
http-compose-query . 667
http-default-redirect-handler 666
http-delete . 663
http-get . 663
http-head . 663
http-post . 663
http-proxy . 666
http-put . 663
http-secure-connection-available? 668

Appendix C: Function and Syntax Index 789

http-status-code->description 667
http-user-agent . 666

I
icmp-packet-code . 668
icmp-packet-ident . 668
icmp-packet-sequence . 668
icmp-packet-type . 668
icmp4-describe-packet . 668
icmp4-exceeded-code->string 669
icmp4-fill-checksum! . 668
icmp4-fill-echo! . 668
icmp4-message-type->string 669
icmp4-parameter-code->string 669
icmp4-redirect-code->string 669
icmp4-router-code->string . 669
icmp4-security-code->string 669
icmp4-unreach-code->string 669
icmp6-describe-packet . 668
icmp6-exceeded-code->string 669
icmp6-fill-echo! . 668
icmp6-message-type->string 669
icmp6-parameter-code->string 669
icmp6-unreach-code->string 669
identifier->symbol . 133
identifier? . 133
identity-array . 306
ideque . 508
ideque->generator . 510
ideque->list . 510
ideque-add-back . 509
ideque-add-front . 509
ideque-any . 510
ideque-append . 509
ideque-append-map . 510
ideque-back . 509
ideque-break . 510
ideque-drop . 509
ideque-drop-right . 509
ideque-drop-while . 510
ideque-drop-while-right . 510
ideque-empty? . 509
ideque-every . 510
ideque-filter . 510
ideque-filter-map . 509
ideque-find . 510
ideque-find-right . 510
ideque-fold . 510
ideque-fold-right . 510
ideque-for-each . 510
ideque-for-each-right . 510
ideque-front . 509
ideque-length . 509
ideque-map . 509
ideque-partition . 510
ideque-ref . 509
ideque-remove . 510
ideque-remove-back . 509
ideque-remove-front . 509
ideque-reverse . 509
ideque-span . 510
ideque-split-at . 509
ideque-tabulate . 509
ideque-take . 509

ideque-take-right . 509
ideque-take-while . 510
ideque-take-while-right . 510
ideque-unfold . 508
ideque-unfold-right . 509
ideque-zip . 509
ideque= . 509
ideque? . 509
if . 47, 541
if-car-sxpath . 703
if-let1 . 51
if-not=? . 557
if-sxpath . 703
if<=? . 557
if<? . 557
if=? . 557
if>=? . 557
if>? . 557
if3 . 557
imag-part . 110
imap-delete . 598
imap-empty? . 598
imap-exists? . 598
imap-get . 598
imap-max . 598
imap-min . 598
imap-put . 598
imap? . 598
implementation-name . 552
implementation-version . 552
import . 70, 471
in-closed-interval? . 558
in-closed-open-interval? . 558
in-open-closed-interval? . 558
in-open-interval? . 558
inc! . 47
include . 63
include-ci . 63
inet-address->string . 372
inet-checksum . 380
inet-string->address . 371
inet-string->address! . 372
inexact . 111
inexact->exact . 111
inexact? . 102
infinite? . 102
inflate-string . 687
inflate-sync . 687
info . 357
info-search . 358
initialize . 281, 289
input-port-open? . 475
input-port? . 204
instance-of . 368
int16s . 603
int32s . 603
int64s . 603
int8s . 603
integer->char . 136
integer->digit . 137
integer->list . 544
integer-length . 114
integer-range->char-set . 502
integer-range->char-set! . 502
integer-valued? . 102

Appendix C: Function and Syntax Index 790

integer? . 101
integers$. 603
integers-between$. 603
integers-geometric$. 605
integers-poisson$. 605
interaction-environment . 202
intersperse . 121
iota . 117
ip-destination-address . 669
ip-header-length . 669
ip-protocol . 552, 669
ip-source-address . 669
ip-version . 669
is-a? . 88
isomorphic? . 734
iterator->stream . 748

J
jacobi . 649
jiffies-per-second . 480
job-acknowledge-time . 588
job-finish-time . 588
job-result . 588
job-start-time . 588
job-status . 588
job-wait . 588
job? . 588
join-timeout-exception? . 439
json-array-handler . 670
json-object-handler . 670
json-special-handler . 670
julian-day->date . 530
julian-day->time-monotonic 530
julian-day->time-tai . 530
julian-day->time-utc . 530

K
keyword->string . 130
keyword? . 129
kmp-step . 527

L
l-distance . 737
l-distances . 737
lambda . 40
lappend . 359
lappend-map . 360
last . 121
last-ec . 539
last-pair . 121
lazy . 185
lazy-size-of . 327
lcm . 107
lconcatenate . 359
lcons . 186
lcons* . 188
lcs . 735
lcs-edit-list . 736
lcs-fold . 736
lcs-with-positions . 735
ldexp . 110

least-fixnum . 109
legacy-hash . 93
length . 118
length+ . 118
length<=? . 119
length<? . 119
length=? . 119
length>=? . 119
length>? . 119
let . 50, 55, 517
let* . 50
let*-values . 53
let-args . 385
let-keywords . 179
let-keywords* . 180
let-optionals* . 178
let-string-start+end . 527
let-syntax . 79
let-values . 53
let/cc . 182
let1 . 50
letrec . 50
letrec* . 50
letrec-syntax . 79
lfilter . 360
lfilter-map . 360
lgamma . 109
library-exists? . 230
library-fold . 229
library-for-each . 230
library-has-module? . 230
library-map . 230
linterweave . 360
liota . 188
list . 117
list* . 117
list->bag . 498
list->bag! . 498
list->bits . 575
list->char-set . 501
list->char-set! . 501
list->f16vector . 454
list->f32vector . 454
list->f64vector . 454
list->file . 643
list->generator . 345
list->ideque . 510
list->integer . 544
list->queue . 601
list->s16vector . 454
list->s32vector . 454
list->s64vector . 454
list->s8vector . 454
list->set . 498
list->set! . 498
list->stream . 748
list->string . 145
list->sys-fdset . 260
list->u16vector . 454
list->u32vector . 454
list->u64vector . 454
list->u8vector . 454
list->vector . 160
list-accumulator . 579
list-copy . 117

Appendix C: Function and Syntax Index 791

list-delete-neighbor-dups . 492
list-delete-neighbor-dups! 492
list-ec . 538
list-index . 485
list-merge . 491
list-merge! . 491
list-queue . 514
list-queue-add-back! . 515
list-queue-add-front! . 515
list-queue-append . 515
list-queue-append! . 516
list-queue-back . 514
list-queue-concatenate . 516
list-queue-copy . 514
list-queue-empty? . 514
list-queue-fist-last . 515
list-queue-for-each . 516
list-queue-front . 514
list-queue-list . 515
list-queue-map . 516
list-queue-map! . 516
list-queue-remove-all! . 515
list-queue-remove-back! . 515
list-queue-remove-front! . 515
list-queue-set-list! . 515
list-queue-unfold . 514
list-queue-unfold-right . 514
list-queue? . 514
list-ref . 120
list-set! . 121
list-sort . 491
list-sort! . 491
list-sorted? . 491
list-stable-sort . 491
list-stable-sort! . 491
list-tabulate . 482
list-tail . 120
list= . 482
list? . 116
listener-read-handler . 363
listener-show-prompt . 363
lists-of . 606
llist* . 188
lmap . 359
lmap-accum . 359
load . 225, 479
load-bundle! . 534
load-from-port . 226
localized-template . 534
log . 108
log-default-drain . 366
log-format . 366
log-open . 366
log2-binary-factors . 544
logand . 113
logbit? . 113
logcount . 113
logior . 113
lognot . 113
logtest . 113
logxor . 113
lrange . 188
lrxmatch . 361
lseq->generator . 512
lseq-any . 513

lseq-append . 512
lseq-car . 512
lseq-cdr . 512
lseq-drop . 512
lseq-drop-while . 512
lseq-every . 513
lseq-filter . 512
lseq-find . 513
lseq-find-tail . 513
lseq-first . 512
lseq-for-each . 512
lseq-index . 513
lseq-length . 512
lseq-map . 512
lseq-member . 513
lseq-memq . 513
lseq-memv . 513
lseq-realize . 512
lseq-remove . 512
lseq-rest . 512
lseq-take . 512
lseq-take-while . 512
lseq-zip . 512
lseq=? . 511
lseq? . 511
lset-adjoin . 485
lset-diff+intersection . 486
lset-diff+intersection! . 486
lset-difference . 485
lset-difference! . 486
lset-intersection . 485
lset-intersection! . 486
lset-union . 485
lset-union! . 486
lset-xor . 486
lset-xor! . 486
lset<= . 485
lset= . 485
lslices . 361
lstate-filter . 361
ltake . 361
ltake-while . 361
lunfold . 359

M
machine-name . 553
macroexpand . 86
macroexpand-1 . 86
macroexpand-all . 86
magnitude . 110
make . 281, 293
make-accumulator . 579
make-array . 302
make-bimap . 341
make-binary-heap . 595
make-bitwise-generator . 576
make-blob . 547
make-byte-string . 142
make-bytevector . 474
make-bytevector-comparator 555
make-car-comparator . 555
make-cdr-comparator . 555
make-client-socket . 373, 550
make-comparator . 95, 554

Appendix C: Function and Syntax Index 792

make-comparator/compare . 96
make-comparison< . 557
make-comparison<= . 557
make-comparison=/< . 557
make-comparison=/> . 557
make-comparison> . 557
make-comparison>= . 557
make-compound-condition . 201
make-condition . 201
make-condition-type . 201
make-condition-variable . 436
make-coroutine-generator . 348
make-csv-header-parser . 718
make-csv-reader . 716
make-csv-record-parser . 719
make-csv-writer . 716
make-date . 529
make-debug-comparator . 557
make-default-comparator . 100
make-default-console . 714
make-directory* . 637
make-empty-attlist . 691
make-eq-comparator . 100
make-eqv-comparator . 100
make-f16array . 302
make-f16vector . 448
make-f32array . 302
make-f32vector . 448
make-f64array . 302
make-f64vector . 448
make-fifo-cache . 592
make-for-each-generator . 348
make-gauche-package-description 383
make-gettext . 721
make-glob-fs-fold . 238
make-grapheme-cluster-breaker 445
make-grapheme-cluster-reader 445
make-hash-table . 163, 505, 546
make-hashmap-comparator . 572
make-hook . 355
make-ideque . 597
make-imap . 597
make-improper-list-comparator 556
make-inexact-real-comparator 554
make-iota-generator . 348
make-key-comparator . 100
make-keyword . 129
make-kmp-restart-vector . 527
make-list . 117
make-list-comparator . 555
make-list-queue . 514
make-listwise-comparator . 556
make-lru-cache . 592
make-mapping-comparator . 568
make-module . 73
make-mtqueue . 599
make-mutex . 434
make-option-parser . 389
make-overflow-doubler . 608
make-packer . 586
make-pair-comparator . 556
make-parameter . 384
make-polar . 110
make-promise . 479
make-queue . 599

make-random-source . 533
make-range-generator . 348
make-rbtree . 299
make-record-type . 743
make-rectangular . 110
make-refining-comparator . 557
make-reverse-comparator 100, 557
make-ring-buffer . 607
make-rtd . 408
make-s16array . 302
make-s16vector . 448
make-s32array . 302
make-s32vector . 448
make-s64array . 302
make-s64vector . 448
make-s8array . 302
make-s8vector . 448
make-selecting-comparator . 556
make-server-socket . 373, 550
make-server-sockets . 374
make-sockaddrs . 371
make-socket . 375
make-sparse-matrix . 612
make-sparse-table . 614
make-sparse-vector . 610
make-stream . 747
make-string . 141
make-template-environment . 728
make-text-progress-bar . 725
make-thread . 431
make-thread-pool . 589
make-time . 528
make-time-result . 440
make-tree-map . 168
make-trie . 615
make-ttl-cache . 592
make-ttlr-cache . 593
make-tuple-comparator . 100
make-u16array . 302
make-u16vector . 448
make-u32array . 302
make-u32vector . 448
make-u64array . 302
make-u64vector . 448
make-u8array . 302
make-u8vector . 448
make-unfold-generator . 348
make-uvector . 448
make-vector . 160
make-vector-comparator . 555
make-vectorwise-comparator 556
make-weak-vector . 173
make-word-breaker . 445
make-word-reader . 445
make-write-controls . 219
make-xml-token . 691
make<=? . 557
make<? . 557
make=? . 557
make>=? . 557
make>? . 557
map . 121, 324
map! . 484
map$. 176, 325
map* . 122

Appendix C: Function and Syntax Index 793

map-accum . 325
map-in-order . 484
map-to . 324
map-to-with-index . 414
map-union . 701
map-with-index . 414
mapping . 563
mapping->alist . 566
mapping-adjoin . 565
mapping-adjoin! . 565
mapping-any? . 566
mapping-catenate . 568
mapping-catenate! . 568
mapping-contains? . 564
mapping-copy . 566
mapping-count . 566
mapping-delete . 565
mapping-delete! . 565
mapping-delete-all . 565
mapping-delete-all! . 565
mapping-difference . 567
mapping-difference! . 567
mapping-disjoint? . 564
mapping-empty? . 564
mapping-entries . 566
mapping-every? . 566
mapping-filter . 566
mapping-filter! . 566
mapping-find . 565
mapping-fold . 566
mapping-fold/reverse . 566
mapping-for-each . 566
mapping-intern . 565
mapping-intern! . 565
mapping-intersection . 567
mapping-intersection! . 567
mapping-key-comparator . 564
mapping-key-predecessor . 567
mapping-key-successor . 567
mapping-keys . 566
mapping-map . 566
mapping-map->list . 566
mapping-map/monotone . 566
mapping-map/monotone! . 566
mapping-max-entry . 567
mapping-max-key . 567
mapping-max-value . 567
mapping-min-entry . 567
mapping-min-key . 567
mapping-min-value . 567
mapping-partition . 566
mapping-partition! . 566
mapping-pop . 565
mapping-pop! . 565
mapping-range< . 568
mapping-range<! . 568
mapping-range<= . 568
mapping-range<=! . 568
mapping-range= . 568
mapping-range=! . 568
mapping-range> . 568
mapping-range>! . 568
mapping-range>= . 568
mapping-range>=! . 568
mapping-ref . 564

mapping-ref/default . 564
mapping-remove . 566
mapping-remove! . 566
mapping-replace . 565
mapping-replace! . 565
mapping-search . 565
mapping-search! . 565
mapping-set . 565
mapping-set! . 565
mapping-size . 565
mapping-split . 568
mapping-split! . 568
mapping-unfold . 563
mapping-unfold/ordered . 564
mapping-union . 567
mapping-union! . 567
mapping-update . 565
mapping-update! . 565
mapping-update!/default . 565
mapping-update/default . 565
mapping-values . 566
mapping-xor . 567
mapping-xor! . 567
mapping/ordered . 564
mapping<=? . 567
mapping<? . 567
mapping=? . 567
mapping>=? . 567
mapping>? . 567
mapping? . 564
match . 738
match-define . 739
match-lambda . 738
match-lambda* . 739
match-let . 739
match-let* . 739
match-let1 . 739
match-letrec . 739
max . 103
max-ec . 538
mc-factorize . 649
md5-digest . 671
md5-digest-string . 671
member . 125
member$. 176
memq . 125
memv . 125
merge . 231
merge! . 231
message-type . 552
method-more-specific? . 293
miller-rabin-prime? . 648
mime-body->file . 676
mime-body->string . 676
mime-compose-message . 676
mime-compose-message-string 676
mime-compose-parameters . 672
mime-decode-text . 673
mime-decode-word . 673
mime-encode-text . 674
mime-encode-word . 673
mime-make-boundary . 677
mime-parse-content-disposition 672
mime-parse-content-type . 672
mime-parse-message . 674

Appendix C: Function and Syntax Index 794

mime-parse-parameters . 672
mime-parse-version . 672
mime-retrieve-body . 675
min . 103
min&max . 103
min-ec . 538
mod . 105
mod0 . 105
modf . 110
modified-julian-day->date . 530
modified-julian-day->time-monotonic 530
modified-julian-day->time-tai 530
modified-julian-day->time-utc 530
modifier . 413
module-exports . 73
module-imports . 73
module-name . 73
module-name->path . 74
module-parents . 73
module-precedence-list . 73
module-reload-rules . 411
module-table . 73
module? . 72
modulo . 104
move-cursor-to . 715
move-file . 642
mt-random-fill-f32vector! . 647
mt-random-fill-f64vector! . 647
mt-random-fill-u32vector! . 647
mt-random-get-state . 646
mt-random-integer . 647
mt-random-real . 647
mt-random-real0 . 647
mt-random-set-seed! . 646
mt-random-set-state! . 646
mtqueue-max-length . 600
mtqueue-num-waiting-readers 600
mtqueue-room . 600
mtqueue? . 599
mutex-lock! . 434
mutex-locker . 436
mutex-name . 434
mutex-specific . 434
mutex-specific-set! . 434
mutex-state . 434
mutex-unlock! . 435
mutex-unlocker . 436
mutex? . 434

N
naive-factorize . 648
nan? . 102
native-endian . 115
ndbm-clear-error . 632
ndbm-close . 632
ndbm-closed? . 632
ndbm-delete . 632
ndbm-error . 632
ndbm-fetch . 632
ndbm-firstkey . 632
ndbm-nextkey . 632
ndbm-open . 632
ndbm-store . 632
negative? . 102

nested . 541
newline . 221
next-method . 287
next-token . 724
next-token-of . 724
ngettext . 721
ninth . 483
node-closure . 702
node-eq? . 700
node-equal? . 700
node-join . 702
node-or . 702
node-pos . 700
node-reduce . 702
node-reverse . 701
node-self . 701
node-trace . 701
nodeset? . 699
not . 115, 541
not-pair? . 482
ntype-names?? . 699
ntype-namespace-id?? . 700
ntype?? . 699
null-device . 640
null-environment . 202
null-generator . 344
null-list? . 116
null? . 116
number->string . 112
number-hash . 94
number? . 101
numerator . 107

O
object-apply . 180
object-compare . 91, 92
object-equal? . 90, 96
object-hash . 93
object-isomorphic? . 735
odbm-close . 633
odbm-delete . 633
odbm-fetch . 633
odbm-firstkey . 633
odbm-init . 633
odbm-nextkey . 633
odbm-store . 633
odd? . 103
open-binary-input-file . 478
open-binary-output-file . 478
open-coding-aware-port . 212
open-deflating-port . 685
open-inflating-port . 686
open-input-byte-generator . 466
open-input-byte-list . 466
open-input-bytevector . 475
open-input-char-generator . 466
open-input-char-list . 466
open-input-conversion-port 320
open-input-fd-port . 209
open-input-file . 207
open-input-process-port . 401
open-input-string . 210
open-input-uvector . 465
open-output-bytevector . 475

Appendix C: Function and Syntax Index 795

open-output-conversion-port 321
open-output-fd-port . 209
open-output-file . 207
open-output-process-port . 403
open-output-string . 210
open-output-uvector . 465
option . 535
option-names . 536
option-optional-arg? . 536
option-processor . 536
option-required-arg? . 536
option? . 536
or . 49, 541
os-name . 553
os-version . 553
output-port-open? . 475
output-port? . 204

P
pa$. 176
pack . 584
pair-fold . 483
pair-fold-right . 483
pair-for-each . 484
pair? . 116
pairs-of . 605
parameter-observer-add! . 385
parameter-observer-delete! 385
parameter-post-observers . 385
parameter-pre-observers . 385
parameterize . 384
parse-cookie-string . 658
parse-css . 759
parse-css-file . 759
parse-css-selector-string . 759
parse-json . 670
parse-json* . 670
parse-json-string . 670
parse-options . 389
partition . 327, 484
partition! . 484
partition$. 176
partition-to . 327
path->gauche-package-description 383
path->module-name . 74
path-extension . 639
path-sans-extension . 639
path-swap-extension . 639
peek-byte . 213
peek-char . 213
peek-next-char . 724
peek-u8 . 476
permutations . 731
permutations* . 731
permutations*-for-each . 731
permutations-for-each . 731
permutations-of . 606
permute . 419
permute! . 419
permute-to . 419
pop! . 46
port->byte-generator . 347
port->byte-lseq . 188
port->char-generator . 347

port->char-lseq . 188
port->line-generator . 347
port->list . 216
port->sexp-generator . 347
port->sexp-list . 216
port->sexp-lseq . 188
port->stream . 748
port->string . 216
port->string-list . 216
port->string-lseq . 188
port->uvector . 459
port-buffering . 205
port-closed? . 204
port-current-line . 205
port-fd-dup! . 209
port-file-number . 206
port-fold . 217
port-fold-right . 217
port-for-each . 217
port-map . 217
port-name . 205
port-seek . 206
port-tell . 206
port-type . 205
port? . 204
portable-hash . 92
positive? . 102
power-set . 731
power-set* . 731
power-set*-for-each . 732
power-set-binary . 732
power-set-for-each . 732
pprint . 220
primes . 647
print . 220
procedure-arity-includes? . 180
procedure? . 174
process-alive? . 400
process-command . 399
process-continue . 401
process-error . 400
process-exit-status . 401
process-input . 399
process-kill . 401
process-list . 400
process-output . 399
process-output->string . 403
process-output->string-list 403
process-pid . 399
process-send-signal . 401
process-stop . 401
process-upstreams . 400
process-wait . 401
process-wait-any . 401
process? . 399
product-accumulator . 580
product-ec . 538
profiler-reset . 263
profiler-show . 263
profiler-start . 263
profiler-stop . 263
program . 518
promise? . 185
proper-list? . 116
provide . 227

Appendix C: Function and Syntax Index 796

provided? . 228
pseudo-rtd . 410
push! . 46
put-f16! . 583
put-f16be! . 584
put-f16le! . 584
put-f32! . 583
put-f32be! . 584
put-f32le! . 584
put-f64! . 583
put-f64be! . 584
put-f64le! . 584
put-s16! . 583
put-s16be! . 584
put-s16le! . 584
put-s32! . 583
put-s32be! . 584
put-s32le! . 584
put-s64! . 583
put-s64be! . 584
put-s64le! . 584
put-s8! . 583
put-sint! . 584
put-u16! . 583
put-u16be! . 584
put-u16le! . 584
put-u32! . 583
put-u32be! . 584
put-u32le! . 584
put-u64! . 583
put-u64be! . 584
put-u64le! . 584
put-u8! . 583
put-uint! . 584
putch . 714
putstr . 714

Q
quasiquote . 57
quasirename . 85
query-cursor-position . 715
query-screen-size . 715
queue->list . 601
queue-empty? . 599
queue-front . 601
queue-internal-list . 601
queue-length . 599
queue-pop! . 601
queue-pop/wait! . 602
queue-push! . 600
queue-push-unique! . 600
queue-push/wait! . 602
queue-rear . 601
queue? . 599
quote . 39
quoted-printable-decode . 677
quoted-printable-decode-string 678
quoted-printable-encode . 677
quoted-printable-encode-string 677
quotient . 104
quotient&remainder . 105

R
raise . 194, 475
raise-continuable . 475
random-data-seed . 602
random-integer . 532
random-real . 532
random-source-make-integers 533
random-source-make-reals . 533
random-source-pseudo-randomize! 533
random-source-randomize! . 533
random-source-state-ref . 533
random-source-state-set! . 533
random-source? . 533
rassoc . 126
rassoc-ref . 127
rassq . 126
rassq-ref . 127
rassv . 126
rassv-ref . 127
rational-valued? . 102
rational? . 101
rationalize . 107
rbtree->alist . 299
rbtree-copy . 299
rbtree-delete! . 299
rbtree-empty? . 299
rbtree-exists? . 299
rbtree-extract-max! . 299
rbtree-extract-min! . 299
rbtree-fold . 299
rbtree-fold-right . 299
rbtree-get . 299
rbtree-keys . 299
rbtree-max . 299
rbtree-min . 299
rbtree-num-entries . 299
rbtree-pop! . 299
rbtree-push! . 299
rbtree-put! . 299
rbtree-update! . 299
rbtree-values . 299
rbtree? . 299
re-distance . 737
re-distances . 737
read . 212
read-ber-integer . 581
read-block . 213
read-block! . 458
read-byte . 213
read-bytevector . 476
read-bytevector! . 476
read-char . 213
read-error? . 475
read-eval-print-loop . 202
read-f16 . 582
read-f32 . 582
read-f64 . 582
read-from-string . 212
read-line . 213
read-s16 . 581
read-s32 . 581
read-s64 . 581
read-s8 . 581
read-sint . 581

Appendix C: Function and Syntax Index 797

read-string . 213, 724
read-u16 . 581
read-u32 . 581
read-u64 . 581
read-u8 . 476, 581
read-uint . 581
read-uvector . 458
read-uvector! . 458
read-with-shared-structure 213
read/ss . 213
reader-lexical-mode . 214
real->rational . 111
real-part . 110
real-valued? . 102
real? . 101
reals$. 604
reals-between$. 604
reals-exponential$. 605
reals-normal$. 605
rec . 53
receive . 52
record-accessor . 743
record-constructor . 743
record-modifier . 743
record-predicate . 743
record-rtd . 408
record? . 408
reduce . 123
reduce$. 176
reduce-right . 123
reduce-right$. 176
ref . 165, 176, 282, 413
referencer . 413
regexp . 153
regexp->string . 152
regexp-ast . 159
regexp-compile . 159
regexp-named-groups . 152
regexp-num-groups . 152
regexp-optimize . 158
regexp-parse . 158
regexp-quote . 156
regexp-replace . 155
regexp-replace* . 156
regexp-replace-all . 155
regexp-replace-all* . 156
regexp-unparse . 159
regexp? . 152
regmatch . 154
regular-string$. 604
relation-accessor . 744
relation-coercer . 745
relation-column-getter . 745
relation-column-getters . 745
relation-column-name? . 745
relation-column-names . 744
relation-column-setter . 745
relation-column-setters . 745
relation-deletable? . 745
relation-delete! . 745
relation-fold . 745
relation-insert! . 745
relation-insertable? . 745
relation-modifier . 744
relation-ref . 745

relation-rows . 744
relation-set! . 745
relative-path? . 638
relnum-compare . 461
reload . 411
reload-modified-modules . 411
reload-verbose . 411
remainder . 104
remove . 124, 326
remove! . 124
remove$. 176
remove-directory* . 637
remove-file . 643
remove-files . 643
remove-from-queue! . 602
remove-hook! . 356
remove-to . 326
report-error . 197
report-time-results . 441
require . 227
require-extension . 543
requires . 518
reset . 390
reset-character-attribute . 716
reset-hook! . 356
reset-primes . 647
reset-terminal . 715
resolve-path . 638
reverse . 125
reverse! . 125
reverse-bit-field . 544
reverse-bits->generator . 346
reverse-list->string . 519
reverse-list->vector . 161
reverse-list-accumulator . 579
reverse-vector->generator . 345
reverse-vector->list . 491
reverse-vector-accumulator 579
rfc822-atom . 656
rfc822-date->date . 656
rfc822-dot-atom . 656
rfc822-field->tokens . 655
rfc822-header->list . 654
rfc822-header-ref . 654
rfc822-next-token . 655
rfc822-parse-date . 656
rfc822-quoted-string . 656
rfc822-read-headers . 654
rfc822-skip-cfws . 656
rfc822-write-headers . 656
ring-buffer-add-back! . 608
ring-buffer-add-front! . 608
ring-buffer-back . 608
ring-buffer-capacity . 608
ring-buffer-empty? . 608
ring-buffer-front . 608
ring-buffer-full? . 608
ring-buffer-num-elements . 608
ring-buffer-ref . 608
ring-buffer-remove-back! . 608
ring-buffer-remove-front! . 608
ring-buffer-set! . 608
rlet1 . 51
rotate-bit-field . 544
round . 108

Appendix C: Function and Syntax Index 798

round->exact . 108
round-quotient . 560
round-remainder . 560
round/ . 560
rtd-accessor . 409
rtd-all-field-names . 408
rtd-constructor . 409
rtd-field-mutable? . 408
rtd-field-names . 408
rtd-mutator . 409
rtd-name . 408
rtd-parent . 408
rtd-predicate . 409
rtd? . 409
run-cgi-script->header&body 758
run-cgi-script->string . 758
run-cgi-script->string-list 758
run-cgi-script->sxml . 758
run-hook . 356
run-pipeline . 398
run-process . 393
rxmatch . 153
rxmatch->string . 154
rxmatch-after . 153
rxmatch-before . 153
rxmatch-case . 157
rxmatch-cond . 157
rxmatch-end . 153
rxmatch-if . 156
rxmatch-let . 156
rxmatch-named-groups . 154
rxmatch-num-matches . 154
rxmatch-positions . 153
rxmatch-start . 153
rxmatch-substring . 153
rxmatch-substrings . 153

S
s16array . 302
s16vector . 448
s16vector->list . 453
s16vector->vector . 454
s16vector-add . 456
s16vector-add! . 456
s16vector-and . 457
s16vector-and! . 457
s16vector-append . 452
s16vector-clamp . 457
s16vector-clamp! . 457
s16vector-compare . 450
s16vector-copy . 450
s16vector-copy! . 451
s16vector-dot . 457
s16vector-fill! . 450
s16vector-ior . 457
s16vector-ior! . 457
s16vector-length . 449
s16vector-mul . 456
s16vector-mul! . 456
s16vector-multi-copy! . 451
s16vector-range-check . 457
s16vector-ref . 449
s16vector-set! . 450

s16vector-sub . 456
s16vector-sub! . 456
s16vector-xor . 457
s16vector-xor! . 457
s16vector=? . 450
s16vector? . 448
s32array . 302
s32vector . 448
s32vector->list . 453
s32vector->string . 455
s32vector->vector . 454
s32vector-add . 456
s32vector-add! . 456
s32vector-and . 457
s32vector-and! . 457
s32vector-append . 452
s32vector-clamp . 457
s32vector-clamp! . 457
s32vector-compare . 450
s32vector-copy . 450
s32vector-copy! . 451
s32vector-dot . 457
s32vector-fill! . 450
s32vector-ior . 457
s32vector-ior! . 457
s32vector-length . 449
s32vector-mul . 456
s32vector-mul! . 456
s32vector-multi-copy! . 451
s32vector-range-check . 457
s32vector-ref . 449
s32vector-set! . 450
s32vector-sub . 456
s32vector-sub! . 456
s32vector-xor . 457
s32vector-xor! . 457
s32vector=? . 450
s32vector? . 448
s64array . 302
s64vector . 448
s64vector->list . 453
s64vector->vector . 454
s64vector-add . 456
s64vector-add! . 456
s64vector-and . 457
s64vector-and! . 457
s64vector-append . 452
s64vector-clamp . 457
s64vector-clamp! . 457
s64vector-compare . 450
s64vector-copy . 450
s64vector-copy! . 451
s64vector-dot . 457
s64vector-fill! . 450
s64vector-ior . 457
s64vector-ior! . 457
s64vector-length . 449
s64vector-mul . 456
s64vector-mul! . 456
s64vector-multi-copy! . 451
s64vector-range-check . 457
s64vector-ref . 449
s64vector-set! . 450
s64vector-sub . 456
s64vector-sub! . 456

Appendix C: Function and Syntax Index 799

s64vector-xor . 457
s64vector-xor! . 457
s64vector=? . 450
s64vector? . 448
s8array . 302
s8vector . 448
s8vector->list . 453
s8vector->string . 455
s8vector->vector . 454
s8vector-add . 456
s8vector-add! . 456
s8vector-and . 457
s8vector-and! . 457
s8vector-append . 452
s8vector-clamp . 457
s8vector-clamp! . 457
s8vector-compare . 450
s8vector-copy . 450
s8vector-copy! . 451
s8vector-dot . 457
s8vector-fill! . 450
s8vector-ior . 457
s8vector-ior! . 457
s8vector-length . 449
s8vector-mul . 456
s8vector-mul! . 456
s8vector-multi-copy! . 451
s8vector-range-check . 457
s8vector-ref . 449
s8vector-set! . 450
s8vector-sub . 456
s8vector-sub! . 456
s8vector-xor . 457
s8vector-xor! . 457
s8vector=? . 450
s8vector? . 448
samples$. 604
samples-from . 605
save-bundle! . 534
scheme-report-environment . 202
second . 482
seconds->time . 256
select-kids . 701
select-module . 69
selector-add! . 411
selector-delete! . 411
selector-select . 412
sequence->kmp-stepper . 415
sequence-contains . 415
sequences-of . 607
set . 494
set! . 45
set!-values . 45
set->bag . 499
set->bag! . 499
set->list . 498
set-adjoin . 495
set-adjoin! . 496
set-any? . 497
set-box! . 513
set-car! . 118
set-cdr! . 118
set-character-attribute . 715
set-contains? . 495
set-copy . 498

set-count . 497
set-delete . 496
set-delete! . 496
set-delete-all . 496
set-delete-all! . 496
set-difference . 500
set-difference! . 500
set-disjoint? . 495
set-element-comparator . 495
set-empty? . 495
set-every? . 497
set-filter . 497
set-filter! . 498
set-find . 497
set-fold . 497
set-for-each . 497
set-intersection . 499
set-intersection! . 500
set-map . 497
set-member . 495
set-partition . 498
set-partition! . 498
set-remove . 498
set-remove! . 498
set-replace . 495
set-replace! . 496
set-search! . 496
set-signal-handler! . 248
set-signal-pending-limit . 249
set-size . 497
set-time-nanosecond! . 528
set-time-second! . 528
set-time-type! . 528
set-unfold . 494
set-union . 499
set-union! . 500
set-xor . 500
set-xor! . 500
set<=? . 499
set<? . 499
set=? . 499
set>=? . 499
set>? . 499
setter . 45
seventh . 482
sexp-list->file . 643
sha1-digest . 678
sha1-digest-string . 678
sha224-digest . 678
sha224-digest-string . 678
sha256-digest . 678
sha256-digest-string . 678
sha384-digest . 678
sha384-digest-string . 678
sha512-digest . 678
sha512-digest-string . 678
shape . 302
shape-for-each . 304
share-array . 303
shell-escape-string . 404
shell-tokenize-string . 404
shift . 390
show-cursor . 715
shuffle . 419
shuffle! . 420

Appendix C: Function and Syntax Index 800

shuffle-to . 420
shutdown-method . 552
simplify-path . 638
sin . 108
sinh . 108
sint-list->blob . 549
sixth . 482
size-of . 327
skip-until . 724
skip-while . 724
slices . 121
slot-bound-using-accessor? 291
slot-bound-using-class? . 283
slot-bound? . 282
slot-definition-accessor . 278
slot-definition-allocation 277
slot-definition-getter . 278
slot-definition-name . 277
slot-definition-option . 278
slot-definition-options . 277
slot-definition-setter . 278
slot-exists? . 282
slot-initialize-using-accessor! 291
slot-missing . 283
slot-pop! . 282
slot-push! . 282
slot-ref . 282
slot-ref-using-accessor . 291
slot-ref-using-class . 283
slot-set! . 282
slot-set-using-accessor! . 291
slot-set-using-class! . 283
slot-unbound . 282
small-prime? . 648
sockaddr-addr . 371
sockaddr-family . 370, 371
sockaddr-name . 370, 371
sockaddr-port . 371
socket-accept . 376
socket-address . 374
socket-bind . 376
socket-buildmsg . 377
socket-close . 374
socket-connect . 376
socket-domain . 551
socket-fd . 376
socket-getpeername . 377
socket-getsockname . 377
socket-getsockopt . 379
socket-input-port . 374
socket-listen . 376
socket-merge-flags . 551
socket-output-port . 374
socket-purge-flags . 551
socket-recv . 378, 551
socket-recv! . 378
socket-recvfrom . 378
socket-recvfrom! . 378
socket-send . 377, 550
socket-sendmsg . 377
socket-sendto . 377
socket-setsockopt . 379
socket-shutdown . 376
socket-status . 376
socket? . 550

sort . 230
sort! . 230
sort-applicable-methods . 293
sort-by . 231
sort-by! . 231
sorted? . 231
source-code . 263
source-location . 263
span . 485
span! . 485
sparse-matrix-clear! . 613
sparse-matrix-copy . 613
sparse-matrix-delete! . 613
sparse-matrix-exists? . 613
sparse-matrix-fold . 613
sparse-matrix-for-each . 613
sparse-matrix-inc! . 613
sparse-matrix-keys . 613
sparse-matrix-map . 613
sparse-matrix-num-entries . 612
sparse-matrix-pop! . 613
sparse-matrix-push! . 613
sparse-matrix-ref . 612
sparse-matrix-set! . 612
sparse-matrix-update! . 613
sparse-matrix-values . 613
sparse-table-clear! . 614
sparse-table-comparator . 614
sparse-table-copy . 614
sparse-table-delete! . 614
sparse-table-exists? . 614
sparse-table-fold . 614
sparse-table-for-each . 614
sparse-table-keys . 614
sparse-table-map . 614
sparse-table-num-entries . 614
sparse-table-pop! . 614
sparse-table-push! . 614
sparse-table-ref . 614
sparse-table-set! . 614
sparse-table-update! . 614
sparse-table-values . 614
sparse-vector-clear! . 611
sparse-vector-copy . 610
sparse-vector-delete! . 611
sparse-vector-exists? . 611
sparse-vector-fold . 611
sparse-vector-for-each . 611
sparse-vector-inc! . 611
sparse-vector-keys . 612
sparse-vector-map . 611
sparse-vector-max-index-bits 610
sparse-vector-num-entries . 611
sparse-vector-pop! . 611
sparse-vector-push! . 611
sparse-vector-ref . 610
sparse-vector-set! . 611
sparse-vector-update! . 611
sparse-vector-values . 612
split-at . 121
split-at! . 121
split-at* . 121
sql-tokenize . 727
sqrt . 109
square . 109

Appendix C: Function and Syntax Index 801

srl:display-sxml . 713
srl:parameterizable . 711
srl:sxml->html . 711
srl:sxml->html-noindent . 711
srl:sxml->string . 713
srl:sxml->xml . 711
srl:sxml->xml-noindent . 711
ssax:assert-token . 696
ssax:complete-start-tag . 694
ssax:handle-parsed-entity . 693
ssax:make-elem-parser . 696
ssax:make-parser . 697
ssax:make-pi-parser . 696
ssax:ncname-starting-char? 691
ssax:read-attributes . 693
ssax:read-cdata-body . 692
ssax:read-char-data . 695
ssax:read-char-ref . 693
ssax:read-external-id . 695
ssax:read-markup-token . 692
ssax:read-NCName . 691
ssax:read-pi-body-as-string 692
ssax:read-QName . 691
ssax:resolve-name . 694
ssax:reverse-collect-str . 698
ssax:reverse-collect-str-drop-ws 698
ssax:scan-Misc . 695
ssax:skip-internal-dtd . 692
ssax:skip-pi . 692
ssax:skip-S . 691
ssax:uri-string->symbol . 694
ssax:xml->sxml . 698
stable-sort . 231
stable-sort! . 231
stable-sort-by . 231
stable-sort-by! . 231
standard-error-port . 204
standard-input-port . 204
standard-output-port . 204
stream . 746
stream->list . 747
stream->string . 747
stream-any . 750
stream-append . 750
stream-break . 750
stream-butlast . 750
stream-butlast-n . 750
stream-caaaar . 749
stream-caaadr . 749
stream-caaar . 749
stream-caadar . 749
stream-caaddr . 749
stream-caadr . 749
stream-caar . 749
stream-cadaar . 749
stream-cadadr . 749
stream-cadar . 749
stream-caddar . 749
stream-cadddr . 749
stream-caddr . 749
stream-cadr . 749
stream-car . 746
stream-cdaaar . 749
stream-cdaadr . 749
stream-cdaar . 749

stream-cdadar . 749
stream-cdaddr . 749
stream-cdadr . 749
stream-cdar . 749
stream-cddaar . 749
stream-cddadr . 749
stream-cddar . 749
stream-cdddar . 749
stream-cddddr . 749
stream-cdddr . 749
stream-cddr . 749
stream-cdr . 746
stream-concatenate . 750
stream-cons . 746
stream-cons* . 747
stream-count . 750
stream-delay . 746
stream-delete . 751
stream-delete-duplicates . 751
stream-drop . 749
stream-drop-safe . 749
stream-drop-while . 750
stream-eighth . 749
stream-every . 751
stream-fifth . 749
stream-filter . 747
stream-find . 750
stream-find-tail . 750
stream-first . 749
stream-for-each . 747
stream-format . 747
stream-fourth . 749
stream-grep . 751
stream-index . 751
stream-intersperse . 749
stream-last . 750
stream-last-n . 750
stream-length . 750
stream-length>= . 750
stream-lines . 748
stream-map . 747
stream-member . 751
stream-memq . 751
stream-memv . 751
stream-ninth . 749
stream-null? . 746
stream-pair? . 746
stream-partition . 750
stream-prefix= . 748
stream-ref . 749
stream-remove . 750
stream-reverse . 750
stream-second . 749
stream-seventh . 749
stream-sixth . 749
stream-span . 750
stream-split . 750
stream-tabulate . 747
stream-take . 749
stream-take-safe . 749
stream-take-while . 750
stream-tenth . 749
stream-third . 749
stream-unfoldn . 746
stream-xcons . 747

Appendix C: Function and Syntax Index 802

stream= . 748
stream? . 746
string . 142
string->char-set . 502
string->char-set! . 502
string->date . 532
string->file . 643
string->generator . 345
string->grapheme-clusters . 445
string->list . 145
string->number . 112
string->regexp . 152
string->s32vector . 455
string->s32vector! . 455
string->s8vector . 454
string->s8vector! . 455
string->stream . 748
string->symbol . 128
string->u32vector . 455
string->u32vector! . 455
string->u8vector . 454
string->u8vector! . 455
string->uninterned-symbol . 128
string->utf8 . 444
string->vector . 161
string->words . 445
string-accumulator . 580
string-any . 519
string-append . 145
string-append! . 559
string-append-ec . 538
string-append/shared . 524
string-break . 578
string-byte-ref . 144
string-byte-set! . 144
string-ci-hash . 94, 508, 547
string-ci< . 522
string-ci<= . 522
string-ci<=? . 144, 446
string-ci<> . 522
string-ci<? . 144, 446
string-ci= . 522
string-ci=? . 144, 446
string-ci> . 522
string-ci>= . 522
string-ci>=? . 144, 446
string-ci>? . 144, 446
string-compare . 521
string-compare-ci . 521
string-concatenate . 524
string-concatenate-reverse 524
string-concatenate-reverse/shared 524
string-concatenate/shared . 524
string-contains . 523
string-contains-ci . 523
string-contains-right . 577
string-copy . 145
string-copy! . 520
string-count . 523
string-delete . 526
string-downcase . 446, 523
string-downcase! . 523
string-drop . 520
string-drop-right . 520
string-drop-while . 578

string-drop-while-right . 578
string-ec . 538
string-every . 519
string-fill! . 145
string-filter . 526
string-fold . 525
string-fold-right . 525
string-foldcase . 446
string-for-each . 474, 525
string-for-each-index . 525
string-hash . 94, 508, 522, 547
string-hash-ci . 522
string-immutable? . 141
string-incomplete->complete 148
string-incomplete? . 141
string-index . 523
string-index-right . 523
string-join . 146
string-kmp-partial-search . 527
string-length . 143
string-list->file . 643
string-map . 474, 524
string-map! . 524
string-null? . 519
string-pad . 520
string-pad-right . 520
string-parse-final-start+end 527
string-parse-start+end . 527
string-prefix-ci? . 522
string-prefix-length . 522
string-prefix-length-ci . 522
string-prefix? . 522
string-ref . 144
string-remove . 577
string-replace . 526
string-replace! . 559
string-replicate . 577
string-reverse . 524
string-reverse! . 524
string-scan . 146
string-scan-right . 146
string-segment . 577
string-set! . 144
string-size . 144
string-skip . 523
string-skip-right . 523
string-span . 578
string-split . 147
string-suffix-ci? . 522
string-suffix-length . 522
string-suffix-length-ci . 522
string-suffix? . 522
string-tabulate . 519
string-take . 520
string-take-right . 520
string-take-while . 578
string-take-while-right . 578
string-titlecase . 446, 523
string-titlecase! . 523
string-tokenize . 526
string-tr . 729
string-trim . 520
string-trim-both . 520
string-trim-right . 520
string-unfold . 525

Appendix C: Function and Syntax Index 803

string-unfold-right . 525
string-upcase . 446, 523
string-upcase! . 523
string-xcopy! . 526
string< . 521
string<= . 521
string<=? . 144
string<> . 521
string<? . 144
string= . 521
string=? . 144
string> . 521
string>= . 521
string>=? . 144
string>? . 144
string? . 141
strings-of . 606
subseq . 413
substring . 145
substring-spec-ok? . 527
substring/shared . 520
subtract-duration . 529
subtract-duration! . 529
subtype? . 89
sum-accumulator . 580
sum-ec . 538
supported-character-encodings 137
sxml:add-attr . 709
sxml:add-attr! . 709
sxml:add-aux . 709
sxml:add-aux! . 709
sxml:add-parents . 709
sxml:ancestor . 705
sxml:ancestor-or-self . 705
sxml:attr . 707
sxml:attr->html . 710
sxml:attr->xml . 710
sxml:attr-as-list . 707
sxml:attr-list . 704
sxml:attr-list-node . 707
sxml:attr-list-u . 707
sxml:attr-u . 708
sxml:attribute . 704
sxml:aux-as-list . 707
sxml:aux-list . 707
sxml:aux-list-node . 707
sxml:aux-list-u . 707
sxml:aux-node . 707
sxml:aux-nodes . 707
sxml:boolean . 703
sxml:change-attr . 709
sxml:change-attr! . 709
sxml:change-attrlist . 709
sxml:change-attrlist! . 709
sxml:change-content . 708
sxml:change-content! . 708
sxml:change-name . 709
sxml:change-name! . 709
sxml:child . 704
sxml:child-elements . 705
sxml:child-nodes . 705
sxml:clean . 709
sxml:clean-feed . 710
sxml:content . 706
sxml:content-raw . 706

sxml:descendant . 705
sxml:descendant-or-self . 705
sxml:element-name . 706
sxml:element? . 699
sxml:empty-element? . 706
sxml:equal? . 704
sxml:equality-cmp . 704
sxml:filter . 700
sxml:following . 705
sxml:following-sibling . 705
sxml:id . 704
sxml:id-alist . 703
sxml:invert . 700
sxml:lookup . 710
sxml:minimized? . 706
sxml:name . 706
sxml:name->ns-id . 706
sxml:namespace . 705
sxml:ncname . 706
sxml:node-name . 706
sxml:node-parent . 710
sxml:node? . 704
sxml:non-terminated-html-tag? 710
sxml:normalized? . 706
sxml:not-equal? . 704
sxml:ns-id . 708
sxml:ns-id->nodes . 708
sxml:ns-id->uri . 708
sxml:ns-list . 708
sxml:ns-prefix . 708
sxml:ns-uri . 708
sxml:ns-uri->id . 708
sxml:num-attr . 707
sxml:number . 704
sxml:parent . 704
sxml:preceding . 705
sxml:preceding-sibling . 705
sxml:relational-cmp . 704
sxml:set-attr . 709
sxml:set-attr! . 709
sxml:shallow-minimized? . 706
sxml:shallow-normalized? . 706
sxml:squeeze . 709
sxml:squeeze! . 709
sxml:string . 703
sxml:string->html . 710
sxml:string->xml . 710
sxml:string-value . 704
sxml:sxml->html . 710
sxml:sxml->xml . 710
sxpath . 702
symbol->string . 128
symbol-append . 129
symbol-hash . 94
symbol-interned? . 128
symbol-sans-prefix . 129
symbol=? . 128
symbol? . 128
syntax-error . 86
syntax-errorf . 86
syntax-rules . 80
sys-abort . 233
sys-access . 242
sys-alarm . 261
sys-alloc-console . 650

Appendix C: Function and Syntax Index 804

sys-asctime . 255
sys-available-processors . 235
sys-basename . 239
sys-cfgetispeed . 422
sys-cfgetospeed . 422
sys-cfsetispeed . 422
sys-cfsetospeed . 422
sys-chdir . 243
sys-chmod . 242
sys-chown . 242
sys-clearenv . 235
sys-closelog . 420
sys-create-console-screen-buffer 651
sys-crypt . 244
sys-ctermid . 253
sys-ctime . 255
sys-difftime . 255
sys-dirname . 239
sys-environ . 234
sys-environ->alist . 234
sys-errno->symbol . 254
sys-exec . 257
sys-exit . 233
sys-fchmod . 242
sys-fcntl . 342
sys-fdset . 259
sys-fdset->list . 260
sys-fdset-clear! . 260
sys-fdset-copy! . 260
sys-fdset-max-fd . 260
sys-fdset-ref . 259
sys-fdset-set! . 259
sys-fork . 256
sys-fork-and-exec . 257
sys-forkpty . 423
sys-forkpty-and-exec . 423
sys-free-console . 650
sys-fstat . 241
sys-ftruncate . 243
sys-generate-console-ctrl-event 650
sys-get-console-cp . 651
sys-get-console-cursor-info 651
sys-get-console-mode . 651
sys-get-console-output-cp . 651
sys-get-console-screen-buffer-info 652
sys-get-console-title . 653
sys-get-largest-console-window-size 652
sys-get-number-of-console-input-events 652
sys-get-number-of-console-mouse-buttons 653
sys-get-osfhandle . 262
sys-get-std-handle . 653
sys-getaddrinfo . 382
sys-getcwd . 252
sys-getdomainname . 251
sys-getegid . 252
sys-getenv . 234
sys-geteuid . 252
sys-getgid . 252
sys-getgrgid . 244
sys-getgrnam . 244
sys-getgroups . 252
sys-gethostbyaddr . 380
sys-gethostbyname . 380
sys-gethostname . 251
sys-getlogin . 252

sys-getpgid . 252
sys-getpgrp . 252
sys-getpid . 253
sys-getppid . 253
sys-getprotobyname . 382
sys-getprotobynumber . 382
sys-getpwnam . 244
sys-getpwuid . 244
sys-getrlimit . 253
sys-getservbyname . 381
sys-getservbyport . 381
sys-gettimeofday . 254
sys-getuid . 252
sys-gid->group-name . 244
sys-glob . 236
sys-gmtime . 255
sys-group-name->gid . 244
sys-htonl . 382
sys-htons . 382
sys-isatty . 243
sys-kill . 247
sys-link . 238
sys-localeconv . 245
sys-localtime . 255
sys-logmask . 420
sys-lstat . 241
sys-message-box . 650
sys-mkdir . 239
sys-mkdtemp . 238
sys-mkfifo . 243
sys-mkstemp . 238
sys-mktime . 255
sys-nanosleep . 261
sys-normalize-pathname . 239
sys-ntohl . 382
sys-ntohs . 382
sys-openlog . 420
sys-openpty . 422
sys-pause . 261
sys-peek-console-input . 653
sys-pipe . 243
sys-putenv . 235
sys-random . 262
sys-read-console . 653
sys-read-console-input . 653
sys-read-console-output . 653
sys-read-console-output-attribute 653
sys-read-console-output-character 653
sys-readdir . 236
sys-readlink . 239
sys-realpath . 240
sys-remove . 238
sys-rename . 238
sys-rmdir . 239
sys-scroll-console-screen-buffer 651
sys-select . 260
sys-select! . 260
sys-set-console-active-screen-buffer 651
sys-set-console-cp . 651
sys-set-console-cursor-info 651
sys-set-console-cursor-position 651
sys-set-console-mode . 651
sys-set-console-output-cp . 651
sys-set-console-text-attribute 653
sys-set-console-window-info 653

Appendix C: Function and Syntax Index 805

sys-set-screen-buffer-size 652
sys-set-std-handle . 653
sys-setenv . 235
sys-setgid . 252
sys-setgroups . 252
sys-setlocale . 245
sys-setlogmask . 420
sys-setpgid . 252
sys-setrlimit . 253
sys-setsid . 253
sys-setuid . 252
sys-sigmask . 250
sys-signal-name . 247
sys-sigset . 247
sys-sigset-add! . 247
sys-sigset-delete! . 247
sys-sigset-empty! . 247
sys-sigset-fill! . 247
sys-sigsuspend . 250
sys-sigwait . 250
sys-sleep . 261
sys-srandom . 262
sys-stat . 241
sys-stat->atime . 242
sys-stat->ctime . 242
sys-stat->dev . 242
sys-stat->file-type . 242
sys-stat->gid . 242
sys-stat->ino . 242
sys-stat->mode . 242
sys-stat->mtime . 242
sys-stat->nlink . 242
sys-stat->rdev . 242
sys-stat->size . 242
sys-stat->uid . 242
sys-strerror . 253
sys-strftime . 255
sys-symbol->errno . 254
sys-symlink . 239
sys-system . 256
sys-tcdrain . 422
sys-tcflow . 422
sys-tcflush . 422
sys-tcgetattr . 421
sys-tcgetpgrp . 422
sys-tcsendbreak . 422
sys-tcsetattr . 421
sys-tcsetpgrp . 422
sys-time . 254
sys-times . 253
sys-tm->alist . 255
sys-tmpdir . 240
sys-tmpnam . 238
sys-truncate . 243
sys-ttyname . 243
sys-uid->user-name . 244
sys-umask . 239
sys-uname . 251
sys-unlink . 238
sys-unsetenv . 235
sys-user-name->uid . 244
sys-utime . 242
sys-wait . 258
sys-wait-exit-status . 258
sys-wait-exited? . 258

sys-wait-signaled? . 259
sys-wait-stopped? . 259
sys-wait-stopsig . 259
sys-wait-termsig . 259
sys-waitpid . 258
sys-win-process-pid . 259
sys-win-process? . 259
sys-write-console . 653
sys-write-console-output-character 653

T
tabulate-array . 304
take . 119
take! . 120
take* . 119
take-after . 701
take-right . 120
take-right* . 120
take-until . 700
take-while . 484
take-while! . 484
tan . 108
tanh . 108
temporary-directory . 635
tenth . 483
terminate-all! . 590
terminated-thread-exception? 439
test . 426
test* . 426
test-check . 426
test-end . 424
test-error . 427
test-log . 424
test-module . 428
test-none-of . 426
test-one-of . 426
test-record-file . 425
test-script . 428
test-section . 424
test-start . 424
test-summary-check . 425
textdomain . 720
textual-port? . 475
third . 482
thread-cont! . 433
thread-join! . 433
thread-name . 432
thread-pool-results . 589
thread-pool-shut-down? . 589
thread-sleep! . 432
thread-specific . 432
thread-specific-set! . 432
thread-start! . 432
thread-state . 432
thread-stop! . 432
thread-terminate! . 433
thread-yield! . 432
thread? . 431
time . 439
time->seconds . 256
time-counter-reset! . 442
time-counter-start! . 442
time-counter-stop! . 442
time-counter-value . 442

Appendix C: Function and Syntax Index 806

time-difference . 529
time-difference! . 529
time-monotonic->date . 530
time-monotonic->julian-day 530
time-monotonic->modified-julian-day 530
time-monotonic->time-tai . 530
time-monotonic->time-tai! . 530
time-monotonic->time-utc . 530
time-monotonic->time-utc! . 530
time-nanosecond . 528
time-resolution . 528
time-result+ . 440
time-result- . 440
time-result-count . 440
time-result-real . 440
time-result-sys . 440
time-result-user . 440
time-result? . 440
time-second . 528
time-tai->date . 530
time-tai->julian-day . 530
time-tai->modified-julian-day 530
time-tai->time-monotonic . 530
time-tai->time-monotonic! . 530
time-tai->time-utc . 531
time-tai->time-utc! . 531
time-these . 441
time-these/report . 441
time-this . 440
time-type . 528
time-utc->date . 531
time-utc->julian-day . 531
time-utc->modified-julian-day 531
time-utc->time-monotonic . 531
time-utc->time-monotonic! . 531
time-utc->time-tai . 531
time-utc->time-tai! . 531
time<=? . 529
time<? . 529
time=? . 529
time>=? . 529
time>? . 529
time? . 256
tls-ca-bundle-path . 679
topological-sort . 751
totient . 649
touch-file . 641
touch-files . 641
tr . 728
tree->string . 730
tree-map->alist . 171
tree-map->imap . 598
tree-map-ceiling . 170
tree-map-ceiling-key . 170
tree-map-ceiling-value . 171
tree-map-clear! . 169
tree-map-comparator . 169
tree-map-compare-as-sequences 172
tree-map-compare-as-sets . 171
tree-map-copy . 169
tree-map-delete! . 169
tree-map-empty? . 169
tree-map-exists? . 169
tree-map-floor . 170
tree-map-floor-key . 170

tree-map-floor-value . 171
tree-map-fold . 170
tree-map-fold-right . 170
tree-map-for-each . 170
tree-map-get . 169
tree-map-keys . 171
tree-map-map . 170
tree-map-max . 169
tree-map-min . 169
tree-map-num-entries . 169
tree-map-pop! . 169
tree-map-pop-max! . 170
tree-map-pop-min! . 170
tree-map-predecessor . 170
tree-map-predecessor-key . 170
tree-map-predecessor-value 171
tree-map-push! . 169
tree-map-put! . 169
tree-map-successor . 170
tree-map-successor-key . 171
tree-map-successor-value . 171
tree-map-update! . 169
tree-map-values . 171
trie . 616
trie->hash-table . 617
trie->list . 617
trie-common-prefix . 618
trie-common-prefix-fold . 618
trie-common-prefix-for-each 618
trie-common-prefix-keys . 618
trie-common-prefix-map . 618
trie-common-prefix-values . 618
trie-delete! . 617
trie-exists? . 617
trie-fold . 618
trie-for-each . 618
trie-get . 617
trie-keys . 617
trie-longest-match . 617
trie-map . 618
trie-num-entries . 617
trie-partial-key? . 617
trie-put! . 617
trie-update! . 617
trie-values . 617
trie-with-keys . 616
trie? . 616
truncate . 107
truncate->exact . 108
truncate-quotient . 106
truncate-remainder . 106
truncate/ . 106
tuples-of . 606
twos-exponent . 114
twos-exponent-factor . 114

Appendix C: Function and Syntax Index 807

U
u16array . 302
u16vector . 448
u16vector->list . 453
u16vector->vector . 454
u16vector-add . 456
u16vector-add! . 456
u16vector-and . 457
u16vector-and! . 457
u16vector-append . 452
u16vector-clamp . 457
u16vector-clamp! . 457
u16vector-compare . 450
u16vector-copy . 450
u16vector-copy! . 451
u16vector-dot . 457
u16vector-fill! . 450
u16vector-ior . 457
u16vector-ior! . 457
u16vector-length . 449
u16vector-mul . 456
u16vector-mul! . 456
u16vector-multi-copy! . 451
u16vector-range-check . 457
u16vector-ref . 449
u16vector-set! . 450
u16vector-sub . 456
u16vector-sub! . 456
u16vector-xor . 457
u16vector-xor! . 457
u16vector=? . 450
u16vector? . 448
u32array . 302
u32vector . 448
u32vector->list . 453
u32vector->string . 455
u32vector->vector . 454
u32vector-add . 456
u32vector-add! . 456
u32vector-and . 457
u32vector-and! . 457
u32vector-append . 452
u32vector-clamp . 457
u32vector-clamp! . 457
u32vector-compare . 450
u32vector-copy . 450
u32vector-copy! . 451
u32vector-dot . 457
u32vector-fill! . 450
u32vector-ior . 457
u32vector-ior! . 457
u32vector-length . 449
u32vector-mul . 456
u32vector-mul! . 456
u32vector-multi-copy! . 451
u32vector-range-check . 457
u32vector-ref . 449
u32vector-set! . 450
u32vector-sub . 456
u32vector-sub! . 456
u32vector-xor . 457
u32vector-xor! . 457
u32vector=? . 450
u32vector? . 448

u64array . 302
u64vector . 448
u64vector->list . 453
u64vector->vector . 454
u64vector-add . 456
u64vector-add! . 456
u64vector-and . 457
u64vector-and! . 457
u64vector-append . 452
u64vector-clamp . 457
u64vector-clamp! . 457
u64vector-compare . 450
u64vector-copy . 450
u64vector-copy! . 451
u64vector-dot . 457
u64vector-fill! . 450
u64vector-ior . 457
u64vector-ior! . 457
u64vector-length . 449
u64vector-mul . 456
u64vector-mul! . 456
u64vector-multi-copy! . 451
u64vector-range-check . 457
u64vector-ref . 449
u64vector-set! . 450
u64vector-sub . 456
u64vector-sub! . 456
u64vector-xor . 457
u64vector-xor! . 457
u64vector=? . 450
u64vector? . 448
u8-list->blob . 549
u8-ready? . 476
u8array . 302
u8vector . 448
u8vector->list . 453
u8vector->string . 455
u8vector->vector . 454
u8vector-add . 456
u8vector-add! . 456
u8vector-and . 457
u8vector-and! . 457
u8vector-append . 452
u8vector-clamp . 457
u8vector-clamp! . 457
u8vector-compare . 450
u8vector-copy . 450
u8vector-copy! . 451, 545
u8vector-dot . 457
u8vector-fill! . 450
u8vector-ior . 457
u8vector-ior! . 457
u8vector-length . 449
u8vector-mul . 456
u8vector-mul! . 456
u8vector-multi-copy! . 451
u8vector-range-check . 457
u8vector-ref . 449
u8vector-set! . 450
u8vector-sub . 456
u8vector-sub! . 456
u8vector-xor . 457
u8vector-xor! . 457
u8vector=? . 450
u8vector? . 448

Appendix C: Function and Syntax Index 808

ucs->char . 136
ucs-range->char-set . 502
ucs-range->char-set! . 502
ucs4->utf16 . 444
ucs4->utf8 . 443
uint-list->blob . 549
uint16s . 603
uint32s . 603
uint64s . 603
uint8s . 603
unbox . 513
uncaught-exception-reason . 439
uncaught-exception? . 439
undefined . 115
undefined? . 115
unfold . 483
unfold-right . 484
unify . 752
unify-merge . 752
unless . 49
unpack . 586
unpack-skip . 586
unquote . 57
unquote-splicing . 57
until . 56
unwind-protect . 195
unwrap-syntax . 87, 133
unzip1 . 483
unzip2 . 483
unzip3 . 483
unzip4 . 483
unzip5 . 483
update! . 47
uri-compose . 682
uri-compose-data . 683
uri-decode . 683
uri-decode-string . 683
uri-decompose-authority . 681
uri-decompose-data . 682
uri-decompose-hierarchical 681
uri-encode . 684
uri-encode-string . 684
uri-merge . 683
uri-parse . 681
uri-ref . 680
uri-scheme&specific . 681
use . 71
utf16->ucs4 . 444
utf16-length . 444
utf8->string . 444
utf8->ucs4 . 444
utf8-length . 443
uvector->generator . 345
uvector-alias . 455
uvector-binary-search . 452
uvector-class-element-size 449
uvector-copy . 450
uvector-copy! . 452
uvector-length . 449
uvector-ref . 449
uvector-set! . 450
uvector-size . 449
uvector? . 448

V
valid-version-spec? . 461
values . 183
values->list . 183
values-ref . 183
vector . 160
vector->bits . 575
vector->f16vector . 454
vector->f32vector . 454
vector->f64vector . 454
vector->generator . 345
vector->list . 160
vector->s16vector . 454
vector->s32vector . 454
vector->s64vector . 454
vector->s8vector . 454
vector->string . 161
vector->u16vector . 454
vector->u32vector . 454
vector->u64vector . 454
vector->u8vector . 454
vector-accumulator . 579
vector-accumulator! . 580
vector-any . 489
vector-append . 162
vector-append-subvectors . 487
vector-binary-search . 489
vector-concatenate . 487
vector-copy . 161
vector-copy! . 161
vector-count . 488, 542
vector-cumulate . 488
vector-delete-neighbor-dups 492
vector-delete-neighbor-dups! 492
vector-ec . 538
vector-empty? . 487
vector-every . 489
vector-fill! . 161
vector-find-median . 493
vector-find-median! . 493
vector-fold . 488, 542
vector-fold-right . 488, 542
vector-for-each . 162, 542
vector-for-each-with-index 162
vector-index . 488
vector-index-right . 488
vector-length . 160
vector-map . 162, 542
vector-map! . 162, 542
vector-map-with-index . 162
vector-map-with-index! . 162
vector-merge . 492
vector-merge! . 492
vector-of-length-ec . 538
vector-partition . 489
vector-ref . 160
vector-reverse! . 490
vector-reverse-copy . 487
vector-reverse-copy! . 490
vector-select! . 493
vector-separate! . 493
vector-set! . 160
vector-skip . 489
vector-skip-right . 489

Appendix C: Function and Syntax Index 809

vector-sort . 491
vector-sort! . 492
vector-sorted? . 492
vector-stable-sort . 491
vector-stable-sort! . 492
vector-swap! . 489
vector-tabulate . 160
vector-unfold . 486
vector-unfold! . 490
vector-unfold-right . 487
vector-unfold-right! . 490
vector= . 487
vector? . 160
vectors-of . 606
version-compare . 461
version-satisfy? . 461
version<=? . 460
version<? . 460
version=? . 460
version>=? . 460
version>? . 460
vt100-compatible? . 714

W
wait-all . 590
weak-vector-length . 173
weak-vector-ref . 173
weak-vector-set! . 173
weighted-samples-from . 605
when . 49
while . 56
with-builder . 329
with-character-attribute . 716
with-error-handler . 196
with-error-to-port . 205
with-exception-handler 197, 474
with-input-conversion . 322
with-input-from-file . 209
with-input-from-port . 205
with-input-from-process . 403
with-input-from-string . 211
with-iterator . 328
with-lock-file . 644
with-locking-mutex . 436
with-module . 69
with-output-conversion . 322
with-output-to-file . 209
with-output-to-port . 205
with-output-to-process . 403
with-output-to-string . 211
with-port-locking . 204
with-ports . 205
with-profiler . 264
with-random-data-seed . 603
with-signal-handlers . 249
with-string-io . 211
with-time-counter . 442
without-echoing . 423
wrap-with-input-conversion 322

wrap-with-output-conversion 322
write . 219
write* . 220
write-ber-integer . 582
write-block . 459
write-byte . 225
write-bytevector . 476
write-char . 224
write-controls-copy . 219
write-f16 . 582
write-f32 . 582
write-f64 . 582
write-gauche-package-description 383
write-object . 221
write-s16 . 582
write-s32 . 582
write-s64 . 582
write-s8 . 582
write-shared . 219
write-simple . 219
write-sint . 582
write-stream . 751
write-string . 225
write-to-string . 212
write-tree . 730
write-u16 . 581
write-u32 . 581
write-u64 . 581
write-u8 . 476, 581
write-uint . 582
write-uvector . 459
write-with-shared-structure 220
write/ss . 220

X
x->generator . 347
x->integer . 112
x->lseq . 359
x->number . 112
x->string . 142
xcons . 482
xml-token-head . 691
xml-token-kind . 691
xml-token? . 691
xsubstring . 525

Z
zero? . 102
zip . 483
zlib-version . 687
zstream-adler32 . 687
zstream-data-type . 687
zstream-dictionary-adler32 687
zstream-params-set! . 687
zstream-total-in . 687
zstream-total-out . 687

810

Appendix D Module Index

B
binary.io . 581
binary.pack . 584

C
compat.norational . 587
control.job . 587
control.thread-pool . 589
crypt.bcrypt . 590

D
data.cache . 591
data.heap . 594
data.ideque . 596
data.imap . 597
data.queue . 599
data.random . 602
data.ring-buffer . 607
data.sparse . 609
data.trie . 615
dbi . 618
dbm . 625
dbm.fsdbm . 630
dbm.gdbm . 630
dbm.ndbm . 632
dbm.odbm . 633

F
file.filter . 633
file.util . 635

G
gauche . 74
gauche.array . 301
gauche.base . 308
gauche.cgen . 309
gauche.charconv . 318
gauche.collection . 322
gauche.config . 330
gauche.configure . 331
gauche.dictionary . 338
gauche.fcntl . 342
gauche.generator . 344
gauche.hook . 355
gauche.interactive . 356
gauche.keyword . 74
gauche.lazy . 358
gauche.listener . 361
gauche.logger . 364
gauche.mop.propagate . 366
gauche.mop.singleton . 368
gauche.mop.validator . 369
gauche.net . 370
gauche.package . 383
gauche.parameter . 383
gauche.parseopt . 385

gauche.partcont . 389
gauche.process . 393
gauche.record . 404
gauche.reload . 410
gauche.selector . 411
gauche.sequence . 412
gauche.syslog . 420
gauche.termios . 421
gauche.test . 423
gauche.threads . 428
gauche.time . 439
gauche.unicode . 442
gauche.uvector . 447
gauche.version . 459
gauche.vport . 461

K
keyword . 74

M
math.const . 646
math.mt-random . 646
math.prime . 647

N
null . 74

O
os.windows . 649

R
rfc.822 . 653
rfc.base64 . 657
rfc.cookie . 658
rfc.ftp . 659
rfc.hmac . 662
rfc.http . 663
rfc.icmp . 668
rfc.ip . 669
rfc.json . 669
rfc.md5 . 671
rfc.mime . 672
rfc.quoted-printable . 677
rfc.sha . 678
rfc.sha1 . 678
rfc.tls . 678
rfc.uri . 679
rfc.zlib . 684

Appendix D: Module Index 811

S
scheme . 74
scheme.base . 473
scheme.box . 513
scheme.case-lambda . 476
scheme.char . 476
scheme.charset . 501
scheme.comparator . 516
scheme.complex . 477
scheme.cxr . 477
scheme.eval . 477
scheme.file . 478
scheme.generator . 510
scheme.hash-table . 505
scheme.ideque . 508
scheme.inexact . 478
scheme.lazy . 478
scheme.list . 482
scheme.list-queue . 513
scheme.load . 479
scheme.lseq . 511
scheme.process-context . 479
scheme.r5rs . 481
scheme.read . 479
scheme.repl . 480
scheme.set . 494
scheme.sort . 491
scheme.time . 480
scheme.vector . 486
scheme.write . 481
slib . 688
srfi-1 . 517
srfi-106 . 550
srfi-111 . 552
srfi-112 . 552
srfi-113 . 553
srfi-114 . 553
srfi-117 . 558
srfi-118 . 558
srfi-127 . 559
srfi-13 . 518
srfi-132 . 300, 559
srfi-133 . 559
srfi-14 . 527
srfi-141 . 559
srfi-143 . 560
srfi-146 . 563
srfi-146.hash . 568
srfi-151 . 572
srfi-152 . 576
srfi-158 . 578
srfi-19 . 527
srfi-27 . 532
srfi-29 . 533
srfi-29.bundle . 533
srfi-29.format . 533
srfi-37 . 535

srfi-4 . 517
srfi-42 . 537
srfi-43 . 542
srfi-5 . 517
srfi-55 . 543
srfi-60 . 543
srfi-66 . 545
srfi-69 . 545
srfi-7 . 517
srfi-74 . 547
srfi-98 . 549
sxml.serializer . 711
sxml.ssax . 688
sxml.sxpath . 699
sxml.tools . 705

T
text.console . 713
text.csv . 716
text.diff . 719
text.gettext . 720
text.html-lite . 721
text.parse . 723
text.progress . 725
text.sql . 727
text.template . 727
text.tr . 728
text.tree . 730
text.unicode . 299

U
user . 74
util.combinations . 731
util.digest . 732
util.dominator . 733
util.isomorph . 734
util.lcs . 735
util.levenshtein . 736
util.list . 299
util.match . 738
util.queue . 299
util.rbtree . 299
util.record . 743
util.relation . 744
util.sparse . 299
util.stream . 746
util.toposort . 751
util.trie . 299
util.unification . 751

W
www.cgi . 752
www.cgi.test . 757

812

Appendix E Lexical syntax index

#
#! . 39
#" . 142
#* . 141
#, . 215
#/ . 149
#[. 138
#‘ . 143
#\ . 133
#f16 . 448
#f32 . 448
#f64 . 448
#s16 . 448
#s32 . 448
#s64 . 448
#s8 . 448
#u16 . 448
#u32 . 448
#u64 . 448
#u8 . 448

’
’ . 39

,

, . 57
,@ . 57

[

[. 36

‘
‘ . 57

\
\x . 37

|
| . 127

813

Appendix F Class Index

For readability, the surrounding < and > are stripped off.

A
abandoned-mutex-exception . 438
array . 301
array-base . 301
ax-tls . 679

B
bimap . 341
binary-heap . 594
boolean . 115
bottom . 88
buffered-input-port . 464
buffered-output-port . 464

C
cgen-node . 312
cgen-type . 316
cgen-unit . 309
char . 133
char-set . 137
class . 288
complex . 101
compound-condition . 199
condition . 199
condition-meta . 198
condition-variable . 436

D
date . 529
dbi-connection . 620
dbi-driver . 620
dbi-query . 621
dbm . 625
dbm-meta . 626
deflating-port . 685

E
error . 199

F
f16array . 301
f16vector . 448
f32array . 301
f32vector . 448
f64array . 301
f64vector . 448
fsdbm . 630
ftp-connection . 659
ftp-error . 659

G
gdbm . 630

H
hash-table . 163
hmac . 662
hook . 355
http-error . 663

I
identifier . 132
inflating-port . 685
integer . 101
io-closed-error . 200
io-error . 200
io-read-error . 200
io-unit-error . 200
io-write-error . 200

J
join-timeout-exception . 438

K
keyword . 129

L
list . 116
listener . 362
log-drain . 365

M
mapping . 563
mbed-tls . 679
md5 . 671
mersenne-twister . 646
message-condition . 199
message-digest-algorithm . 732
message-digest-algorithm-meta 732
mime-message . 675
module . 72
mtqueue . 599
mutex . 433

N
ndbm . 632
null . 116
number . 101

O
object . 88
object-set-relation . 746
odbm . 633

Appendix F: Class Index 814

P
pair . 116
parameter . 384
port . 203
port-error . 200
procedure . 173
process . 399
process-abnormal-exit . 399
process-time-counter . 441
propagate-meta . 368
propagate-mixin . 368

Q
queue . 599

R
rational . 101
rbtree . 299
read-error . 200
real . 101
real-time-counter . 441
regexp . 152
regmatch . 152
relation . 744

S
s16array . 301
s16vector . 448
s32array . 301
s32vector . 448
s64array . 301
s64vector . 448
s8array . 301
s8vector . 448
selector . 411
serious-compound-condition 199
serious-condition . 199
sha1 . 678
sha224 . 678
sha256 . 678
sha384 . 678
sha512 . 678
simple-relation . 746
singleton-meta . 368
singleton-mixin . 368
sockaddr . 370
sockaddr-in . 370
sockaddr-in6 . 371
sockaddr-un . 371
socket . 372
sparse-f16matrix . 612
sparse-f16vector . 610
sparse-f32matrix . 612
sparse-f32vector . 610
sparse-f64matrix . 612
sparse-f64vector . 610
sparse-matrix . 612
sparse-matrix-base . 612
sparse-s16matrix . 612
sparse-s16vector . 610
sparse-s32matrix . 612

sparse-s32vector . 610
sparse-s64matrix . 612
sparse-s64vector . 610
sparse-s8matrix . 612
sparse-s8vector . 610
sparse-table . 614
sparse-u16matrix . 612
sparse-u16vector . 610
sparse-u32matrix . 612
sparse-u32vector . 610
sparse-u64matrix . 612
sparse-u64vector . 610
sparse-u8matrix . 612
sparse-u8vector . 610
sparse-vector . 610
sparse-vector-base . 610
string . 139
symbol . 127
sys-addrinfo . 382
sys-fdset . 259
sys-flock . 343
sys-group . 243
sys-hostent . 380
sys-passwd . 244
sys-protoent . 381
sys-servent . 381
sys-sigset . 246
sys-stat . 240
sys-termios . 421
sys-tm . 255
system-error . 199
system-time-counter . 441

T
terminated-thread-exception 438
thread . 430
thread-exception . 438
thread-pool . 589
time . 256
time-counter . 441
top . 88
tree-map . 168
trie . 615

U
u16array . 301
u16vector . 448
u32array . 301
u32vector . 448
u64array . 301
u64vector . 448
u8array . 301
u8vector . 448
uncaught-exception . 439
unhandled-signal-error . 200
user-time-counter . 441

Appendix F: Class Index 815

V
validator-meta . 369
vector . 160
virtual-input-port . 461
virtual-output-port . 463
vt100 . 713

W
weak-vector . 173
win:console-screen-buffer-info 651
win:input-record . 652
windows-console . 713
write-controls . 218

816

Appendix G Variable Index

&
&condition . 199
&error . 199
&io-closed-error . 200
&io-error . 200
&io-port-error . 200
&io-read-error . 200
&io-write-error . 200
&read-error . 200
&serious . 199

*
af-inet . 551
af-inet6 . 551
af-unspec . 551
ai-addrconfig . 551
ai-all . 551
ai-canonname . 551
ai-numerichost . 551
ai-v4mapped . 551
argv . 234
ipproto-ip . 552
ipproto-tcp . 552
ipproto-udp . 552
load-path . 225
msg-none . 552
msg-oob . 552
msg-peek . 552
msg-waitall . 552
primes . 647
program-name . 234
rfc2396-unreserved-char-set 684
rfc3986-unreserved-char-set 684
rfc822-atext-chars . 656
rfc822-standard-tokenizers 656
shut-rd . 552
shut-rdwr . 552
shut-wr . 552
small-prime-bound . 648
sock-dgram . 551
sock-stream . 551
test-error . 427
test-report-error . 427

1
1/pi . 646
180/pi . 646

A
accessors of <class> . 288
addr of <sys-addrinfo> . 382
addresses of <sys-hostent> . 380
addrlen of <sys-addrinfo> . 382
AF_INET . 376
AF_INET6 . 376
AF_UNIX . 376
aliases of <sys-hostent> . 380
aliases of <sys-servent> . 381
atime of <sys-stat> . 241

attributes of
<win:console-screen-buffer-info> 652

B
BACKGROUND_BLUE . 652
BACKGROUND_GREEN . 652
BACKGROUND_INTENSITY . 652
BACKGROUND_RED . 652
bag-comparator . 501
base of <write-controls> . 218
boolean-comparator . 99
bsize of <gdbm> . 630
bytevector-comparator . 99

C
c-file of <cgen-unit> . 309
category of <class> . 289
cc of <sys-termios> . 421
cflag of <sys-termios> . 421
char-ci-comparator . 99
char-comparator . 99
char-set:ascii . 504
char-set:blank . 504
char-set:digit . 504
char-set:empty . 505
char-set:full . 505
char-set:graphic . 504
char-set:hex-digit . 504
char-set:iso-control . 504
char-set:letter . 504
char-set:lower-case . 504
char-set:printing . 504
char-set:punctuation . 504
char-set:symbol . 504
char-set:title-case . 504
char-set:upper-case . 504
char-set:whitespace . 504
class of <sys-passwd> . 244
close of <buffered-input-port> 464
close of <buffered-output-port> 465
close of <virtual-input-port> 462
close of <virtual-output-port> 463
column of <read-error> . 200
complex-comparator . 99
connection of <dbi-query> . 621
content of <mime-part> . 675
count of <time-result> . 440

Appendix G: Variable Index 817

cpl of <class> . 288
ctime of <sys-stat> . 241
CTRL_BREAK_EVENT . 650
CTRL_C_EVENT . 650

cursor-position.x of
<win:console-screen-buffer-info> 652

cursor-position.y of
<win:console-screen-buffer-info> 652

D
day of <date> . 529
default-comparator . 98
default-random-source . 533
defined-modules of <class> . 289
dev of <sys-stat> . 241
dir of <sys-passwd> . 244
direct-methods of <class> . 289
direct-slots of <class> . 288
direct-subclasses of <class> 289
direct-supers of <class> . 288

driver-name of
<dbi-nonexistent-driver-error> 620

E
e . 646
ENABLE_ECHO_INPUT . 651
ENABLE_LINE_INPUT . 651
ENABLE_MOUSE_INPUT . 651
ENABLE_PROCESSED_INPUT . 651
ENABLE_PROCESSED_OUTPUT . 651
ENABLE_WINDOW_INPUT . 651
ENABLE_WRAP_AT_EOL_OUTPUT . 651
environment of <listener> . 362
eq-comparator . 99
equal-comparator . 99
eqv-comparator . 99
errno of <system-error> . 199
error-handler of <listener> 362
error-port of <listener> . 362
evaluator of <listener> . 362
event-type of <win:input-record> 652
exact-integer-comparator . 99

F
F_DUPFD . 343
F_GETFD . 342
F_GETFL . 342
F_GETLK . 343
F_GETOWN . 343
F_OK . 242
F_RDLCK . 343
F_SETFD . 342
F_SETFL . 343
F_SETLK . 343
F_SETLKW . 343
F_SETOWN . 343
F_UNLCK . 343
F_WRLCK . 343
family of <sys-addrinfo> . 382
fatal-handler of <listener> 363
FD_CLOEXEC . 342

file-mode of <dbm> . 626
FILE_SHARE_READ . 651
FILE_SHARE_WRITE . 651
filenum of <buffered-input-port> 464
filenum of <buffered-output-port> 465
fill of <buffered-input-port> 464
finalizer of <listener> . 362
flags of <sys-addrinfo> . 382
flush of <buffered-output-port> 464
flush of <virtual-output-port> 463
focus.set-focus of <win:input-record> 652
FOREGROUND_BLUE . 652
FOREGROUND_GREEN . 652
FOREGROUND_INTENSITY . 652
FOREGROUND_RED . 652
fx-greatest . 561
fx-least . 561
fx-width . 561

G
GDBM_CACHESIZE . 631
GDBM_CENTFREE . 632
GDBM_COALESCEBLKS . 632
GDBM_FAST . 631
GDBM_FASTMODE . 631
GDBM_INSERT . 631
GDBM_NEWDB . 630
GDBM_NOLOCK . 631
GDBM_READER . 630
GDBM_REPLACE . 631
GDBM_SYNC . 631
GDBM_SYNCMODE . 631
GDBM_WRCREAT . 630
GDBM_WRITER . 630
gecos of <sys-passwd> . 244
GENERIC_READ . 651
GENERIC_WRITE . 651
getb of <virtual-input-port> 461
getc of <virtual-input-port> 462
gets of <virtual-input-port> 462
gid of <sys-group> . 243
gid of <sys-passwd> . 244
gid of <sys-stat> . 241

H
h-file of <cgen-unit> . 309
hashmap-comparator . 572
headers of <mime-part> . 675

hmac-block-size of
<message-digest-algorithm-meta> 732

hour of <date> . 529
hour of <sys-tm> . 255

Appendix G: Variable Index 818

I
iflag of <sys-termios> . 421
index of <mime-part> . 675
init-epilogue of <cgen-init> 309
init-prologue of <cgen-unit> 309
initargs of <class> . 289
ino of <sys-stat> . 241
input-delay of <vt100> . 713
input-port of <listener> . 362
integer-comparator . 99
iport of <vt100> . 713
isdst of <sys-tm> . 255

K
key-convert of <dbm> . 626
key.ascii-char of <win:input-record> 652

key.control-key-state of
<win:input-record> . 652

key.down of <win:input-record> 652
key.repeat-count of <win:input-record> 652
key.unicode-char of <win:input-record> 652
key.virtual-key-code of <win:input-record> . . 652

L
LC_ALL . 245
LC_COLLATE . 245
LC_CTYPE . 245
LC_MONETARY . 245
LC_NUMERIC . 245
LC_TIME . 245
len of <sys-flock> . 344
length of <queue> . 599
length of <write-controls> . 218
level of <write-controls> . 218
lflag of <sys-termios> . 421
line of <read-error> . 200
list-comparator . 99
lock-file-name of <lock-file-failure> 645
lock-policy of <log-drain> . 366
log-drain of <ftp-connection> 659

M
mapping-comparator . 568
max-length of <mtqueue> . 599

maximum-window-size.x of
<win:console-screen-buffer-info> 652

maximum-window-size.y of
<win:console-screen-buffer-info> 652

mday of <sys-tm> . 255
mem of <sys-group> . 243
menu.command-id of <win:input-record> 652
message of <message-condition> 199
min of <sys-tm> . 255
minute of <date> . 529
mode of <sys-stat> . 241
mon of <sys-tm> . 255
month of <date> . 529
mouse.button-state of <win:input-record> 652
mouse.event-flags of <win:input-record> 652
mouse.x of <win:input-record> 652

mouse.y of <win:input-record> 652

MSG_CTRUNC . 378

MSG_DONTROUTE . 378

MSG_EOR . 378

MSG_OOB . 378

MSG_PEEK . 378

MSG_TRUNC . 379

MSG_WAITALL . 379

mtime of <sys-stat> . 241
mutex of <abandoned-mutex-exception> 438

N
name of <cgen-unit> . 309

name of <class> . 288

name of <condition-variable> 436

name of <mutex> . 434

name of <sys-group> . 243

name of <sys-hostent> . 380

name of <sys-passwd> . 244

name of <sys-servent> . 381

name of <thread> . 431

nanosecond of <date> . 529

nanosecond of <time> . 256

nlink of <sys-stat> . 241

nolock of <gdbm> . 630

num-instance-slots of <class> 289
number-comparator . 99

O
O_ACCMODE . 342

O_APPEND . 342

O_CREAT . 342

O_EXCL . 342

O_NOCTTY . 342

O_NONBLOCK . 342

O_RDONLY . 342

O_RDWR . 342

O_TRUNC . 342

O_WRONLY . 342

object of <json-construct-error> 670

oflag of <sys-termios> . 421

oport of <vt100> . 713
output-port of <listener> . 362

Appendix G: Variable Index 819

P
pair-comparator . 99
parameters of <mime-part> . 675
parent of <mime-part> . 675
passive of <ftp-connection> 659
passwd of <sys-group> . 243
passwd of <sys-passwd> . 244
path of <dbm> . 626
path of <log-drain> . 365
perm of <sys-stat> . 241
PF_INET . 375
PF_INET6 . 375
PF_UNIX . 375
pi . 646
pi/180 . 646
pi/2 . 646
pi/4 . 646
pid of <sys-flock> . 344
pool of <thread-pool-shut-down> 589
port of <port-error> . 200
port of <read-error> . 200
port of <sys-servent> . 381
position of <json-parse-error> 669
position of <read-error> . 200
preamble of <cgen-unit> . 309
prefix of <log-drain> . 365
prepared of <dbi-query> . 621
pretty of <write-controls> . 218
printer of <listener> . 362
process of <process-abnormal-exit> 399
program-name of <log-drain> 365
prompter of <listener> . 362
proto of <sys-servent> . 381
protocol of <sys-addrinfo> . 382
putb of <virtual-output-port> 463
putc of <virtual-output-port> 463
puts of <virtual-output-port> 463

R
R_OK . 242
radix of <write-controls> . 218
RAND_MAX . 262
rational-comparator . 99
rdev of <sys-stat> . 241
reader of <listener> . 362
ready of <buffered-input-port> 464
ready of <virtual-input-port> 462
real of <time-result> . 440
real-comparator . 99
reason of <uncaught-exception> 439
redefined of <class> . 289
rw-mode of <dbm> . 626

S
sec of <sys-tm> . 255
second of <date> . 529
second of <time> . 256
seek of <buffered-input-port> 464
seek of <buffered-output-port> 465
seek of <virtual-input-port> 462
seek of <virtual-output-port> 463
set-comparator . 501
shell of <sys-passwd> . 244
SIGABRT . 246
SIGALRM . 246
SIGBUS . 246
SIGCHLD . 246
SIGCONT . 246
SIGFPE . 246
SIGHUP . 246
SIGILL . 246
SIGINT . 246
SIGIO . 246
SIGIOT . 246
SIGKILL . 246
signal of <unhandled-signal-error> 200
SIGPIPE . 246
SIGPOLL . 246
SIGPROF . 246
SIGPWR . 246
SIGQUIT . 246
SIGSEGV . 246
SIGSTKFLT . 246
SIGSTOP . 246
SIGTERM . 246
SIGTRAP . 246
SIGTSTP . 246
SIGTTIN . 246
SIGTTOU . 246
SIGURG . 246
SIGUSR1 . 246
SIGUSR2 . 246
SIGVTALRM . 246
SIGWINCH . 246
SIGXCPU . 246
SIGXFSZ . 246
size of <sys-stat> . 241
size.x of <win:console-screen-buffer-info> . . 652
size.y of <win:console-screen-buffer-info> . . 652
slots of <class> . 288
SO_BROADCAST . 380
SO_ERROR . 380
SO_KEEPALIVE . 379
SO_OOBINLINE . 379
SO_PRIORITY . 380
SO_REUSEADDR . 379
SO_TYPE . 380
SOCK_DGRAM . 376
SOCK_RAW . 376
SOCK_STREAM . 376
socktype of <sys-addrinfo> . 382
SOL_IP . 379
SOL_SOCKET . 379
SOL_TCP . 379
source of <mime-part> . 675
span of <read-error> . 200
specific of <condition-variable> 436

Appendix G: Variable Index 820

specific of <mutex> . 434
specific of <thread> . 431
sql-string of <sql-parse-error> 727
ssax:Prefix-XML . 691
start of <sys-flock> . 344
state of <mutex> . 434
STD_ERROR_HANDLE . 653
STD_INPUT_HANDLE . 653
STD_OUTPUT_HANDLE . 653
stream-null . 746
string-ci-comparator . 99
string-comparator . 99
subtype of <mime-part> . 675
sync of <gdbm> . 630
sys of <time-result> . 440
syslog-facility of <log-drain> 366
syslog-option of <log-drain> 366
syslog-priority of <log-drain> 366

T
TCIFLUSH . 422
TCIOFF . 422
TCIOFLUSH . 422
TCION . 422
TCOFLUSH . 422
TCOOFF . 422
TCOON . 422
TCSADRAIN . 421
TCSAFLUSH . 421
TCSANOW . 421

terminator of
<terminated-thread-exception> 438

thread of <thread-exception> 438
time-duration . 528
time-monotonic . 527
time-process . 528
time-tai . 527
time-thread . 528
time-utc . 527
transfer-encoding of <mime-part> 675
transfer-type of <ftp-connection> 659
type of <mime-part> . 675
type of <sys-flock> . 343
type of <sys-stat> . 241
type of <time> . 256

U
uid of <sys-passwd> . 244
uid of <sys-stat> . 241
user of <time-result> . 440
uvector-comparator . 99

V
value-convert of <dbm> . 626
vector-comparator . 99

W
W_OK . 242
wday of <sys-tm> . 255
whence of <sys-flock> . 344
width of <write-controls> . 218
window-buffer-size.x of <win:input-record> . . 652
window-buffer-size.y of <win:input-record> . . 652

window.bottom of
<win:console-screen-buffer-info> 652

window.left of
<win:console-screen-buffer-info> 652

window.right of
<win:console-screen-buffer-info> 652

window.top of
<win:console-screen-buffer-info> 652

X
X_OK . 242

Y
yday of <sys-tm> . 255
year of <date> . 529
year of <sys-tm> . 255

Z
Z_ASCII . 687
Z_BEST_COMPRESSION . 685
Z_BEST_SPEED . 685
Z_BINARY . 687
Z_DEFAULT_COMPRESSION . 685
Z_DEFAULT_STRATEGY . 686
Z_FILTERED . 686
Z_FIXED . 686
Z_HUFFMAN_ONLY . 686
Z_NO_COMPRESSION . 685
Z_RLE . 686
Z_TEXT . 687
Z_UNKNOWN . 687
zone-offset of <date> . 529

	Introduction
	Overview of Gauche
	Notations
	Entry format
	Names and namespaces

	Concepts
	Standard conformance
	Multibyte strings
	Multibyte scripts
	Case-sensitivity
	Integrated Object System
	Module system
	Compilation

	Programming in Gauche
	Invoking Gosh
	Interactive development
	Working in REPL

	Writing Scheme scripts
	Debugging
	Using platform-dependent features
	Profiling and tuning
	Using profiler
	Performance tips

	Writing Gauche modules
	Using extension packages
	Building standalone executables

	Core syntax
	Lexical structure
	Sharp syntax
	Hash-bang token

	Literals
	Making Procedures
	Assignments
	Conditionals
	Binding constructs
	Sequencing
	Iteration
	Quasiquotation
	Definitions
	Inclusions
	Feature conditional
	Modules
	Module semantics
	Modules and libraries
	Defining and selecting modules
	Using modules
	Module inheritance
	Module introspection
	Predefined modules

	Macros
	Why hygienic?
	Hygienic macros
	Syntax-rules macro transformer
	Explicit-renaming macro transformer

	Traditional macros
	Macro expansion
	Macro utilities

	Core library
	Types and classes
	Equality and comparison
	Equality
	Comparison
	Hashing
	Basic comparators
	Comparator class and constructors
	Comparator predicates and accessors
	Predefined comparators
	Combining comparators

	Numbers
	Number classes
	Numerical predicates
	Numerical comparison
	Arithmetics
	Numerical conversions
	Basic bitwise operations
	Endianness

	Booleans
	Undefined values
	Pairs and Lists
	Pair and null class
	List predicates
	List constructors
	List accessors and modifiers
	Walking over lists
	Other list procedures
	Association lists

	Symbols
	Keywords
	Keyword and symbol integration

	Identifiers
	Characters
	Character Set
	Strings
	String syntax
	String Predicates
	String Constructors
	String interpolation
	String Accessors & Modifiers
	String Comparison
	String utilities
	Incomplete strings

	Regular expressions
	Regular expression syntax
	Using regular expressions
	Inspecting and assembling regular expressions

	Vectors
	Hashtables
	Treemaps
	Weak pointers
	Procedures and continuations
	Procedure class and applicability
	Universal accessor
	Combinators
	Optional argument parsing
	Procedure arity
	Applicable objects
	Continuations
	Multiple values
	Folding generated values

	Lazy evaluation
	Delay, force and lazy
	Lazy sequences

	Exceptions
	Exception handling overview
	Signaling exceptions
	Handling exceptions
	Conditions

	Eval and repl
	Input and Output
	Ports
	Port and threads
	Common port operations
	File ports
	String ports
	Coding-aware ports
	Input
	Reading data
	Reader lexical mode
	Read-time constructor
	Input utility functions

	Output
	Layers of output routines
	Output controls
	Object output
	Formatting output
	Low-level output

	Loading Programs
	Loading Scheme file
	Load dynamic library
	Require and provide
	Autoload
	Operations on libraries

	Sorting and merging
	System interface
	Program termination
	Command-line arguments
	Environment Inquiry
	Filesystems
	Directories
	Directory manipulation
	Pathnames
	File stats
	Other file operations

	Unix groups and users
	Locale
	Signal
	Signals and signal sets
	Sending signals
	Handling signals
	Masking and waiting signals
	Signals and threads

	System inquiry
	Time
	Process management
	I/O multiplexing
	Garbage Collection
	Miscellaneous system calls

	Development helper API
	Debugging aid
	Profiler API

	Object system
	Introduction to the object system
	Class
	Defining class
	Inheritance
	Class object
	Slot definition object
	Class redefinition
	Class definition examples

	Instance
	Creating instance
	Accessing instance
	Changing classes

	Generic function and method
	Metaobject protocol
	Class instantiation
	Customizing slot access
	Method instantiation
	Customizing method application

	Library modules - Overview
	Finding libraries you need
	Library directory - data containers
	Library directory - string and character
	Library directory - data exchange
	Library directory - files
	Library directory - processes and threads
	Library directory - networking
	Library directory - input and output
	Library directory - time
	Library directory - bits and bytes

	Naming convention of libraries
	Obsolete and superseded modules

	Library modules - Gauche extensions
	gauche.array - Arrays
	gauche.base - Importing gauche built-ins
	gauche.cgen - Generating C code
	Generating C source files
	Generating Scheme literals
	Conversions between Scheme and C
	CiSE - C in S expression
	CiSE overview
	CiSE syntax
	CiSE procedures

	gauche.charconv - Character Code Conversion
	Supported character encoding schemes
	Autodetecting the encoding scheme
	Conversion ports

	gauche.collection - Collection framework
	Mapping over collection
	Selection and searching in collection
	Miscellaneous operations on collection
	Fundamental iterator creators
	Implementing collections

	gauche.config - Configuration parameters
	gauche.configure - Generating build files
	Structure of configure script and build files
	Configure API

	gauche.dictionary - Dictionary framework
	Generic functions for dictionaries
	Generic dictionaries

	gauche.fcntl - Low-level file operations
	gauche.generator - Generators
	Generator constructors
	Generator operations
	Generator consumers

	gauche.hook - Hooks
	gauche.interactive - Utilities for interactive session
	gauche.lazy - Lazy sequence utilities
	gauche.listener - Listener
	gauche.logger - User-level logging
	gauche.mop.propagate - Propagating slot access
	gauche.mop.singleton - Singleton
	gauche.mop.validator - Slot with validator
	gauche.net - Networking
	Socket address
	High-level network functions
	Low-level socket interface
	Netdb interface

	gauche.package - Package metainformation
	gauche.parameter - Parameters
	gauche.parseopt - Parsing command-line options
	gauche.partcont - Partial continuations
	gauche.process - High Level Process Interface
	Running subprocess
	Running process pipeline
	Process object
	Process ports

	gauche.record - Record types
	Introduction
	Syntactic Layer
	Inspection layer
	Procedural layer
	Pseudo record types

	gauche.reload - Reloading modules
	gauche.selector - Simple dispatcher
	gauche.sequence - Sequence framework
	Fundamental sequence accessors
	Slicing sequence
	Mapping over sequences
	Other operations over sequences
	Implementing sequence

	gauche.syslog - Syslog
	gauche.termios - Terminal control
	Posix termios interface
	Common high-level terminal control

	gauche.test - Unit Testing
	gauche.threads - Threads
	Thread programming tips
	Thread procedures
	Synchronization primitives
	Thread exceptions

	gauche.time - Measure timings
	gauche.unicode - Unicode utilities
	Unicode transfer encodings
	Unicode text segmentation
	Full string case conversion
	East asian width property

	gauche.uvector - Uniform vectors
	Uvector basic operations
	Uvector conversion operations
	Uvector numeric operations
	Uvector block I/O

	gauche.version - Comparing version numbers
	gauche.vport - Virtual ports

	Library modules - R7RS standard libraries
	R7RS integration
	Traveling between two worlds back and forth
	Three import forms

	R7RS small language
	R7RS library form
	scheme.base - R7RS base library
	scheme.case-lambda - R7RS case-lambda
	scheme.char - R7RS char library
	scheme.complex - R7RS complex numbers
	scheme.cxr - R7RS cxr accessors
	scheme.eval - R7RS eval
	scheme.file - R7RS file library
	scheme.inexact - R7RS inexact numbers
	scheme.lazy - R7RS lazy evaluation
	scheme.load - R7RS load
	scheme.process-context - R7RS process context
	scheme.read - R7RS read
	scheme.repl - R7RS repl
	scheme.time - R7RS time
	scheme.write - R7RS write
	scheme.r5rs - R5RS compatibility

	R7RS large
	scheme.list - R7RS lists
	scheme.vector - R7RS vectors
	scheme.sort - R7RS sort
	scheme.set - R7RS sets
	scheme.charset - R7RS character sets
	Character-set constructors
	Character-set comparison
	Character-set iteration
	Character-set query
	Character-set algebra
	Predefined character-set

	scheme.hash-table - R7RS hash tables
	scheme.ideque - R7RS immutable deques
	scheme.generator - R7RS generators
	scheme.lseq - R7RS lazy sequences
	scheme.box - R7RS boxes
	scheme.list-queue - R7RS list queues
	scheme.comparator - R7RS comparators

	Library modules - SRFIs
	srfi-1 - List library
	srfi-4 - Homogeneous vectors
	srfi-5 - A compatible let form with signatures and rest arguments
	srfi-7 - Feature-based program configuration language
	srfi-13 - String library
	General conventions
	String predicates
	String Constructors
	String selection
	String comparison
	String Prefixes & Suffixes
	String searching
	String case mapping
	String reverse & append
	String mapping
	String rotation
	Other string operations
	String filtering
	Low-level string procedures

	srfi-14 - Character-set library
	srfi-19 - Time data types and procedures
	Time types
	Time queries
	Time procedures
	Date
	Date reader and writer

	srfi-27 - Sources of Random Bits
	srfi-29 - Localization
	srfi-37 - args-fold: a program argument processor
	srfi-42 - Eager comprehensions
	srfi-43 - Vector library (legacy)
	srfi-55 - Requiring extensions
	srfi-60 - Integers as bits
	srfi-66 - Octet vectors
	srfi-69 - Basic hash tables
	srfi-74 - Octet-addressed binary blocks
	srfi-98 - Accessing environment variables
	srfi-106 - Basic socket interface
	srfi-111 - Boxes
	srfi-112 - Environment inquiry
	srfi-113 - Sets and bags
	srfi-114 - Comparators
	srfi-117 - Queues based on lists
	srfi-118 - Simple adjustable-size strings
	srfi-127 - Lazy sequence (srfi)
	srfi-132 - Sort library
	srfi-133 - Vector library
	srfi-141 - Integer division
	srfi-143 - Fixnums
	srfi-146 - Mappings and hashmaps
	Mappings
	Mapping and folding

	Hashmaps
	Mapping and folding

	srfi-151 - Bitwise operations
	srfi-152 - String library (reduced)
	srfi-158 - Generators and accumulators

	Library modules - Utilities
	binary.io - Binary I/O
	binary.pack - Packing Binary Data
	compat.norational - Rational-less arithmetic
	control.job - A common job descriptor for control modules
	control.thread-pool - Thread pools
	crypt.bcrypt - Password hashing
	data.cache - Cache
	data.heap - Heap
	data.ideque - Immutable deques
	data.imap - Immutable map
	data.queue - Queue
	data.random - Random data generators
	data.ring-buffer - Ring buffer
	data.sparse - Sparse data containers
	Sparse vectors
	Sparse matrixes
	Sparse tables

	data.trie - Trie
	dbi - Database independent access layer
	DBI user API
	Writing drivers for DBI

	dbm - Generic DBM interface
	Opening and closing a dbm database
	Accessing a dbm database
	Iterating on a dbm database
	Managing dbm database instance
	Dumping and restoring dbm database
	Writing a dbm implementation

	dbm.fsdbm - File-system dbm
	dbm.gdbm - GDBM interface
	dbm.ndbm - NDBM interface
	dbm.odbm - Original DBM interface
	file.filter - Filtering file content
	file.util - Filesystem utilities
	Directory utilities
	Pathname utilities
	File attribute utilities
	File operations
	Lock files

	math.const - Mathematic constants
	math.mt-random - Mersenne Twister Random number generator
	math.prime - Prime numbers
	os.windows - Windows support
	Windows dialogs
	Windows console API

	rfc.822 - RFC822 message parsing
	rfc.base64 - Base64 encoding/decoding
	rfc.cookie - HTTP cookie handling
	rfc.ftp - FTP client
	rfc.hmac - HMAC keyed-hashing
	rfc.http - HTTP
	rfc.icmp - ICMP packets
	rfc.ip - IP packets
	rfc.json - JSON parsing and construction
	rfc.md5 - MD5 message digest
	rfc.mime - MIME message handling
	rfc.quoted-printable - Quoted-printable encoding/decoding
	rfc.sha - SHA message digest
	rfc.tls - Transport layer security
	rfc.uri - URI parsing and construction
	rfc.zlib - zlib compression library
	slib - SLIB interface
	sxml.ssax - Functional XML parser
	SSAX data types
	SSAX low-level parsing code
	SSAX higher-level parsers and scanners
	SSAX Highest-level parsers - XML to SXML

	sxml.sxpath - SXML Query Language
	SXPath basic converters and applicators
	SXPath query language
	SXPath extension

	sxml.tools - Manipulating SXML structure
	SXML predicates
	SXML accessors
	SXML modifiers
	SXPath auxiliary utilities
	SXML to markup conversion

	sxml.serializer - Serializing XML and HTML from SXML
	Simple SXML serializing
	Custom SXML serializing

	text.console - Text terminal control
	text.csv - CSV tables
	text.diff - Calculate difference of text streams
	text.gettext - Localized messages
	text.html-lite - Simple HTML document construction
	text.parse - Parsing input stream
	text.progress - Showing progress on text terminals
	text.sql - SQL parsing and construction
	text.template - Simple template expander
	text.tr - Transliterate characters
	text.tree - Lazy text construction
	util.combinations - Combination library
	util.digest - Message digester framework
	util.dominator - Calculate dominator tree
	util.isomorph - Determine isomorphism
	util.lcs - The longest common subsequence
	util.levenshtein - Levenshtein edit distance
	util.match - Pattern matching
	util.record - SLIB-compatible record type
	util.relation - Relation framework
	util.stream - Stream library
	util.toposort - Topological sort
	util.unification - Unification
	www.cgi - CGI utility
	www.cgi.test - CGI testing
	www.css - CSS parsing and construction

	References
	C to Scheme mapping
	Function and Syntax Index
	Module Index
	Lexical syntax index
	Class Index
	Variable Index

